Text file src/cmd/compile/internal/ssa/gen/generic.rules

     1  // Copyright 2015 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Simplifications that apply to all backend architectures. As an example, this
     6  // Go source code
     7  //
     8  // y := 0 * x
     9  //
    10  // can be translated into y := 0 without losing any information, which saves a
    11  // pointless multiplication instruction. Other .rules files in this directory
    12  // (for example AMD64.rules) contain rules specific to the architecture in the
    13  // filename. The rules here apply to every architecture.
    14  //
    15  // The code for parsing this file lives in rulegen.go; this file generates
    16  // ssa/rewritegeneric.go.
    17  
    18  // values are specified using the following format:
    19  // (op <type> [auxint] {aux} arg0 arg1 ...)
    20  // the type, aux, and auxint fields are optional
    21  // on the matching side
    22  //  - the type, aux, and auxint fields must match if they are specified.
    23  //  - the first occurrence of a variable defines that variable.  Subsequent
    24  //    uses must match (be == to) the first use.
    25  //  - v is defined to be the value matched.
    26  //  - an additional conditional can be provided after the match pattern with "&&".
    27  // on the generated side
    28  //  - the type of the top-level expression is the same as the one on the left-hand side.
    29  //  - the type of any subexpressions must be specified explicitly (or
    30  //    be specified in the op's type field).
    31  //  - auxint will be 0 if not specified.
    32  //  - aux will be nil if not specified.
    33  
    34  // blocks are specified using the following format:
    35  // (kind controlvalue succ0 succ1 ...)
    36  // controlvalue must be "nil" or a value expression
    37  // succ* fields must be variables
    38  // For now, the generated successors must be a permutation of the matched successors.
    39  
    40  // constant folding
    41  (Trunc16to8  (Const16  [c])) => (Const8   [int8(c)])
    42  (Trunc32to8  (Const32  [c])) => (Const8   [int8(c)])
    43  (Trunc32to16 (Const32  [c])) => (Const16  [int16(c)])
    44  (Trunc64to8  (Const64  [c])) => (Const8   [int8(c)])
    45  (Trunc64to16 (Const64  [c])) => (Const16  [int16(c)])
    46  (Trunc64to32 (Const64  [c])) => (Const32  [int32(c)])
    47  (Cvt64Fto32F (Const64F [c])) => (Const32F [float32(c)])
    48  (Cvt32Fto64F (Const32F [c])) => (Const64F [float64(c)])
    49  (Cvt32to32F  (Const32  [c])) => (Const32F [float32(c)])
    50  (Cvt32to64F  (Const32  [c])) => (Const64F [float64(c)])
    51  (Cvt64to32F  (Const64  [c])) => (Const32F [float32(c)])
    52  (Cvt64to64F  (Const64  [c])) => (Const64F [float64(c)])
    53  (Cvt32Fto32  (Const32F [c])) => (Const32  [int32(c)])
    54  (Cvt32Fto64  (Const32F [c])) => (Const64  [int64(c)])
    55  (Cvt64Fto32  (Const64F [c])) => (Const32  [int32(c)])
    56  (Cvt64Fto64  (Const64F [c])) => (Const64  [int64(c)])
    57  (Round32F x:(Const32F)) => x
    58  (Round64F x:(Const64F)) => x
    59  (CvtBoolToUint8 (ConstBool [false])) => (Const8 [0])
    60  (CvtBoolToUint8 (ConstBool [true])) => (Const8 [1])
    61  
    62  (Trunc16to8  (ZeroExt8to16  x)) => x
    63  (Trunc32to8  (ZeroExt8to32  x)) => x
    64  (Trunc32to16 (ZeroExt8to32  x)) => (ZeroExt8to16  x)
    65  (Trunc32to16 (ZeroExt16to32 x)) => x
    66  (Trunc64to8  (ZeroExt8to64  x)) => x
    67  (Trunc64to16 (ZeroExt8to64  x)) => (ZeroExt8to16  x)
    68  (Trunc64to16 (ZeroExt16to64 x)) => x
    69  (Trunc64to32 (ZeroExt8to64  x)) => (ZeroExt8to32  x)
    70  (Trunc64to32 (ZeroExt16to64 x)) => (ZeroExt16to32 x)
    71  (Trunc64to32 (ZeroExt32to64 x)) => x
    72  (Trunc16to8  (SignExt8to16  x)) => x
    73  (Trunc32to8  (SignExt8to32  x)) => x
    74  (Trunc32to16 (SignExt8to32  x)) => (SignExt8to16  x)
    75  (Trunc32to16 (SignExt16to32 x)) => x
    76  (Trunc64to8  (SignExt8to64  x)) => x
    77  (Trunc64to16 (SignExt8to64  x)) => (SignExt8to16  x)
    78  (Trunc64to16 (SignExt16to64 x)) => x
    79  (Trunc64to32 (SignExt8to64  x)) => (SignExt8to32  x)
    80  (Trunc64to32 (SignExt16to64 x)) => (SignExt16to32 x)
    81  (Trunc64to32 (SignExt32to64 x)) => x
    82  
    83  (ZeroExt8to16  (Const8  [c])) => (Const16 [int16( uint8(c))])
    84  (ZeroExt8to32  (Const8  [c])) => (Const32 [int32( uint8(c))])
    85  (ZeroExt8to64  (Const8  [c])) => (Const64 [int64( uint8(c))])
    86  (ZeroExt16to32 (Const16 [c])) => (Const32 [int32(uint16(c))])
    87  (ZeroExt16to64 (Const16 [c])) => (Const64 [int64(uint16(c))])
    88  (ZeroExt32to64 (Const32 [c])) => (Const64 [int64(uint32(c))])
    89  (SignExt8to16  (Const8  [c])) => (Const16 [int16(c)])
    90  (SignExt8to32  (Const8  [c])) => (Const32 [int32(c)])
    91  (SignExt8to64  (Const8  [c])) => (Const64 [int64(c)])
    92  (SignExt16to32 (Const16 [c])) => (Const32 [int32(c)])
    93  (SignExt16to64 (Const16 [c])) => (Const64 [int64(c)])
    94  (SignExt32to64 (Const32 [c])) => (Const64 [int64(c)])
    95  
    96  (Neg8   (Const8   [c])) => (Const8   [-c])
    97  (Neg16  (Const16  [c])) => (Const16  [-c])
    98  (Neg32  (Const32  [c])) => (Const32  [-c])
    99  (Neg64  (Const64  [c])) => (Const64  [-c])
   100  (Neg32F (Const32F [c])) && c != 0 => (Const32F [-c])
   101  (Neg64F (Const64F [c])) && c != 0 => (Const64F [-c])
   102  
   103  (Add8   (Const8 [c])   (Const8 [d]))   => (Const8  [c+d])
   104  (Add16  (Const16 [c])  (Const16 [d]))  => (Const16 [c+d])
   105  (Add32  (Const32 [c])  (Const32 [d]))  => (Const32 [c+d])
   106  (Add64  (Const64 [c])  (Const64 [d]))  => (Const64 [c+d])
   107  (Add32F (Const32F [c]) (Const32F [d])) && c+d == c+d => (Const32F [c+d])
   108  (Add64F (Const64F [c]) (Const64F [d])) && c+d == c+d => (Const64F [c+d])
   109  (AddPtr <t> x (Const64 [c])) => (OffPtr <t> x [c])
   110  (AddPtr <t> x (Const32 [c])) => (OffPtr <t> x [int64(c)])
   111  
   112  (Sub8   (Const8 [c]) (Const8 [d]))     => (Const8 [c-d])
   113  (Sub16  (Const16 [c]) (Const16 [d]))   => (Const16 [c-d])
   114  (Sub32  (Const32 [c]) (Const32 [d]))   => (Const32 [c-d])
   115  (Sub64  (Const64 [c]) (Const64 [d]))   => (Const64 [c-d])
   116  (Sub32F (Const32F [c]) (Const32F [d])) && c-d == c-d => (Const32F [c-d])
   117  (Sub64F (Const64F [c]) (Const64F [d])) && c-d == c-d => (Const64F [c-d])
   118  
   119  (Mul8   (Const8 [c])   (Const8 [d]))   => (Const8  [c*d])
   120  (Mul16  (Const16 [c])  (Const16 [d]))  => (Const16 [c*d])
   121  (Mul32  (Const32 [c])  (Const32 [d]))  => (Const32 [c*d])
   122  (Mul64  (Const64 [c])  (Const64 [d]))  => (Const64 [c*d])
   123  (Mul32F (Const32F [c]) (Const32F [d])) && c*d == c*d => (Const32F [c*d])
   124  (Mul64F (Const64F [c]) (Const64F [d])) && c*d == c*d => (Const64F [c*d])
   125  
   126  (And8   (Const8 [c])   (Const8 [d]))   => (Const8  [c&d])
   127  (And16  (Const16 [c])  (Const16 [d]))  => (Const16 [c&d])
   128  (And32  (Const32 [c])  (Const32 [d]))  => (Const32 [c&d])
   129  (And64  (Const64 [c])  (Const64 [d]))  => (Const64 [c&d])
   130  
   131  (Or8   (Const8 [c])   (Const8 [d]))   => (Const8  [c|d])
   132  (Or16  (Const16 [c])  (Const16 [d]))  => (Const16 [c|d])
   133  (Or32  (Const32 [c])  (Const32 [d]))  => (Const32 [c|d])
   134  (Or64  (Const64 [c])  (Const64 [d]))  => (Const64 [c|d])
   135  
   136  (Xor8   (Const8 [c])   (Const8 [d]))   => (Const8  [c^d])
   137  (Xor16  (Const16 [c])  (Const16 [d]))  => (Const16 [c^d])
   138  (Xor32  (Const32 [c])  (Const32 [d]))  => (Const32 [c^d])
   139  (Xor64  (Const64 [c])  (Const64 [d]))  => (Const64 [c^d])
   140  
   141  (Ctz64 (Const64 [c])) && config.PtrSize == 4 => (Const32 [int32(ntz64(c))])
   142  (Ctz32 (Const32 [c])) && config.PtrSize == 4 => (Const32 [int32(ntz32(c))])
   143  (Ctz16 (Const16 [c])) && config.PtrSize == 4 => (Const32 [int32(ntz16(c))])
   144  (Ctz8  (Const8  [c])) && config.PtrSize == 4 => (Const32 [int32(ntz8(c))])
   145  
   146  (Ctz64 (Const64 [c])) && config.PtrSize == 8 => (Const64 [int64(ntz64(c))])
   147  (Ctz32 (Const32 [c])) && config.PtrSize == 8 => (Const64 [int64(ntz32(c))])
   148  (Ctz16 (Const16 [c])) && config.PtrSize == 8 => (Const64 [int64(ntz16(c))])
   149  (Ctz8  (Const8  [c])) && config.PtrSize == 8 => (Const64 [int64(ntz8(c))])
   150  
   151  (Div8   (Const8  [c])  (Const8  [d])) && d != 0 => (Const8  [c/d])
   152  (Div16  (Const16 [c])  (Const16 [d])) && d != 0 => (Const16 [c/d])
   153  (Div32  (Const32 [c])  (Const32 [d])) && d != 0 => (Const32 [c/d])
   154  (Div64  (Const64 [c])  (Const64 [d])) && d != 0 => (Const64 [c/d])
   155  (Div8u  (Const8  [c])  (Const8  [d])) && d != 0 => (Const8  [int8(uint8(c)/uint8(d))])
   156  (Div16u (Const16 [c])  (Const16 [d])) && d != 0 => (Const16 [int16(uint16(c)/uint16(d))])
   157  (Div32u (Const32 [c])  (Const32 [d])) && d != 0 => (Const32 [int32(uint32(c)/uint32(d))])
   158  (Div64u (Const64 [c])  (Const64 [d])) && d != 0 => (Const64 [int64(uint64(c)/uint64(d))])
   159  (Div32F (Const32F [c]) (Const32F [d])) && c/d == c/d => (Const32F [c/d])
   160  (Div64F (Const64F [c]) (Const64F [d])) && c/d == c/d => (Const64F [c/d])
   161  (Select0 (Div128u (Const64 [0]) lo y)) => (Div64u lo y)
   162  (Select1 (Div128u (Const64 [0]) lo y)) => (Mod64u lo y)
   163  
   164  (Not (ConstBool [c])) => (ConstBool [!c])
   165  
   166  // Convert x * 1 to x.
   167  (Mul(8|16|32|64)  (Const(8|16|32|64)  [1]) x) => x
   168  
   169  // Convert x * -1 to -x.
   170  (Mul(8|16|32|64)  (Const(8|16|32|64)  [-1]) x) => (Neg(8|16|32|64)  x)
   171  
   172  // Convert multiplication by a power of two to a shift.
   173  (Mul8  <t> n (Const8  [c])) && isPowerOfTwo8(c) => (Lsh8x64  <t> n (Const64 <typ.UInt64> [log8(c)]))
   174  (Mul16 <t> n (Const16 [c])) && isPowerOfTwo16(c) => (Lsh16x64 <t> n (Const64 <typ.UInt64> [log16(c)]))
   175  (Mul32 <t> n (Const32 [c])) && isPowerOfTwo32(c) => (Lsh32x64 <t> n (Const64 <typ.UInt64> [log32(c)]))
   176  (Mul64 <t> n (Const64 [c])) && isPowerOfTwo64(c) => (Lsh64x64 <t> n (Const64 <typ.UInt64> [log64(c)]))
   177  (Mul8  <t> n (Const8  [c])) && t.IsSigned() && isPowerOfTwo8(-c)  => (Neg8  (Lsh8x64  <t> n (Const64 <typ.UInt64> [log8(-c)])))
   178  (Mul16 <t> n (Const16 [c])) && t.IsSigned() && isPowerOfTwo16(-c) => (Neg16 (Lsh16x64 <t> n (Const64 <typ.UInt64> [log16(-c)])))
   179  (Mul32 <t> n (Const32 [c])) && t.IsSigned() && isPowerOfTwo32(-c) => (Neg32 (Lsh32x64 <t> n (Const64 <typ.UInt64> [log32(-c)])))
   180  (Mul64 <t> n (Const64 [c])) && t.IsSigned() && isPowerOfTwo64(-c) => (Neg64 (Lsh64x64 <t> n (Const64 <typ.UInt64> [log64(-c)])))
   181  
   182  (Mod8  (Const8  [c]) (Const8  [d])) && d != 0 => (Const8  [c % d])
   183  (Mod16 (Const16 [c]) (Const16 [d])) && d != 0 => (Const16 [c % d])
   184  (Mod32 (Const32 [c]) (Const32 [d])) && d != 0 => (Const32 [c % d])
   185  (Mod64 (Const64 [c]) (Const64 [d])) && d != 0 => (Const64 [c % d])
   186  
   187  (Mod8u  (Const8 [c])  (Const8  [d])) && d != 0 => (Const8  [int8(uint8(c) % uint8(d))])
   188  (Mod16u (Const16 [c]) (Const16 [d])) && d != 0 => (Const16 [int16(uint16(c) % uint16(d))])
   189  (Mod32u (Const32 [c]) (Const32 [d])) && d != 0 => (Const32 [int32(uint32(c) % uint32(d))])
   190  (Mod64u (Const64 [c]) (Const64 [d])) && d != 0 => (Const64 [int64(uint64(c) % uint64(d))])
   191  
   192  (Lsh64x64  (Const64 [c]) (Const64 [d])) => (Const64 [c << uint64(d)])
   193  (Rsh64x64  (Const64 [c]) (Const64 [d])) => (Const64 [c >> uint64(d)])
   194  (Rsh64Ux64 (Const64 [c]) (Const64 [d])) => (Const64 [int64(uint64(c) >> uint64(d))])
   195  (Lsh32x64  (Const32 [c]) (Const64 [d])) => (Const32 [c << uint64(d)])
   196  (Rsh32x64  (Const32 [c]) (Const64 [d])) => (Const32 [c >> uint64(d)])
   197  (Rsh32Ux64 (Const32 [c]) (Const64 [d])) => (Const32 [int32(uint32(c) >> uint64(d))])
   198  (Lsh16x64  (Const16 [c]) (Const64 [d])) => (Const16 [c << uint64(d)])
   199  (Rsh16x64  (Const16 [c]) (Const64 [d])) => (Const16 [c >> uint64(d)])
   200  (Rsh16Ux64 (Const16 [c]) (Const64 [d])) => (Const16 [int16(uint16(c) >> uint64(d))])
   201  (Lsh8x64   (Const8  [c]) (Const64 [d])) => (Const8  [c << uint64(d)])
   202  (Rsh8x64   (Const8  [c]) (Const64 [d])) => (Const8  [c >> uint64(d)])
   203  (Rsh8Ux64  (Const8  [c]) (Const64 [d])) => (Const8  [int8(uint8(c) >> uint64(d))])
   204  
   205  // Fold IsInBounds when the range of the index cannot exceed the limit.
   206  (IsInBounds (ZeroExt8to32  _) (Const32 [c])) && (1 << 8)  <= c => (ConstBool [true])
   207  (IsInBounds (ZeroExt8to64  _) (Const64 [c])) && (1 << 8)  <= c => (ConstBool [true])
   208  (IsInBounds (ZeroExt16to32 _) (Const32 [c])) && (1 << 16) <= c => (ConstBool [true])
   209  (IsInBounds (ZeroExt16to64 _) (Const64 [c])) && (1 << 16) <= c => (ConstBool [true])
   210  (IsInBounds x x) => (ConstBool [false])
   211  (IsInBounds                (And8  (Const8  [c]) _)  (Const8  [d])) && 0 <= c && c < d => (ConstBool [true])
   212  (IsInBounds (ZeroExt8to16  (And8  (Const8  [c]) _)) (Const16 [d])) && 0 <= c && int16(c) < d => (ConstBool [true])
   213  (IsInBounds (ZeroExt8to32  (And8  (Const8  [c]) _)) (Const32 [d])) && 0 <= c && int32(c) < d => (ConstBool [true])
   214  (IsInBounds (ZeroExt8to64  (And8  (Const8  [c]) _)) (Const64 [d])) && 0 <= c && int64(c) < d => (ConstBool [true])
   215  (IsInBounds                (And16 (Const16 [c]) _)  (Const16 [d])) && 0 <= c && c < d => (ConstBool [true])
   216  (IsInBounds (ZeroExt16to32 (And16 (Const16 [c]) _)) (Const32 [d])) && 0 <= c && int32(c) < d => (ConstBool [true])
   217  (IsInBounds (ZeroExt16to64 (And16 (Const16 [c]) _)) (Const64 [d])) && 0 <= c && int64(c) < d => (ConstBool [true])
   218  (IsInBounds                (And32 (Const32 [c]) _)  (Const32 [d])) && 0 <= c && c < d => (ConstBool [true])
   219  (IsInBounds (ZeroExt32to64 (And32 (Const32 [c]) _)) (Const64 [d])) && 0 <= c && int64(c) < d => (ConstBool [true])
   220  (IsInBounds                (And64 (Const64 [c]) _)  (Const64 [d])) && 0 <= c && c < d => (ConstBool [true])
   221  (IsInBounds (Const32 [c]) (Const32 [d])) => (ConstBool [0 <= c && c < d])
   222  (IsInBounds (Const64 [c]) (Const64 [d])) => (ConstBool [0 <= c && c < d])
   223  // (Mod64u x y) is always between 0 (inclusive) and y (exclusive).
   224  (IsInBounds (Mod32u _ y) y) => (ConstBool [true])
   225  (IsInBounds (Mod64u _ y) y) => (ConstBool [true])
   226  // Right shifting an unsigned number limits its value.
   227  (IsInBounds (ZeroExt8to64  (Rsh8Ux64  _ (Const64 [c]))) (Const64 [d])) && 0 < c && c <  8 && 1<<uint( 8-c)-1 < d => (ConstBool [true])
   228  (IsInBounds (ZeroExt8to32  (Rsh8Ux64  _ (Const64 [c]))) (Const32 [d])) && 0 < c && c <  8 && 1<<uint( 8-c)-1 < d => (ConstBool [true])
   229  (IsInBounds (ZeroExt8to16  (Rsh8Ux64  _ (Const64 [c]))) (Const16 [d])) && 0 < c && c <  8 && 1<<uint( 8-c)-1 < d => (ConstBool [true])
   230  (IsInBounds                (Rsh8Ux64  _ (Const64 [c]))  (Const64 [d])) && 0 < c && c <  8 && 1<<uint( 8-c)-1 < d => (ConstBool [true])
   231  (IsInBounds (ZeroExt16to64 (Rsh16Ux64 _ (Const64 [c]))) (Const64 [d])) && 0 < c && c < 16 && 1<<uint(16-c)-1 < d => (ConstBool [true])
   232  (IsInBounds (ZeroExt16to32 (Rsh16Ux64 _ (Const64 [c]))) (Const64 [d])) && 0 < c && c < 16 && 1<<uint(16-c)-1 < d => (ConstBool [true])
   233  (IsInBounds                (Rsh16Ux64 _ (Const64 [c]))  (Const64 [d])) && 0 < c && c < 16 && 1<<uint(16-c)-1 < d => (ConstBool [true])
   234  (IsInBounds (ZeroExt32to64 (Rsh32Ux64 _ (Const64 [c]))) (Const64 [d])) && 0 < c && c < 32 && 1<<uint(32-c)-1 < d => (ConstBool [true])
   235  (IsInBounds                (Rsh32Ux64 _ (Const64 [c]))  (Const64 [d])) && 0 < c && c < 32 && 1<<uint(32-c)-1 < d => (ConstBool [true])
   236  (IsInBounds                (Rsh64Ux64 _ (Const64 [c]))  (Const64 [d])) && 0 < c && c < 64 && 1<<uint(64-c)-1 < d => (ConstBool [true])
   237  
   238  (IsSliceInBounds x x) => (ConstBool [true])
   239  (IsSliceInBounds (And32 (Const32 [c]) _) (Const32 [d])) && 0 <= c && c <= d => (ConstBool [true])
   240  (IsSliceInBounds (And64 (Const64 [c]) _) (Const64 [d])) && 0 <= c && c <= d => (ConstBool [true])
   241  (IsSliceInBounds (Const32 [0]) _) => (ConstBool [true])
   242  (IsSliceInBounds (Const64 [0]) _) => (ConstBool [true])
   243  (IsSliceInBounds (Const32 [c]) (Const32 [d])) => (ConstBool [0 <= c && c <= d])
   244  (IsSliceInBounds (Const64 [c]) (Const64 [d])) => (ConstBool [0 <= c && c <= d])
   245  (IsSliceInBounds (SliceLen x) (SliceCap x)) => (ConstBool [true])
   246  
   247  (Eq(64|32|16|8) x x) => (ConstBool [true])
   248  (EqB (ConstBool [c]) (ConstBool [d])) => (ConstBool [c == d])
   249  (EqB (ConstBool [false]) x) => (Not x)
   250  (EqB (ConstBool [true]) x) => x
   251  
   252  (Neq(64|32|16|8) x x) => (ConstBool [false])
   253  (NeqB (ConstBool [c]) (ConstBool [d])) => (ConstBool [c != d])
   254  (NeqB (ConstBool [false]) x) => x
   255  (NeqB (ConstBool [true]) x) => (Not x)
   256  (NeqB (Not x) (Not y)) => (NeqB x y)
   257  
   258  (Eq64 (Const64 <t> [c]) (Add64 (Const64 <t> [d]) x)) => (Eq64 (Const64 <t> [c-d]) x)
   259  (Eq32 (Const32 <t> [c]) (Add32 (Const32 <t> [d]) x)) => (Eq32 (Const32 <t> [c-d]) x)
   260  (Eq16 (Const16 <t> [c]) (Add16 (Const16 <t> [d]) x)) => (Eq16 (Const16 <t> [c-d]) x)
   261  (Eq8  (Const8  <t> [c]) (Add8  (Const8  <t> [d]) x)) => (Eq8  (Const8  <t> [c-d]) x)
   262  
   263  (Neq64 (Const64 <t> [c]) (Add64 (Const64 <t> [d]) x)) => (Neq64 (Const64 <t> [c-d]) x)
   264  (Neq32 (Const32 <t> [c]) (Add32 (Const32 <t> [d]) x)) => (Neq32 (Const32 <t> [c-d]) x)
   265  (Neq16 (Const16 <t> [c]) (Add16 (Const16 <t> [d]) x)) => (Neq16 (Const16 <t> [c-d]) x)
   266  (Neq8  (Const8  <t> [c]) (Add8  (Const8  <t> [d]) x)) => (Neq8  (Const8  <t> [c-d]) x)
   267  
   268  // signed integer range: ( c <= x && x (<|<=) d ) -> ( unsigned(x-c) (<|<=) unsigned(d-c) )
   269  (AndB (Leq64 (Const64 [c]) x) ((Less|Leq)64 x (Const64 [d]))) && d >= c => ((Less|Leq)64U (Sub64 <x.Type> x (Const64 <x.Type> [c])) (Const64 <x.Type> [d-c]))
   270  (AndB (Leq32 (Const32 [c]) x) ((Less|Leq)32 x (Const32 [d]))) && d >= c => ((Less|Leq)32U (Sub32 <x.Type> x (Const32 <x.Type> [c])) (Const32 <x.Type> [d-c]))
   271  (AndB (Leq16 (Const16 [c]) x) ((Less|Leq)16 x (Const16 [d]))) && d >= c => ((Less|Leq)16U (Sub16 <x.Type> x (Const16 <x.Type> [c])) (Const16 <x.Type> [d-c]))
   272  (AndB (Leq8  (Const8  [c]) x) ((Less|Leq)8  x (Const8  [d]))) && d >= c => ((Less|Leq)8U  (Sub8  <x.Type> x (Const8  <x.Type> [c])) (Const8  <x.Type> [d-c]))
   273  
   274  // signed integer range: ( c < x && x (<|<=) d ) -> ( unsigned(x-(c+1)) (<|<=) unsigned(d-(c+1)) )
   275  (AndB (Less64 (Const64 [c]) x) ((Less|Leq)64 x (Const64 [d]))) && d >= c+1 && c+1 > c => ((Less|Leq)64U (Sub64 <x.Type> x (Const64 <x.Type> [c+1])) (Const64 <x.Type> [d-c-1]))
   276  (AndB (Less32 (Const32 [c]) x) ((Less|Leq)32 x (Const32 [d]))) && d >= c+1 && c+1 > c => ((Less|Leq)32U (Sub32 <x.Type> x (Const32 <x.Type> [c+1])) (Const32 <x.Type> [d-c-1]))
   277  (AndB (Less16 (Const16 [c]) x) ((Less|Leq)16 x (Const16 [d]))) && d >= c+1 && c+1 > c => ((Less|Leq)16U (Sub16 <x.Type> x (Const16 <x.Type> [c+1])) (Const16 <x.Type> [d-c-1]))
   278  (AndB (Less8  (Const8  [c]) x) ((Less|Leq)8  x (Const8  [d]))) && d >= c+1 && c+1 > c => ((Less|Leq)8U  (Sub8  <x.Type> x (Const8  <x.Type> [c+1])) (Const8  <x.Type> [d-c-1]))
   279  
   280  // unsigned integer range: ( c <= x && x (<|<=) d ) -> ( x-c (<|<=) d-c )
   281  (AndB (Leq64U (Const64 [c]) x) ((Less|Leq)64U x (Const64 [d]))) && uint64(d) >= uint64(c) => ((Less|Leq)64U (Sub64 <x.Type> x (Const64 <x.Type> [c])) (Const64 <x.Type> [d-c]))
   282  (AndB (Leq32U (Const32 [c]) x) ((Less|Leq)32U x (Const32 [d]))) && uint32(d) >= uint32(c) => ((Less|Leq)32U (Sub32 <x.Type> x (Const32 <x.Type> [c])) (Const32 <x.Type> [d-c]))
   283  (AndB (Leq16U (Const16 [c]) x) ((Less|Leq)16U x (Const16 [d]))) && uint16(d) >= uint16(c) => ((Less|Leq)16U (Sub16 <x.Type> x (Const16 <x.Type> [c])) (Const16 <x.Type> [d-c]))
   284  (AndB (Leq8U  (Const8  [c]) x) ((Less|Leq)8U  x (Const8  [d]))) && uint8(d)  >= uint8(c)  => ((Less|Leq)8U  (Sub8  <x.Type> x (Const8  <x.Type> [c])) (Const8  <x.Type> [d-c]))
   285  
   286  // unsigned integer range: ( c < x && x (<|<=) d ) -> ( x-(c+1) (<|<=) d-(c+1) )
   287  (AndB (Less64U (Const64 [c]) x) ((Less|Leq)64U x (Const64 [d]))) && uint64(d) >= uint64(c+1) && uint64(c+1) > uint64(c) => ((Less|Leq)64U (Sub64 <x.Type> x (Const64 <x.Type> [c+1])) (Const64 <x.Type> [d-c-1]))
   288  (AndB (Less32U (Const32 [c]) x) ((Less|Leq)32U x (Const32 [d]))) && uint32(d) >= uint32(c+1) && uint32(c+1) > uint32(c) => ((Less|Leq)32U (Sub32 <x.Type> x (Const32 <x.Type> [c+1])) (Const32 <x.Type> [d-c-1]))
   289  (AndB (Less16U (Const16 [c]) x) ((Less|Leq)16U x (Const16 [d]))) && uint16(d) >= uint16(c+1) && uint16(c+1) > uint16(c) => ((Less|Leq)16U (Sub16 <x.Type> x (Const16 <x.Type> [c+1])) (Const16 <x.Type> [d-c-1]))
   290  (AndB (Less8U  (Const8  [c]) x) ((Less|Leq)8U  x (Const8  [d]))) && uint8(d)  >= uint8(c+1)  && uint8(c+1)  > uint8(c)  => ((Less|Leq)8U  (Sub8  <x.Type> x (Const8  <x.Type> [c+1]))  (Const8  <x.Type> [d-c-1]))
   291  
   292  // signed integer range: ( c (<|<=) x || x < d ) -> ( unsigned(c-d) (<|<=) unsigned(x-d) )
   293  (OrB ((Less|Leq)64 (Const64 [c]) x) (Less64 x (Const64 [d]))) && c >= d => ((Less|Leq)64U (Const64 <x.Type> [c-d]) (Sub64 <x.Type> x (Const64 <x.Type> [d])))
   294  (OrB ((Less|Leq)32 (Const32 [c]) x) (Less32 x (Const32 [d]))) && c >= d => ((Less|Leq)32U (Const32 <x.Type> [c-d]) (Sub32 <x.Type> x (Const32 <x.Type> [d])))
   295  (OrB ((Less|Leq)16 (Const16 [c]) x) (Less16 x (Const16 [d]))) && c >= d => ((Less|Leq)16U (Const16 <x.Type> [c-d]) (Sub16 <x.Type> x (Const16 <x.Type> [d])))
   296  (OrB ((Less|Leq)8  (Const8  [c]) x) (Less8  x (Const8  [d]))) && c >= d => ((Less|Leq)8U  (Const8  <x.Type> [c-d]) (Sub8  <x.Type> x (Const8  <x.Type> [d])))
   297  
   298  // signed integer range: ( c (<|<=) x || x <= d ) -> ( unsigned(c-(d+1)) (<|<=) unsigned(x-(d+1)) )
   299  (OrB ((Less|Leq)64 (Const64 [c]) x) (Leq64 x (Const64 [d]))) && c >= d+1 && d+1 > d => ((Less|Leq)64U (Const64 <x.Type> [c-d-1]) (Sub64 <x.Type> x (Const64 <x.Type> [d+1])))
   300  (OrB ((Less|Leq)32 (Const32 [c]) x) (Leq32 x (Const32 [d]))) && c >= d+1 && d+1 > d => ((Less|Leq)32U (Const32 <x.Type> [c-d-1]) (Sub32 <x.Type> x (Const32 <x.Type> [d+1])))
   301  (OrB ((Less|Leq)16 (Const16 [c]) x) (Leq16 x (Const16 [d]))) && c >= d+1 && d+1 > d => ((Less|Leq)16U (Const16 <x.Type> [c-d-1]) (Sub16 <x.Type> x (Const16 <x.Type> [d+1])))
   302  (OrB ((Less|Leq)8  (Const8  [c]) x) (Leq8  x (Const8  [d]))) && c >= d+1 && d+1 > d => ((Less|Leq)8U  (Const8  <x.Type> [c-d-1]) (Sub8  <x.Type> x (Const8  <x.Type> [d+1])))
   303  
   304  // unsigned integer range: ( c (<|<=) x || x < d ) -> ( c-d (<|<=) x-d )
   305  (OrB ((Less|Leq)64U (Const64 [c]) x) (Less64U x (Const64 [d]))) && uint64(c) >= uint64(d) => ((Less|Leq)64U (Const64 <x.Type> [c-d]) (Sub64 <x.Type> x (Const64 <x.Type> [d])))
   306  (OrB ((Less|Leq)32U (Const32 [c]) x) (Less32U x (Const32 [d]))) && uint32(c) >= uint32(d) => ((Less|Leq)32U (Const32 <x.Type> [c-d]) (Sub32 <x.Type> x (Const32 <x.Type> [d])))
   307  (OrB ((Less|Leq)16U (Const16 [c]) x) (Less16U x (Const16 [d]))) && uint16(c) >= uint16(d) => ((Less|Leq)16U (Const16 <x.Type> [c-d]) (Sub16 <x.Type> x (Const16 <x.Type> [d])))
   308  (OrB ((Less|Leq)8U  (Const8  [c]) x) (Less8U  x (Const8  [d]))) && uint8(c)  >= uint8(d)  => ((Less|Leq)8U  (Const8  <x.Type> [c-d]) (Sub8  <x.Type> x (Const8  <x.Type> [d])))
   309  
   310  // unsigned integer range: ( c (<|<=) x || x <= d ) -> ( c-(d+1) (<|<=) x-(d+1) )
   311  (OrB ((Less|Leq)64U (Const64 [c]) x) (Leq64U x (Const64 [d]))) && uint64(c) >= uint64(d+1) && uint64(d+1) > uint64(d) => ((Less|Leq)64U (Const64 <x.Type> [c-d-1]) (Sub64 <x.Type> x (Const64 <x.Type> [d+1])))
   312  (OrB ((Less|Leq)32U (Const32 [c]) x) (Leq32U x (Const32 [d]))) && uint32(c) >= uint32(d+1) && uint32(d+1) > uint32(d) => ((Less|Leq)32U (Const32 <x.Type> [c-d-1]) (Sub32 <x.Type> x (Const32 <x.Type> [d+1])))
   313  (OrB ((Less|Leq)16U (Const16 [c]) x) (Leq16U x (Const16 [d]))) && uint16(c) >= uint16(d+1) && uint16(d+1) > uint16(d) => ((Less|Leq)16U (Const16 <x.Type> [c-d-1]) (Sub16 <x.Type> x (Const16 <x.Type> [d+1])))
   314  (OrB ((Less|Leq)8U  (Const8  [c]) x) (Leq8U  x (Const8  [d]))) && uint8(c)  >= uint8(d+1)  && uint8(d+1)  > uint8(d)  => ((Less|Leq)8U  (Const8  <x.Type> [c-d-1]) (Sub8  <x.Type> x (Const8  <x.Type> [d+1])))
   315  
   316  // Canonicalize x-const to x+(-const)
   317  (Sub64 x (Const64 <t> [c])) && x.Op != OpConst64 => (Add64 (Const64 <t> [-c]) x)
   318  (Sub32 x (Const32 <t> [c])) && x.Op != OpConst32 => (Add32 (Const32 <t> [-c]) x)
   319  (Sub16 x (Const16 <t> [c])) && x.Op != OpConst16 => (Add16 (Const16 <t> [-c]) x)
   320  (Sub8  x (Const8  <t> [c])) && x.Op != OpConst8  => (Add8  (Const8  <t> [-c]) x)
   321  
   322  // fold negation into comparison operators
   323  (Not (Eq(64|32|16|8|B|Ptr|64F|32F) x y)) => (Neq(64|32|16|8|B|Ptr|64F|32F) x y)
   324  (Not (Neq(64|32|16|8|B|Ptr|64F|32F) x y)) => (Eq(64|32|16|8|B|Ptr|64F|32F) x y)
   325  
   326  (Not (Less(64|32|16|8) x y)) => (Leq(64|32|16|8) y x)
   327  (Not (Less(64|32|16|8)U x y)) => (Leq(64|32|16|8)U y x)
   328  (Not (Leq(64|32|16|8) x y)) => (Less(64|32|16|8) y x)
   329  (Not (Leq(64|32|16|8)U x y)) => (Less(64|32|16|8)U y x)
   330  
   331  // Distribute multiplication c * (d+x) -> c*d + c*x. Useful for:
   332  // a[i].b = ...; a[i+1].b = ...
   333  (Mul64 (Const64 <t> [c]) (Add64 <t> (Const64 <t> [d]) x)) =>
   334    (Add64 (Const64 <t> [c*d]) (Mul64 <t> (Const64 <t> [c]) x))
   335  (Mul32 (Const32 <t> [c]) (Add32 <t> (Const32 <t> [d]) x)) =>
   336    (Add32 (Const32 <t> [c*d]) (Mul32 <t> (Const32 <t> [c]) x))
   337  
   338  // Rewrite x*y ± x*z  to  x*(y±z)
   339  (Add(64|32|16|8) <t> (Mul(64|32|16|8) x y) (Mul(64|32|16|8) x z))
   340  	=> (Mul(64|32|16|8) x (Add(64|32|16|8) <t> y z))
   341  (Sub(64|32|16|8) <t> (Mul(64|32|16|8) x y) (Mul(64|32|16|8) x z))
   342  	=> (Mul(64|32|16|8) x (Sub(64|32|16|8) <t> y z))
   343  
   344  // rewrite shifts of 8/16/32 bit consts into 64 bit consts to reduce
   345  // the number of the other rewrite rules for const shifts
   346  (Lsh64x32  <t> x (Const32 [c])) => (Lsh64x64  x (Const64 <t> [int64(uint32(c))]))
   347  (Lsh64x16  <t> x (Const16 [c])) => (Lsh64x64  x (Const64 <t> [int64(uint16(c))]))
   348  (Lsh64x8   <t> x (Const8  [c])) => (Lsh64x64  x (Const64 <t> [int64(uint8(c))]))
   349  (Rsh64x32  <t> x (Const32 [c])) => (Rsh64x64  x (Const64 <t> [int64(uint32(c))]))
   350  (Rsh64x16  <t> x (Const16 [c])) => (Rsh64x64  x (Const64 <t> [int64(uint16(c))]))
   351  (Rsh64x8   <t> x (Const8  [c])) => (Rsh64x64  x (Const64 <t> [int64(uint8(c))]))
   352  (Rsh64Ux32 <t> x (Const32 [c])) => (Rsh64Ux64 x (Const64 <t> [int64(uint32(c))]))
   353  (Rsh64Ux16 <t> x (Const16 [c])) => (Rsh64Ux64 x (Const64 <t> [int64(uint16(c))]))
   354  (Rsh64Ux8  <t> x (Const8  [c])) => (Rsh64Ux64 x (Const64 <t> [int64(uint8(c))]))
   355  
   356  (Lsh32x32  <t> x (Const32 [c])) => (Lsh32x64  x (Const64 <t> [int64(uint32(c))]))
   357  (Lsh32x16  <t> x (Const16 [c])) => (Lsh32x64  x (Const64 <t> [int64(uint16(c))]))
   358  (Lsh32x8   <t> x (Const8  [c])) => (Lsh32x64  x (Const64 <t> [int64(uint8(c))]))
   359  (Rsh32x32  <t> x (Const32 [c])) => (Rsh32x64  x (Const64 <t> [int64(uint32(c))]))
   360  (Rsh32x16  <t> x (Const16 [c])) => (Rsh32x64  x (Const64 <t> [int64(uint16(c))]))
   361  (Rsh32x8   <t> x (Const8  [c])) => (Rsh32x64  x (Const64 <t> [int64(uint8(c))]))
   362  (Rsh32Ux32 <t> x (Const32 [c])) => (Rsh32Ux64 x (Const64 <t> [int64(uint32(c))]))
   363  (Rsh32Ux16 <t> x (Const16 [c])) => (Rsh32Ux64 x (Const64 <t> [int64(uint16(c))]))
   364  (Rsh32Ux8  <t> x (Const8  [c])) => (Rsh32Ux64 x (Const64 <t> [int64(uint8(c))]))
   365  
   366  (Lsh16x32  <t> x (Const32 [c])) => (Lsh16x64  x (Const64 <t> [int64(uint32(c))]))
   367  (Lsh16x16  <t> x (Const16 [c])) => (Lsh16x64  x (Const64 <t> [int64(uint16(c))]))
   368  (Lsh16x8   <t> x (Const8  [c])) => (Lsh16x64  x (Const64 <t> [int64(uint8(c))]))
   369  (Rsh16x32  <t> x (Const32 [c])) => (Rsh16x64  x (Const64 <t> [int64(uint32(c))]))
   370  (Rsh16x16  <t> x (Const16 [c])) => (Rsh16x64  x (Const64 <t> [int64(uint16(c))]))
   371  (Rsh16x8   <t> x (Const8  [c])) => (Rsh16x64  x (Const64 <t> [int64(uint8(c))]))
   372  (Rsh16Ux32 <t> x (Const32 [c])) => (Rsh16Ux64 x (Const64 <t> [int64(uint32(c))]))
   373  (Rsh16Ux16 <t> x (Const16 [c])) => (Rsh16Ux64 x (Const64 <t> [int64(uint16(c))]))
   374  (Rsh16Ux8  <t> x (Const8  [c])) => (Rsh16Ux64 x (Const64 <t> [int64(uint8(c))]))
   375  
   376  (Lsh8x32  <t> x (Const32 [c])) => (Lsh8x64  x (Const64 <t> [int64(uint32(c))]))
   377  (Lsh8x16  <t> x (Const16 [c])) => (Lsh8x64  x (Const64 <t> [int64(uint16(c))]))
   378  (Lsh8x8   <t> x (Const8  [c])) => (Lsh8x64  x (Const64 <t> [int64(uint8(c))]))
   379  (Rsh8x32  <t> x (Const32 [c])) => (Rsh8x64  x (Const64 <t> [int64(uint32(c))]))
   380  (Rsh8x16  <t> x (Const16 [c])) => (Rsh8x64  x (Const64 <t> [int64(uint16(c))]))
   381  (Rsh8x8   <t> x (Const8  [c])) => (Rsh8x64  x (Const64 <t> [int64(uint8(c))]))
   382  (Rsh8Ux32 <t> x (Const32 [c])) => (Rsh8Ux64 x (Const64 <t> [int64(uint32(c))]))
   383  (Rsh8Ux16 <t> x (Const16 [c])) => (Rsh8Ux64 x (Const64 <t> [int64(uint16(c))]))
   384  (Rsh8Ux8  <t> x (Const8  [c])) => (Rsh8Ux64 x (Const64 <t> [int64(uint8(c))]))
   385  
   386  // shifts by zero
   387  (Lsh(64|32|16|8)x64  x (Const64 [0])) => x
   388  (Rsh(64|32|16|8)x64  x (Const64 [0])) => x
   389  (Rsh(64|32|16|8)Ux64 x (Const64 [0])) => x
   390  
   391  // rotates by multiples of register width
   392  (RotateLeft64 x (Const64 [c])) && c%64 == 0 => x
   393  (RotateLeft32 x (Const32 [c])) && c%32 == 0 => x
   394  (RotateLeft16 x (Const16 [c])) && c%16 == 0 => x
   395  (RotateLeft8  x (Const8 [c]))  && c%8  == 0 => x
   396  
   397  // zero shifted
   398  (Lsh64x(64|32|16|8)  (Const64 [0]) _) => (Const64 [0])
   399  (Rsh64x(64|32|16|8)  (Const64 [0]) _) => (Const64 [0])
   400  (Rsh64Ux(64|32|16|8) (Const64 [0]) _) => (Const64 [0])
   401  (Lsh32x(64|32|16|8)  (Const32 [0]) _) => (Const32 [0])
   402  (Rsh32x(64|32|16|8)  (Const32 [0]) _) => (Const32 [0])
   403  (Rsh32Ux(64|32|16|8) (Const32 [0]) _) => (Const32 [0])
   404  (Lsh16x(64|32|16|8)  (Const16 [0]) _) => (Const16 [0])
   405  (Rsh16x(64|32|16|8)  (Const16 [0]) _) => (Const16 [0])
   406  (Rsh16Ux(64|32|16|8) (Const16 [0]) _) => (Const16 [0])
   407  (Lsh8x(64|32|16|8)   (Const8  [0]) _) => (Const8  [0])
   408  (Rsh8x(64|32|16|8)   (Const8  [0]) _) => (Const8  [0])
   409  (Rsh8Ux(64|32|16|8)  (Const8  [0]) _) => (Const8  [0])
   410  
   411  // large left shifts of all values, and right shifts of unsigned values
   412  ((Lsh64|Rsh64U)x64  _ (Const64 [c])) && uint64(c) >= 64 => (Const64 [0])
   413  ((Lsh32|Rsh32U)x64  _ (Const64 [c])) && uint64(c) >= 32 => (Const32 [0])
   414  ((Lsh16|Rsh16U)x64  _ (Const64 [c])) && uint64(c) >= 16 => (Const16 [0])
   415  ((Lsh8|Rsh8U)x64    _ (Const64 [c])) && uint64(c) >= 8  => (Const8  [0])
   416  
   417  // combine const shifts
   418  (Lsh64x64 <t> (Lsh64x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Lsh64x64 x (Const64 <t> [c+d]))
   419  (Lsh32x64 <t> (Lsh32x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Lsh32x64 x (Const64 <t> [c+d]))
   420  (Lsh16x64 <t> (Lsh16x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Lsh16x64 x (Const64 <t> [c+d]))
   421  (Lsh8x64  <t> (Lsh8x64  x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Lsh8x64  x (Const64 <t> [c+d]))
   422  
   423  (Rsh64x64 <t> (Rsh64x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh64x64 x (Const64 <t> [c+d]))
   424  (Rsh32x64 <t> (Rsh32x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh32x64 x (Const64 <t> [c+d]))
   425  (Rsh16x64 <t> (Rsh16x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh16x64 x (Const64 <t> [c+d]))
   426  (Rsh8x64  <t> (Rsh8x64  x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh8x64  x (Const64 <t> [c+d]))
   427  
   428  (Rsh64Ux64 <t> (Rsh64Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh64Ux64 x (Const64 <t> [c+d]))
   429  (Rsh32Ux64 <t> (Rsh32Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh32Ux64 x (Const64 <t> [c+d]))
   430  (Rsh16Ux64 <t> (Rsh16Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh16Ux64 x (Const64 <t> [c+d]))
   431  (Rsh8Ux64  <t> (Rsh8Ux64  x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh8Ux64  x (Const64 <t> [c+d]))
   432  
   433  // Remove signed right shift before an unsigned right shift that extracts the sign bit.
   434  (Rsh8Ux64  (Rsh8x64  x _) (Const64 <t> [7] )) => (Rsh8Ux64  x (Const64 <t> [7] ))
   435  (Rsh16Ux64 (Rsh16x64 x _) (Const64 <t> [15])) => (Rsh16Ux64 x (Const64 <t> [15]))
   436  (Rsh32Ux64 (Rsh32x64 x _) (Const64 <t> [31])) => (Rsh32Ux64 x (Const64 <t> [31]))
   437  (Rsh64Ux64 (Rsh64x64 x _) (Const64 <t> [63])) => (Rsh64Ux64 x (Const64 <t> [63]))
   438  
   439  // ((x >> c1) << c2) >> c3
   440  (Rsh(64|32|16|8)Ux64 (Lsh(64|32|16|8)x64 (Rsh(64|32|16|8)Ux64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3]))
   441    && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3)
   442    => (Rsh(64|32|16|8)Ux64 x (Const64 <typ.UInt64> [c1-c2+c3]))
   443  
   444  // ((x << c1) >> c2) << c3
   445  (Lsh(64|32|16|8)x64 (Rsh(64|32|16|8)Ux64 (Lsh(64|32|16|8)x64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3]))
   446    && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3)
   447    => (Lsh(64|32|16|8)x64 x (Const64 <typ.UInt64> [c1-c2+c3]))
   448  
   449  // (x >> c) & uppermask = 0
   450  (And64 (Const64 [m]) (Rsh64Ux64 _ (Const64 [c]))) && c >= int64(64-ntz64(m)) => (Const64 [0])
   451  (And32 (Const32 [m]) (Rsh32Ux64 _ (Const64 [c]))) && c >= int64(32-ntz32(m)) => (Const32 [0])
   452  (And16 (Const16 [m]) (Rsh16Ux64 _ (Const64 [c]))) && c >= int64(16-ntz16(m)) => (Const16 [0])
   453  (And8  (Const8  [m]) (Rsh8Ux64  _ (Const64 [c]))) && c >= int64(8-ntz8(m))  => (Const8  [0])
   454  
   455  // (x << c) & lowermask = 0
   456  (And64 (Const64 [m]) (Lsh64x64  _ (Const64 [c]))) && c >= int64(64-nlz64(m)) => (Const64 [0])
   457  (And32 (Const32 [m]) (Lsh32x64  _ (Const64 [c]))) && c >= int64(32-nlz32(m)) => (Const32 [0])
   458  (And16 (Const16 [m]) (Lsh16x64  _ (Const64 [c]))) && c >= int64(16-nlz16(m)) => (Const16 [0])
   459  (And8  (Const8  [m]) (Lsh8x64   _ (Const64 [c]))) && c >= int64(8-nlz8(m))  => (Const8  [0])
   460  
   461  // replace shifts with zero extensions
   462  (Rsh16Ux64 (Lsh16x64 x (Const64  [8])) (Const64  [8])) => (ZeroExt8to16  (Trunc16to8  <typ.UInt8>  x))
   463  (Rsh32Ux64 (Lsh32x64 x (Const64 [24])) (Const64 [24])) => (ZeroExt8to32  (Trunc32to8  <typ.UInt8>  x))
   464  (Rsh64Ux64 (Lsh64x64 x (Const64 [56])) (Const64 [56])) => (ZeroExt8to64  (Trunc64to8  <typ.UInt8>  x))
   465  (Rsh32Ux64 (Lsh32x64 x (Const64 [16])) (Const64 [16])) => (ZeroExt16to32 (Trunc32to16 <typ.UInt16> x))
   466  (Rsh64Ux64 (Lsh64x64 x (Const64 [48])) (Const64 [48])) => (ZeroExt16to64 (Trunc64to16 <typ.UInt16> x))
   467  (Rsh64Ux64 (Lsh64x64 x (Const64 [32])) (Const64 [32])) => (ZeroExt32to64 (Trunc64to32 <typ.UInt32> x))
   468  
   469  // replace shifts with sign extensions
   470  (Rsh16x64 (Lsh16x64 x (Const64  [8])) (Const64  [8])) => (SignExt8to16  (Trunc16to8  <typ.Int8>  x))
   471  (Rsh32x64 (Lsh32x64 x (Const64 [24])) (Const64 [24])) => (SignExt8to32  (Trunc32to8  <typ.Int8>  x))
   472  (Rsh64x64 (Lsh64x64 x (Const64 [56])) (Const64 [56])) => (SignExt8to64  (Trunc64to8  <typ.Int8>  x))
   473  (Rsh32x64 (Lsh32x64 x (Const64 [16])) (Const64 [16])) => (SignExt16to32 (Trunc32to16 <typ.Int16> x))
   474  (Rsh64x64 (Lsh64x64 x (Const64 [48])) (Const64 [48])) => (SignExt16to64 (Trunc64to16 <typ.Int16> x))
   475  (Rsh64x64 (Lsh64x64 x (Const64 [32])) (Const64 [32])) => (SignExt32to64 (Trunc64to32 <typ.Int32> x))
   476  
   477  // constant comparisons
   478  (Eq(64|32|16|8)   (Const(64|32|16|8) [c]) (Const(64|32|16|8) [d])) => (ConstBool [c == d])
   479  (Neq(64|32|16|8)  (Const(64|32|16|8) [c]) (Const(64|32|16|8) [d])) => (ConstBool [c != d])
   480  (Less(64|32|16|8) (Const(64|32|16|8) [c]) (Const(64|32|16|8) [d])) => (ConstBool [c < d])
   481  (Leq(64|32|16|8)  (Const(64|32|16|8) [c]) (Const(64|32|16|8) [d])) => (ConstBool [c <= d])
   482  
   483  (Less64U (Const64 [c]) (Const64 [d])) => (ConstBool [uint64(c) < uint64(d)])
   484  (Less32U (Const32 [c]) (Const32 [d])) => (ConstBool [uint32(c) < uint32(d)])
   485  (Less16U (Const16 [c]) (Const16 [d])) => (ConstBool [uint16(c) < uint16(d)])
   486  (Less8U  (Const8  [c]) (Const8  [d])) => (ConstBool [ uint8(c) <  uint8(d)])
   487  
   488  (Leq64U (Const64 [c]) (Const64 [d])) => (ConstBool [uint64(c) <= uint64(d)])
   489  (Leq32U (Const32 [c]) (Const32 [d])) => (ConstBool [uint32(c) <= uint32(d)])
   490  (Leq16U (Const16 [c]) (Const16 [d])) => (ConstBool [uint16(c) <= uint16(d)])
   491  (Leq8U  (Const8  [c]) (Const8  [d])) => (ConstBool [ uint8(c) <=  uint8(d)])
   492  
   493  (Leq8  (Const8  [0]) (And8  _ (Const8  [c]))) && c >= 0 => (ConstBool [true])
   494  (Leq16 (Const16 [0]) (And16 _ (Const16 [c]))) && c >= 0 => (ConstBool [true])
   495  (Leq32 (Const32 [0]) (And32 _ (Const32 [c]))) && c >= 0 => (ConstBool [true])
   496  (Leq64 (Const64 [0]) (And64 _ (Const64 [c]))) && c >= 0 => (ConstBool [true])
   497  
   498  (Leq8  (Const8  [0]) (Rsh8Ux64  _ (Const64 [c]))) && c > 0 => (ConstBool [true])
   499  (Leq16 (Const16 [0]) (Rsh16Ux64 _ (Const64 [c]))) && c > 0 => (ConstBool [true])
   500  (Leq32 (Const32 [0]) (Rsh32Ux64 _ (Const64 [c]))) && c > 0 => (ConstBool [true])
   501  (Leq64 (Const64 [0]) (Rsh64Ux64 _ (Const64 [c]))) && c > 0 => (ConstBool [true])
   502  
   503  (Less(64|32|16|8) (Const(64|32|16|8) <t> [0]) x) && isNonNegative(x) => (Neq(64|32|16|8) (Const(64|32|16|8) <t> [0]) x)
   504  (Less(64|32|16|8) x (Const(64|32|16|8) <t> [1])) && isNonNegative(x) => (Eq(64|32|16|8) (Const(64|32|16|8) <t> [0]) x)
   505  
   506  // constant floating point comparisons
   507  (Eq32F   (Const32F [c]) (Const32F [d])) => (ConstBool [c == d])
   508  (Eq64F   (Const64F [c]) (Const64F [d])) => (ConstBool [c == d])
   509  (Neq32F  (Const32F [c]) (Const32F [d])) => (ConstBool [c != d])
   510  (Neq64F  (Const64F [c]) (Const64F [d])) => (ConstBool [c != d])
   511  (Less32F (Const32F [c]) (Const32F [d])) => (ConstBool [c < d])
   512  (Less64F (Const64F [c]) (Const64F [d])) => (ConstBool [c < d])
   513  (Leq32F  (Const32F [c]) (Const32F [d])) => (ConstBool [c <= d])
   514  (Leq64F  (Const64F [c]) (Const64F [d])) => (ConstBool [c <= d])
   515  
   516  // simplifications
   517  (Or(64|32|16|8) x x) => x
   518  (Or(64|32|16|8) (Const(64|32|16|8) [0]) x) => x
   519  (Or(64|32|16|8) (Const(64|32|16|8) [-1]) _) => (Const(64|32|16|8) [-1])
   520  
   521  (And(64|32|16|8) x x) => x
   522  (And(64|32|16|8) (Const(64|32|16|8) [-1]) x) => x
   523  (And(64|32|16|8) (Const(64|32|16|8) [0]) _) => (Const(64|32|16|8) [0])
   524  
   525  (Xor(64|32|16|8) x x) => (Const(64|32|16|8) [0])
   526  (Xor(64|32|16|8) (Const(64|32|16|8) [0]) x) => x
   527  
   528  (Add(64|32|16|8) (Const(64|32|16|8) [0]) x) => x
   529  (Sub(64|32|16|8) x x) => (Const(64|32|16|8) [0])
   530  (Mul(64|32|16|8) (Const(64|32|16|8) [0]) _) => (Const(64|32|16|8) [0])
   531  
   532  (Com(64|32|16|8) (Com(64|32|16|8)  x)) => x
   533  (Com(64|32|16|8) (Const(64|32|16|8) [c])) => (Const(64|32|16|8) [^c])
   534  
   535  (Neg(64|32|16|8) (Sub(64|32|16|8) x y)) => (Sub(64|32|16|8) y x)
   536  
   537  // ^(x-1) == ^x+1 == -x
   538  (Add(64|32|16|8) (Const(64|32|16|8) [1]) (Com(64|32|16|8) x)) => (Neg(64|32|16|8) x)
   539  (Com(64|32|16|8) (Add(64|32|16|8) (Const(64|32|16|8) [-1]) x)) => (Neg(64|32|16|8) x)
   540  
   541  // -(-x) == x
   542  (Neg(64|32|16|8) (Neg(64|32|16|8) x)) => x
   543  
   544  // -^x == x+1
   545  (Neg(64|32|16|8) <t> (Com(64|32|16|8) x)) => (Add(64|32|16|8) (Const(64|32|16|8) <t> [1]) x)
   546  
   547  (And(64|32|16|8) x (And(64|32|16|8) x y)) => (And(64|32|16|8) x y)
   548  (Or(64|32|16|8) x (Or(64|32|16|8) x y)) => (Or(64|32|16|8) x y)
   549  (Xor(64|32|16|8) x (Xor(64|32|16|8) x y)) => y
   550  
   551  // Unsigned comparisons to zero.
   552  (Less(64U|32U|16U|8U) _ (Const(64|32|16|8) [0])) => (ConstBool [false])
   553  (Leq(64U|32U|16U|8U) (Const(64|32|16|8) [0]) _)  => (ConstBool [true])
   554  
   555  // Ands clear bits. Ors set bits.
   556  // If a subsequent Or will set all the bits
   557  // that an And cleared, we can skip the And.
   558  // This happens in bitmasking code like:
   559  //   x &^= 3 << shift // clear two old bits
   560  //   x  |= v << shift // set two new bits
   561  // when shift is a small constant and v ends up a constant 3.
   562  (Or8  (And8  x (Const8  [c2])) (Const8  <t> [c1])) && ^(c1 | c2) == 0 => (Or8  (Const8  <t> [c1]) x)
   563  (Or16 (And16 x (Const16 [c2])) (Const16 <t> [c1])) && ^(c1 | c2) == 0 => (Or16 (Const16 <t> [c1]) x)
   564  (Or32 (And32 x (Const32 [c2])) (Const32 <t> [c1])) && ^(c1 | c2) == 0 => (Or32 (Const32 <t> [c1]) x)
   565  (Or64 (And64 x (Const64 [c2])) (Const64 <t> [c1])) && ^(c1 | c2) == 0 => (Or64 (Const64 <t> [c1]) x)
   566  
   567  (Trunc64to8  (And64 (Const64 [y]) x)) && y&0xFF == 0xFF => (Trunc64to8 x)
   568  (Trunc64to16 (And64 (Const64 [y]) x)) && y&0xFFFF == 0xFFFF => (Trunc64to16 x)
   569  (Trunc64to32 (And64 (Const64 [y]) x)) && y&0xFFFFFFFF == 0xFFFFFFFF => (Trunc64to32 x)
   570  (Trunc32to8  (And32 (Const32 [y]) x)) && y&0xFF == 0xFF => (Trunc32to8 x)
   571  (Trunc32to16 (And32 (Const32 [y]) x)) && y&0xFFFF == 0xFFFF => (Trunc32to16 x)
   572  (Trunc16to8  (And16 (Const16 [y]) x)) && y&0xFF == 0xFF => (Trunc16to8 x)
   573  
   574  (ZeroExt8to64  (Trunc64to8  x:(Rsh64Ux64 _ (Const64 [s])))) && s >= 56 => x
   575  (ZeroExt16to64 (Trunc64to16 x:(Rsh64Ux64 _ (Const64 [s])))) && s >= 48 => x
   576  (ZeroExt32to64 (Trunc64to32 x:(Rsh64Ux64 _ (Const64 [s])))) && s >= 32 => x
   577  (ZeroExt8to32  (Trunc32to8  x:(Rsh32Ux64 _ (Const64 [s])))) && s >= 24 => x
   578  (ZeroExt16to32 (Trunc32to16 x:(Rsh32Ux64 _ (Const64 [s])))) && s >= 16 => x
   579  (ZeroExt8to16  (Trunc16to8  x:(Rsh16Ux64 _ (Const64 [s])))) && s >= 8 => x
   580  
   581  (SignExt8to64  (Trunc64to8  x:(Rsh64x64 _ (Const64 [s])))) && s >= 56 => x
   582  (SignExt16to64 (Trunc64to16 x:(Rsh64x64 _ (Const64 [s])))) && s >= 48 => x
   583  (SignExt32to64 (Trunc64to32 x:(Rsh64x64 _ (Const64 [s])))) && s >= 32 => x
   584  (SignExt8to32  (Trunc32to8  x:(Rsh32x64 _ (Const64 [s])))) && s >= 24 => x
   585  (SignExt16to32 (Trunc32to16 x:(Rsh32x64 _ (Const64 [s])))) && s >= 16 => x
   586  (SignExt8to16  (Trunc16to8  x:(Rsh16x64 _ (Const64 [s])))) && s >= 8 => x
   587  
   588  (Slicemask (Const32 [x])) && x > 0 => (Const32 [-1])
   589  (Slicemask (Const32 [0]))          => (Const32 [0])
   590  (Slicemask (Const64 [x])) && x > 0 => (Const64 [-1])
   591  (Slicemask (Const64 [0]))          => (Const64 [0])
   592  
   593  // simplifications often used for lengths.  e.g. len(s[i:i+5])==5
   594  (Sub(64|32|16|8) (Add(64|32|16|8) x y) x) => y
   595  (Sub(64|32|16|8) (Add(64|32|16|8) x y) y) => x
   596  (Sub(64|32|16|8) (Sub(64|32|16|8) x y) x) => (Neg(64|32|16|8) y)
   597  (Sub(64|32|16|8) x (Add(64|32|16|8) x y)) => (Neg(64|32|16|8) y)
   598  (Add(64|32|16|8) x (Sub(64|32|16|8) y x)) => y
   599  (Add(64|32|16|8) x (Add(64|32|16|8) y (Sub(64|32|16|8) z x))) => (Add(64|32|16|8) y z)
   600  
   601  // basic phi simplifications
   602  (Phi (Const8  [c]) (Const8  [c])) => (Const8  [c])
   603  (Phi (Const16 [c]) (Const16 [c])) => (Const16 [c])
   604  (Phi (Const32 [c]) (Const32 [c])) => (Const32 [c])
   605  (Phi (Const64 [c]) (Const64 [c])) => (Const64 [c])
   606  
   607  // slice and interface comparisons
   608  // The frontend ensures that we can only compare against nil,
   609  // so we need only compare the first word (interface type or slice ptr).
   610  (EqInter x y)  => (EqPtr  (ITab x) (ITab y))
   611  (NeqInter x y) => (NeqPtr (ITab x) (ITab y))
   612  (EqSlice x y)  => (EqPtr  (SlicePtr x) (SlicePtr y))
   613  (NeqSlice x y) => (NeqPtr (SlicePtr x) (SlicePtr y))
   614  
   615  // Load of store of same address, with compatibly typed value and same size
   616  (Load <t1> p1 (Store {t2} p2 x _))
   617  	&& isSamePtr(p1, p2)
   618  	&& t1.Compare(x.Type) == types.CMPeq
   619  	&& t1.Size() == t2.Size()
   620  	=> x
   621  (Load <t1> p1 (Store {t2} p2 _ (Store {t3} p3 x _)))
   622  	&& isSamePtr(p1, p3)
   623  	&& t1.Compare(x.Type) == types.CMPeq
   624  	&& t1.Size() == t2.Size()
   625  	&& disjoint(p3, t3.Size(), p2, t2.Size())
   626  	=> x
   627  (Load <t1> p1 (Store {t2} p2 _ (Store {t3} p3 _ (Store {t4} p4 x _))))
   628  	&& isSamePtr(p1, p4)
   629  	&& t1.Compare(x.Type) == types.CMPeq
   630  	&& t1.Size() == t2.Size()
   631  	&& disjoint(p4, t4.Size(), p2, t2.Size())
   632  	&& disjoint(p4, t4.Size(), p3, t3.Size())
   633  	=> x
   634  (Load <t1> p1 (Store {t2} p2 _ (Store {t3} p3 _ (Store {t4} p4 _ (Store {t5} p5 x _)))))
   635  	&& isSamePtr(p1, p5)
   636  	&& t1.Compare(x.Type) == types.CMPeq
   637  	&& t1.Size() == t2.Size()
   638  	&& disjoint(p5, t5.Size(), p2, t2.Size())
   639  	&& disjoint(p5, t5.Size(), p3, t3.Size())
   640  	&& disjoint(p5, t5.Size(), p4, t4.Size())
   641  	=> x
   642  
   643  // Pass constants through math.Float{32,64}bits and math.Float{32,64}frombits
   644          (Load <t1> p1 (Store {t2} p2 (Const64  [x]) _)) && isSamePtr(p1,p2) && sizeof(t2) == 8 && is64BitFloat(t1) && !math.IsNaN(math.Float64frombits(uint64(x))) => (Const64F [math.Float64frombits(uint64(x))])
   645          (Load <t1> p1 (Store {t2} p2 (Const32  [x]) _)) && isSamePtr(p1,p2) && sizeof(t2) == 4 && is32BitFloat(t1) && !math.IsNaN(float64(math.Float32frombits(uint32(x)))) => (Const32F [math.Float32frombits(uint32(x))])
   646  (Load <t1> p1 (Store {t2} p2 (Const64F [x]) _)) && isSamePtr(p1,p2) && sizeof(t2) == 8 && is64BitInt(t1)   => (Const64  [int64(math.Float64bits(x))])
   647  (Load <t1> p1 (Store {t2} p2 (Const32F [x]) _)) && isSamePtr(p1,p2) && sizeof(t2) == 4 && is32BitInt(t1)   => (Const32  [int32(math.Float32bits(x))])
   648  
   649  // Float Loads up to Zeros so they can be constant folded.
   650  (Load <t1> op:(OffPtr [o1] p1)
   651  	(Store {t2} p2 _
   652  		mem:(Zero [n] p3 _)))
   653  	&& o1 >= 0 && o1+t1.Size() <= n && isSamePtr(p1, p3)
   654  	&& fe.CanSSA(t1)
   655  	&& disjoint(op, t1.Size(), p2, t2.Size())
   656  	=> @mem.Block (Load <t1> (OffPtr <op.Type> [o1] p3) mem)
   657  (Load <t1> op:(OffPtr [o1] p1)
   658  	(Store {t2} p2 _
   659  		(Store {t3} p3 _
   660  			mem:(Zero [n] p4 _))))
   661  	&& o1 >= 0 && o1+t1.Size() <= n && isSamePtr(p1, p4)
   662  	&& fe.CanSSA(t1)
   663  	&& disjoint(op, t1.Size(), p2, t2.Size())
   664  	&& disjoint(op, t1.Size(), p3, t3.Size())
   665  	=> @mem.Block (Load <t1> (OffPtr <op.Type> [o1] p4) mem)
   666  (Load <t1> op:(OffPtr [o1] p1)
   667  	(Store {t2} p2 _
   668  		(Store {t3} p3 _
   669  			(Store {t4} p4 _
   670  				mem:(Zero [n] p5 _)))))
   671  	&& o1 >= 0 && o1+t1.Size() <= n && isSamePtr(p1, p5)
   672  	&& fe.CanSSA(t1)
   673  	&& disjoint(op, t1.Size(), p2, t2.Size())
   674  	&& disjoint(op, t1.Size(), p3, t3.Size())
   675  	&& disjoint(op, t1.Size(), p4, t4.Size())
   676  	=> @mem.Block (Load <t1> (OffPtr <op.Type> [o1] p5) mem)
   677  (Load <t1> op:(OffPtr [o1] p1)
   678  	(Store {t2} p2 _
   679  		(Store {t3} p3 _
   680  			(Store {t4} p4 _
   681  				(Store {t5} p5 _
   682  					mem:(Zero [n] p6 _))))))
   683  	&& o1 >= 0 && o1+t1.Size() <= n && isSamePtr(p1, p6)
   684  	&& fe.CanSSA(t1)
   685  	&& disjoint(op, t1.Size(), p2, t2.Size())
   686  	&& disjoint(op, t1.Size(), p3, t3.Size())
   687  	&& disjoint(op, t1.Size(), p4, t4.Size())
   688  	&& disjoint(op, t1.Size(), p5, t5.Size())
   689  	=> @mem.Block (Load <t1> (OffPtr <op.Type> [o1] p6) mem)
   690  
   691  // Zero to Load forwarding.
   692  (Load <t1> (OffPtr [o] p1) (Zero [n] p2 _))
   693  	&& t1.IsBoolean()
   694  	&& isSamePtr(p1, p2)
   695  	&& n >= o + 1
   696  	=> (ConstBool [false])
   697  (Load <t1> (OffPtr [o] p1) (Zero [n] p2 _))
   698  	&& is8BitInt(t1)
   699  	&& isSamePtr(p1, p2)
   700  	&& n >= o + 1
   701  	=> (Const8 [0])
   702  (Load <t1> (OffPtr [o] p1) (Zero [n] p2 _))
   703  	&& is16BitInt(t1)
   704  	&& isSamePtr(p1, p2)
   705  	&& n >= o + 2
   706  	=> (Const16 [0])
   707  (Load <t1> (OffPtr [o] p1) (Zero [n] p2 _))
   708  	&& is32BitInt(t1)
   709  	&& isSamePtr(p1, p2)
   710  	&& n >= o + 4
   711  	=> (Const32 [0])
   712  (Load <t1> (OffPtr [o] p1) (Zero [n] p2 _))
   713  	&& is64BitInt(t1)
   714  	&& isSamePtr(p1, p2)
   715  	&& n >= o + 8
   716  	=> (Const64 [0])
   717  (Load <t1> (OffPtr [o] p1) (Zero [n] p2 _))
   718  	&& is32BitFloat(t1)
   719  	&& isSamePtr(p1, p2)
   720  	&& n >= o + 4
   721  	=> (Const32F [0])
   722  (Load <t1> (OffPtr [o] p1) (Zero [n] p2 _))
   723  	&& is64BitFloat(t1)
   724  	&& isSamePtr(p1, p2)
   725  	&& n >= o + 8
   726  	=> (Const64F [0])
   727  
   728  // Eliminate stores of values that have just been loaded from the same location.
   729  // We also handle the common case where there are some intermediate stores.
   730  (Store {t1} p1 (Load <t2> p2 mem) mem)
   731  	&& isSamePtr(p1, p2)
   732  	&& t2.Size() == t1.Size()
   733  	=> mem
   734  (Store {t1} p1 (Load <t2> p2 oldmem) mem:(Store {t3} p3 _ oldmem))
   735  	&& isSamePtr(p1, p2)
   736  	&& t2.Size() == t1.Size()
   737  	&& disjoint(p1, t1.Size(), p3, t3.Size())
   738  	=> mem
   739  (Store {t1} p1 (Load <t2> p2 oldmem) mem:(Store {t3} p3 _ (Store {t4} p4 _ oldmem)))
   740  	&& isSamePtr(p1, p2)
   741  	&& t2.Size() == t1.Size()
   742  	&& disjoint(p1, t1.Size(), p3, t3.Size())
   743  	&& disjoint(p1, t1.Size(), p4, t4.Size())
   744  	=> mem
   745  (Store {t1} p1 (Load <t2> p2 oldmem) mem:(Store {t3} p3 _ (Store {t4} p4 _ (Store {t5} p5 _ oldmem))))
   746  	&& isSamePtr(p1, p2)
   747  	&& t2.Size() == t1.Size()
   748  	&& disjoint(p1, t1.Size(), p3, t3.Size())
   749  	&& disjoint(p1, t1.Size(), p4, t4.Size())
   750  	&& disjoint(p1, t1.Size(), p5, t5.Size())
   751  	=> mem
   752  
   753  // Don't Store zeros to cleared variables.
   754  (Store {t} (OffPtr [o] p1) x mem:(Zero [n] p2 _))
   755  	&& isConstZero(x)
   756  	&& o >= 0 && t.Size() + o <= n && isSamePtr(p1, p2)
   757  	=> mem
   758  (Store {t1} op:(OffPtr [o1] p1) x mem:(Store {t2} p2 _ (Zero [n] p3 _)))
   759  	&& isConstZero(x)
   760  	&& o1 >= 0 && t1.Size() + o1 <= n && isSamePtr(p1, p3)
   761  	&& disjoint(op, t1.Size(), p2, t2.Size())
   762  	=> mem
   763  (Store {t1} op:(OffPtr [o1] p1) x mem:(Store {t2} p2 _ (Store {t3} p3 _ (Zero [n] p4 _))))
   764  	&& isConstZero(x)
   765  	&& o1 >= 0 && t1.Size() + o1 <= n && isSamePtr(p1, p4)
   766  	&& disjoint(op, t1.Size(), p2, t2.Size())
   767  	&& disjoint(op, t1.Size(), p3, t3.Size())
   768  	=> mem
   769  (Store {t1} op:(OffPtr [o1] p1) x mem:(Store {t2} p2 _ (Store {t3} p3 _ (Store {t4} p4 _ (Zero [n] p5 _)))))
   770  	&& isConstZero(x)
   771  	&& o1 >= 0 && t1.Size() + o1 <= n && isSamePtr(p1, p5)
   772  	&& disjoint(op, t1.Size(), p2, t2.Size())
   773  	&& disjoint(op, t1.Size(), p3, t3.Size())
   774  	&& disjoint(op, t1.Size(), p4, t4.Size())
   775  	=> mem
   776  
   777  // Collapse OffPtr
   778  (OffPtr (OffPtr p [y]) [x]) => (OffPtr p [x+y])
   779  (OffPtr p [0]) && v.Type.Compare(p.Type) == types.CMPeq => p
   780  
   781  // indexing operations
   782  // Note: bounds check has already been done
   783  (PtrIndex <t> ptr idx) && config.PtrSize == 4 && is32Bit(t.Elem().Size()) => (AddPtr ptr (Mul32 <typ.Int> idx (Const32 <typ.Int> [int32(t.Elem().Size())])))
   784  (PtrIndex <t> ptr idx) && config.PtrSize == 8 => (AddPtr ptr (Mul64 <typ.Int> idx (Const64 <typ.Int> [t.Elem().Size()])))
   785  
   786  // struct operations
   787  (StructSelect (StructMake1 x)) => x
   788  (StructSelect [0] (StructMake2 x _)) => x
   789  (StructSelect [1] (StructMake2 _ x)) => x
   790  (StructSelect [0] (StructMake3 x _ _)) => x
   791  (StructSelect [1] (StructMake3 _ x _)) => x
   792  (StructSelect [2] (StructMake3 _ _ x)) => x
   793  (StructSelect [0] (StructMake4 x _ _ _)) => x
   794  (StructSelect [1] (StructMake4 _ x _ _)) => x
   795  (StructSelect [2] (StructMake4 _ _ x _)) => x
   796  (StructSelect [3] (StructMake4 _ _ _ x)) => x
   797  
   798  (Load <t> _ _) && t.IsStruct() && t.NumFields() == 0 && fe.CanSSA(t) =>
   799    (StructMake0)
   800  (Load <t> ptr mem) && t.IsStruct() && t.NumFields() == 1 && fe.CanSSA(t) =>
   801    (StructMake1
   802      (Load <t.FieldType(0)> (OffPtr <t.FieldType(0).PtrTo()> [0] ptr) mem))
   803  (Load <t> ptr mem) && t.IsStruct() && t.NumFields() == 2 && fe.CanSSA(t) =>
   804    (StructMake2
   805      (Load <t.FieldType(0)> (OffPtr <t.FieldType(0).PtrTo()> [0]             ptr) mem)
   806      (Load <t.FieldType(1)> (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] ptr) mem))
   807  (Load <t> ptr mem) && t.IsStruct() && t.NumFields() == 3 && fe.CanSSA(t) =>
   808    (StructMake3
   809      (Load <t.FieldType(0)> (OffPtr <t.FieldType(0).PtrTo()> [0]             ptr) mem)
   810      (Load <t.FieldType(1)> (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] ptr) mem)
   811      (Load <t.FieldType(2)> (OffPtr <t.FieldType(2).PtrTo()> [t.FieldOff(2)] ptr) mem))
   812  (Load <t> ptr mem) && t.IsStruct() && t.NumFields() == 4 && fe.CanSSA(t) =>
   813    (StructMake4
   814      (Load <t.FieldType(0)> (OffPtr <t.FieldType(0).PtrTo()> [0]             ptr) mem)
   815      (Load <t.FieldType(1)> (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] ptr) mem)
   816      (Load <t.FieldType(2)> (OffPtr <t.FieldType(2).PtrTo()> [t.FieldOff(2)] ptr) mem)
   817      (Load <t.FieldType(3)> (OffPtr <t.FieldType(3).PtrTo()> [t.FieldOff(3)] ptr) mem))
   818  
   819  (StructSelect [i] x:(Load <t> ptr mem)) && !fe.CanSSA(t) =>
   820    @x.Block (Load <v.Type> (OffPtr <v.Type.PtrTo()> [t.FieldOff(int(i))] ptr) mem)
   821  
   822  (Store _ (StructMake0) mem) => mem
   823  (Store dst (StructMake1 <t> f0) mem) =>
   824    (Store {t.FieldType(0)} (OffPtr <t.FieldType(0).PtrTo()> [0] dst) f0 mem)
   825  (Store dst (StructMake2 <t> f0 f1) mem) =>
   826    (Store {t.FieldType(1)}
   827      (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] dst)
   828      f1
   829      (Store {t.FieldType(0)}
   830        (OffPtr <t.FieldType(0).PtrTo()> [0] dst)
   831          f0 mem))
   832  (Store dst (StructMake3 <t> f0 f1 f2) mem) =>
   833    (Store {t.FieldType(2)}
   834      (OffPtr <t.FieldType(2).PtrTo()> [t.FieldOff(2)] dst)
   835      f2
   836      (Store {t.FieldType(1)}
   837        (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] dst)
   838        f1
   839        (Store {t.FieldType(0)}
   840          (OffPtr <t.FieldType(0).PtrTo()> [0] dst)
   841            f0 mem)))
   842  (Store dst (StructMake4 <t> f0 f1 f2 f3) mem) =>
   843    (Store {t.FieldType(3)}
   844      (OffPtr <t.FieldType(3).PtrTo()> [t.FieldOff(3)] dst)
   845      f3
   846      (Store {t.FieldType(2)}
   847        (OffPtr <t.FieldType(2).PtrTo()> [t.FieldOff(2)] dst)
   848        f2
   849        (Store {t.FieldType(1)}
   850          (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] dst)
   851          f1
   852          (Store {t.FieldType(0)}
   853            (OffPtr <t.FieldType(0).PtrTo()> [0] dst)
   854              f0 mem))))
   855  
   856  // Putting struct{*byte} and similar into direct interfaces.
   857  (IMake _typ (StructMake1 val)) => (IMake _typ val)
   858  (StructSelect [0] (IData x)) => (IData x)
   859  
   860  // un-SSAable values use mem->mem copies
   861  (Store {t} dst (Load src mem) mem) && !fe.CanSSA(t) =>
   862  	(Move {t} [t.Size()] dst src mem)
   863  (Store {t} dst (Load src mem) (VarDef {x} mem)) && !fe.CanSSA(t) =>
   864  	(Move {t} [t.Size()] dst src (VarDef {x} mem))
   865  
   866  // array ops
   867  (ArraySelect (ArrayMake1 x)) => x
   868  
   869  (Load <t> _ _) && t.IsArray() && t.NumElem() == 0 =>
   870    (ArrayMake0)
   871  
   872  (Load <t> ptr mem) && t.IsArray() && t.NumElem() == 1 && fe.CanSSA(t) =>
   873    (ArrayMake1 (Load <t.Elem()> ptr mem))
   874  
   875  (Store _ (ArrayMake0) mem) => mem
   876  (Store dst (ArrayMake1 e) mem) => (Store {e.Type} dst e mem)
   877  
   878  // Putting [1]*byte and similar into direct interfaces.
   879  (IMake _typ (ArrayMake1 val)) => (IMake _typ val)
   880  (ArraySelect [0] (IData x)) => (IData x)
   881  
   882  // string ops
   883  // Decomposing StringMake and lowering of StringPtr and StringLen
   884  // happens in a later pass, dec, so that these operations are available
   885  // to other passes for optimizations.
   886  (StringPtr (StringMake (Addr <t> {s} base) _)) => (Addr <t> {s} base)
   887  (StringLen (StringMake _ (Const64 <t> [c]))) => (Const64 <t> [c])
   888  (ConstString {str}) && config.PtrSize == 4 && str == "" =>
   889    (StringMake (ConstNil) (Const32 <typ.Int> [0]))
   890  (ConstString {str}) && config.PtrSize == 8 && str == "" =>
   891    (StringMake (ConstNil) (Const64 <typ.Int> [0]))
   892  (ConstString {str}) && config.PtrSize == 4 && str != "" =>
   893    (StringMake
   894      (Addr <typ.BytePtr> {fe.StringData(str)}
   895        (SB))
   896      (Const32 <typ.Int> [int32(len(str))]))
   897  (ConstString {str}) && config.PtrSize == 8 && str != "" =>
   898    (StringMake
   899      (Addr <typ.BytePtr> {fe.StringData(str)}
   900        (SB))
   901      (Const64 <typ.Int> [int64(len(str))]))
   902  
   903  // slice ops
   904  // Only a few slice rules are provided here.  See dec.rules for
   905  // a more comprehensive set.
   906  (SliceLen (SliceMake _ (Const64 <t> [c]) _)) => (Const64 <t> [c])
   907  (SliceCap (SliceMake _ _ (Const64 <t> [c]))) => (Const64 <t> [c])
   908  (SliceLen (SliceMake _ (Const32 <t> [c]) _)) => (Const32 <t> [c])
   909  (SliceCap (SliceMake _ _ (Const32 <t> [c]))) => (Const32 <t> [c])
   910  (SlicePtr (SliceMake (SlicePtr x) _ _)) => (SlicePtr x)
   911  (SliceLen (SliceMake _ (SliceLen x) _)) => (SliceLen x)
   912  (SliceCap (SliceMake _ _ (SliceCap x))) => (SliceCap x)
   913  (SliceCap (SliceMake _ _ (SliceLen x))) => (SliceLen x)
   914  (ConstSlice) && config.PtrSize == 4 =>
   915    (SliceMake
   916      (ConstNil <v.Type.Elem().PtrTo()>)
   917      (Const32 <typ.Int> [0])
   918      (Const32 <typ.Int> [0]))
   919  (ConstSlice) && config.PtrSize == 8 =>
   920    (SliceMake
   921      (ConstNil <v.Type.Elem().PtrTo()>)
   922      (Const64 <typ.Int> [0])
   923      (Const64 <typ.Int> [0]))
   924  
   925  // interface ops
   926  (ConstInterface) =>
   927    (IMake
   928      (ConstNil <typ.Uintptr>)
   929      (ConstNil <typ.BytePtr>))
   930  
   931  (NilCheck (GetG mem) mem) => mem
   932  
   933  (If (Not cond) yes no) => (If cond no yes)
   934  (If (ConstBool [c]) yes no) && c => (First yes no)
   935  (If (ConstBool [c]) yes no) && !c => (First no yes)
   936  
   937  // Get rid of Convert ops for pointer arithmetic on unsafe.Pointer.
   938  (Convert (Add(64|32) (Convert ptr mem) off) mem) => (AddPtr ptr off)
   939  (Convert (Convert ptr mem) mem) => ptr
   940  
   941  // strength reduction of divide by a constant.
   942  // See ../magic.go for a detailed description of these algorithms.
   943  
   944  // Unsigned divide by power of 2.  Strength reduce to a shift.
   945  (Div8u  n (Const8  [c])) && isPowerOfTwo8(c)  => (Rsh8Ux64  n (Const64 <typ.UInt64> [log8(c)]))
   946  (Div16u n (Const16 [c])) && isPowerOfTwo16(c) => (Rsh16Ux64 n (Const64 <typ.UInt64> [log16(c)]))
   947  (Div32u n (Const32 [c])) && isPowerOfTwo32(c) => (Rsh32Ux64 n (Const64 <typ.UInt64> [log32(c)]))
   948  (Div64u n (Const64 [c])) && isPowerOfTwo64(c) => (Rsh64Ux64 n (Const64 <typ.UInt64> [log64(c)]))
   949  (Div64u n (Const64 [-1<<63]))                 => (Rsh64Ux64 n (Const64 <typ.UInt64> [63]))
   950  
   951  // Signed non-negative divide by power of 2.
   952  (Div8  n (Const8  [c])) && isNonNegative(n) && isPowerOfTwo8(c)  => (Rsh8Ux64  n (Const64 <typ.UInt64> [log8(c)]))
   953  (Div16 n (Const16 [c])) && isNonNegative(n) && isPowerOfTwo16(c) => (Rsh16Ux64 n (Const64 <typ.UInt64> [log16(c)]))
   954  (Div32 n (Const32 [c])) && isNonNegative(n) && isPowerOfTwo32(c) => (Rsh32Ux64 n (Const64 <typ.UInt64> [log32(c)]))
   955  (Div64 n (Const64 [c])) && isNonNegative(n) && isPowerOfTwo64(c) => (Rsh64Ux64 n (Const64 <typ.UInt64> [log64(c)]))
   956  (Div64 n (Const64 [-1<<63])) && isNonNegative(n)                 => (Const64 [0])
   957  
   958  // Unsigned divide, not a power of 2.  Strength reduce to a multiply.
   959  // For 8-bit divides, we just do a direct 9-bit by 8-bit multiply.
   960  (Div8u x (Const8 [c])) && umagicOK8(c) =>
   961    (Trunc32to8
   962      (Rsh32Ux64 <typ.UInt32>
   963        (Mul32 <typ.UInt32>
   964          (Const32 <typ.UInt32> [int32(1<<8+umagic8(c).m)])
   965          (ZeroExt8to32 x))
   966        (Const64 <typ.UInt64> [8+umagic8(c).s])))
   967  
   968  // For 16-bit divides on 64-bit machines, we do a direct 17-bit by 16-bit multiply.
   969  (Div16u x (Const16 [c])) && umagicOK16(c) && config.RegSize == 8 =>
   970    (Trunc64to16
   971      (Rsh64Ux64 <typ.UInt64>
   972        (Mul64 <typ.UInt64>
   973          (Const64 <typ.UInt64> [int64(1<<16+umagic16(c).m)])
   974          (ZeroExt16to64 x))
   975        (Const64 <typ.UInt64> [16+umagic16(c).s])))
   976  
   977  // For 16-bit divides on 32-bit machines
   978  (Div16u x (Const16 [c])) && umagicOK16(c) && config.RegSize == 4 && umagic16(c).m&1 == 0 =>
   979    (Trunc32to16
   980      (Rsh32Ux64 <typ.UInt32>
   981        (Mul32 <typ.UInt32>
   982          (Const32 <typ.UInt32> [int32(1<<15+umagic16(c).m/2)])
   983          (ZeroExt16to32 x))
   984        (Const64 <typ.UInt64> [16+umagic16(c).s-1])))
   985  (Div16u x (Const16 [c])) && umagicOK16(c) && config.RegSize == 4 && c&1 == 0 =>
   986    (Trunc32to16
   987      (Rsh32Ux64 <typ.UInt32>
   988        (Mul32 <typ.UInt32>
   989          (Const32 <typ.UInt32> [int32(1<<15+(umagic16(c).m+1)/2)])
   990          (Rsh32Ux64 <typ.UInt32> (ZeroExt16to32 x) (Const64 <typ.UInt64> [1])))
   991        (Const64 <typ.UInt64> [16+umagic16(c).s-2])))
   992  (Div16u x (Const16 [c])) && umagicOK16(c) && config.RegSize == 4 && config.useAvg =>
   993    (Trunc32to16
   994      (Rsh32Ux64 <typ.UInt32>
   995        (Avg32u
   996          (Lsh32x64 <typ.UInt32> (ZeroExt16to32 x) (Const64 <typ.UInt64> [16]))
   997          (Mul32 <typ.UInt32>
   998            (Const32 <typ.UInt32> [int32(umagic16(c).m)])
   999            (ZeroExt16to32 x)))
  1000        (Const64 <typ.UInt64> [16+umagic16(c).s-1])))
  1001  
  1002  // For 32-bit divides on 32-bit machines
  1003  (Div32u x (Const32 [c])) && umagicOK32(c) && config.RegSize == 4 && umagic32(c).m&1 == 0 && config.useHmul =>
  1004    (Rsh32Ux64 <typ.UInt32>
  1005      (Hmul32u <typ.UInt32>
  1006        (Const32 <typ.UInt32> [int32(1<<31+umagic32(c).m/2)])
  1007        x)
  1008      (Const64 <typ.UInt64> [umagic32(c).s-1]))
  1009  (Div32u x (Const32 [c])) && umagicOK32(c) && config.RegSize == 4 && c&1 == 0 && config.useHmul =>
  1010    (Rsh32Ux64 <typ.UInt32>
  1011      (Hmul32u <typ.UInt32>
  1012        (Const32 <typ.UInt32> [int32(1<<31+(umagic32(c).m+1)/2)])
  1013        (Rsh32Ux64 <typ.UInt32> x (Const64 <typ.UInt64> [1])))
  1014      (Const64 <typ.UInt64> [umagic32(c).s-2]))
  1015  (Div32u x (Const32 [c])) && umagicOK32(c) && config.RegSize == 4 && config.useAvg && config.useHmul =>
  1016    (Rsh32Ux64 <typ.UInt32>
  1017      (Avg32u
  1018        x
  1019        (Hmul32u <typ.UInt32>
  1020          (Const32 <typ.UInt32> [int32(umagic32(c).m)])
  1021          x))
  1022      (Const64 <typ.UInt64> [umagic32(c).s-1]))
  1023  
  1024  // For 32-bit divides on 64-bit machines
  1025  // We'll use a regular (non-hi) multiply for this case.
  1026  (Div32u x (Const32 [c])) && umagicOK32(c) && config.RegSize == 8 && umagic32(c).m&1 == 0 =>
  1027    (Trunc64to32
  1028      (Rsh64Ux64 <typ.UInt64>
  1029        (Mul64 <typ.UInt64>
  1030          (Const64 <typ.UInt64> [int64(1<<31+umagic32(c).m/2)])
  1031          (ZeroExt32to64 x))
  1032        (Const64 <typ.UInt64> [32+umagic32(c).s-1])))
  1033  (Div32u x (Const32 [c])) && umagicOK32(c) && config.RegSize == 8 && c&1 == 0 =>
  1034    (Trunc64to32
  1035      (Rsh64Ux64 <typ.UInt64>
  1036        (Mul64 <typ.UInt64>
  1037          (Const64 <typ.UInt64> [int64(1<<31+(umagic32(c).m+1)/2)])
  1038          (Rsh64Ux64 <typ.UInt64> (ZeroExt32to64 x) (Const64 <typ.UInt64> [1])))
  1039        (Const64 <typ.UInt64> [32+umagic32(c).s-2])))
  1040  (Div32u x (Const32 [c])) && umagicOK32(c) && config.RegSize == 8 && config.useAvg =>
  1041    (Trunc64to32
  1042      (Rsh64Ux64 <typ.UInt64>
  1043        (Avg64u
  1044          (Lsh64x64 <typ.UInt64> (ZeroExt32to64 x) (Const64 <typ.UInt64> [32]))
  1045          (Mul64 <typ.UInt64>
  1046            (Const64 <typ.UInt32> [int64(umagic32(c).m)])
  1047            (ZeroExt32to64 x)))
  1048        (Const64 <typ.UInt64> [32+umagic32(c).s-1])))
  1049  
  1050  // For unsigned 64-bit divides on 32-bit machines,
  1051  // if the constant fits in 16 bits (so that the last term
  1052  // fits in 32 bits), convert to three 32-bit divides by a constant.
  1053  //
  1054  // If 1<<32 = Q * c + R
  1055  // and    x = hi << 32 + lo
  1056  //
  1057  // Then x = (hi/c*c + hi%c) << 32 + lo
  1058  //        = hi/c*c<<32 + hi%c<<32 + lo
  1059  //        = hi/c*c<<32 + (hi%c)*(Q*c+R) + lo/c*c + lo%c
  1060  //        = hi/c*c<<32 + (hi%c)*Q*c + lo/c*c + (hi%c*R+lo%c)
  1061  // and x / c = (hi/c)<<32 + (hi%c)*Q + lo/c + (hi%c*R+lo%c)/c
  1062  (Div64u x (Const64 [c])) && c > 0 && c <= 0xFFFF && umagicOK32(int32(c)) && config.RegSize == 4 && config.useHmul =>
  1063    (Add64
  1064      (Add64 <typ.UInt64>
  1065        (Add64 <typ.UInt64>
  1066          (Lsh64x64 <typ.UInt64>
  1067            (ZeroExt32to64
  1068              (Div32u <typ.UInt32>
  1069                (Trunc64to32 <typ.UInt32> (Rsh64Ux64 <typ.UInt64> x (Const64 <typ.UInt64> [32])))
  1070                (Const32 <typ.UInt32> [int32(c)])))
  1071            (Const64 <typ.UInt64> [32]))
  1072          (ZeroExt32to64 (Div32u <typ.UInt32> (Trunc64to32 <typ.UInt32> x) (Const32 <typ.UInt32> [int32(c)]))))
  1073        (Mul64 <typ.UInt64>
  1074          (ZeroExt32to64 <typ.UInt64>
  1075            (Mod32u <typ.UInt32>
  1076              (Trunc64to32 <typ.UInt32> (Rsh64Ux64 <typ.UInt64> x (Const64 <typ.UInt64> [32])))
  1077              (Const32 <typ.UInt32> [int32(c)])))
  1078          (Const64 <typ.UInt64> [int64((1<<32)/c)])))
  1079        (ZeroExt32to64
  1080          (Div32u <typ.UInt32>
  1081            (Add32 <typ.UInt32>
  1082              (Mod32u <typ.UInt32> (Trunc64to32 <typ.UInt32> x) (Const32 <typ.UInt32> [int32(c)]))
  1083              (Mul32 <typ.UInt32>
  1084                (Mod32u <typ.UInt32>
  1085                  (Trunc64to32 <typ.UInt32> (Rsh64Ux64 <typ.UInt64> x (Const64 <typ.UInt64> [32])))
  1086                  (Const32 <typ.UInt32> [int32(c)]))
  1087                (Const32 <typ.UInt32> [int32((1<<32)%c)])))
  1088            (Const32 <typ.UInt32> [int32(c)]))))
  1089  
  1090  // For 64-bit divides on 64-bit machines
  1091  // (64-bit divides on 32-bit machines are lowered to a runtime call by the walk pass.)
  1092  (Div64u x (Const64 [c])) && umagicOK64(c) && config.RegSize == 8 && umagic64(c).m&1 == 0 && config.useHmul =>
  1093    (Rsh64Ux64 <typ.UInt64>
  1094      (Hmul64u <typ.UInt64>
  1095        (Const64 <typ.UInt64> [int64(1<<63+umagic64(c).m/2)])
  1096        x)
  1097      (Const64 <typ.UInt64> [umagic64(c).s-1]))
  1098  (Div64u x (Const64 [c])) && umagicOK64(c) && config.RegSize == 8 && c&1 == 0 && config.useHmul =>
  1099    (Rsh64Ux64 <typ.UInt64>
  1100      (Hmul64u <typ.UInt64>
  1101        (Const64 <typ.UInt64> [int64(1<<63+(umagic64(c).m+1)/2)])
  1102        (Rsh64Ux64 <typ.UInt64> x (Const64 <typ.UInt64> [1])))
  1103      (Const64 <typ.UInt64> [umagic64(c).s-2]))
  1104  (Div64u x (Const64 [c])) && umagicOK64(c) && config.RegSize == 8 && config.useAvg && config.useHmul =>
  1105    (Rsh64Ux64 <typ.UInt64>
  1106      (Avg64u
  1107        x
  1108        (Hmul64u <typ.UInt64>
  1109          (Const64 <typ.UInt64> [int64(umagic64(c).m)])
  1110          x))
  1111      (Const64 <typ.UInt64> [umagic64(c).s-1]))
  1112  
  1113  // Signed divide by a negative constant.  Rewrite to divide by a positive constant.
  1114  (Div8  <t> n (Const8  [c])) && c < 0 && c != -1<<7  => (Neg8  (Div8  <t> n (Const8  <t> [-c])))
  1115  (Div16 <t> n (Const16 [c])) && c < 0 && c != -1<<15 => (Neg16 (Div16 <t> n (Const16 <t> [-c])))
  1116  (Div32 <t> n (Const32 [c])) && c < 0 && c != -1<<31 => (Neg32 (Div32 <t> n (Const32 <t> [-c])))
  1117  (Div64 <t> n (Const64 [c])) && c < 0 && c != -1<<63 => (Neg64 (Div64 <t> n (Const64 <t> [-c])))
  1118  
  1119  // Dividing by the most-negative number.  Result is always 0 except
  1120  // if the input is also the most-negative number.
  1121  // We can detect that using the sign bit of x & -x.
  1122  (Div8  <t> x (Const8  [-1<<7 ])) => (Rsh8Ux64  (And8  <t> x (Neg8  <t> x)) (Const64 <typ.UInt64> [7 ]))
  1123  (Div16 <t> x (Const16 [-1<<15])) => (Rsh16Ux64 (And16 <t> x (Neg16 <t> x)) (Const64 <typ.UInt64> [15]))
  1124  (Div32 <t> x (Const32 [-1<<31])) => (Rsh32Ux64 (And32 <t> x (Neg32 <t> x)) (Const64 <typ.UInt64> [31]))
  1125  (Div64 <t> x (Const64 [-1<<63])) => (Rsh64Ux64 (And64 <t> x (Neg64 <t> x)) (Const64 <typ.UInt64> [63]))
  1126  
  1127  // Signed divide by power of 2.
  1128  // n / c =       n >> log(c) if n >= 0
  1129  //       = (n+c-1) >> log(c) if n < 0
  1130  // We conditionally add c-1 by adding n>>63>>(64-log(c)) (first shift signed, second shift unsigned).
  1131  (Div8  <t> n (Const8  [c])) && isPowerOfTwo8(c) =>
  1132    (Rsh8x64
  1133      (Add8  <t> n (Rsh8Ux64  <t> (Rsh8x64  <t> n (Const64 <typ.UInt64> [ 7])) (Const64 <typ.UInt64> [int64( 8-log8(c))])))
  1134      (Const64 <typ.UInt64> [int64(log8(c))]))
  1135  (Div16 <t> n (Const16 [c])) && isPowerOfTwo16(c) =>
  1136    (Rsh16x64
  1137      (Add16 <t> n (Rsh16Ux64 <t> (Rsh16x64 <t> n (Const64 <typ.UInt64> [15])) (Const64 <typ.UInt64> [int64(16-log16(c))])))
  1138      (Const64 <typ.UInt64> [int64(log16(c))]))
  1139  (Div32 <t> n (Const32 [c])) && isPowerOfTwo32(c) =>
  1140    (Rsh32x64
  1141      (Add32 <t> n (Rsh32Ux64 <t> (Rsh32x64 <t> n (Const64 <typ.UInt64> [31])) (Const64 <typ.UInt64> [int64(32-log32(c))])))
  1142      (Const64 <typ.UInt64> [int64(log32(c))]))
  1143  (Div64 <t> n (Const64 [c])) && isPowerOfTwo64(c) =>
  1144    (Rsh64x64
  1145      (Add64 <t> n (Rsh64Ux64 <t> (Rsh64x64 <t> n (Const64 <typ.UInt64> [63])) (Const64 <typ.UInt64> [int64(64-log64(c))])))
  1146      (Const64 <typ.UInt64> [int64(log64(c))]))
  1147  
  1148  // Signed divide, not a power of 2.  Strength reduce to a multiply.
  1149  (Div8 <t> x (Const8 [c])) && smagicOK8(c) =>
  1150    (Sub8 <t>
  1151      (Rsh32x64 <t>
  1152        (Mul32 <typ.UInt32>
  1153          (Const32 <typ.UInt32> [int32(smagic8(c).m)])
  1154          (SignExt8to32 x))
  1155        (Const64 <typ.UInt64> [8+smagic8(c).s]))
  1156      (Rsh32x64 <t>
  1157        (SignExt8to32 x)
  1158        (Const64 <typ.UInt64> [31])))
  1159  (Div16 <t> x (Const16 [c])) && smagicOK16(c) =>
  1160    (Sub16 <t>
  1161      (Rsh32x64 <t>
  1162        (Mul32 <typ.UInt32>
  1163          (Const32 <typ.UInt32> [int32(smagic16(c).m)])
  1164          (SignExt16to32 x))
  1165        (Const64 <typ.UInt64> [16+smagic16(c).s]))
  1166      (Rsh32x64 <t>
  1167        (SignExt16to32 x)
  1168        (Const64 <typ.UInt64> [31])))
  1169  (Div32 <t> x (Const32 [c])) && smagicOK32(c) && config.RegSize == 8 =>
  1170    (Sub32 <t>
  1171      (Rsh64x64 <t>
  1172        (Mul64 <typ.UInt64>
  1173          (Const64 <typ.UInt64> [int64(smagic32(c).m)])
  1174          (SignExt32to64 x))
  1175        (Const64 <typ.UInt64> [32+smagic32(c).s]))
  1176      (Rsh64x64 <t>
  1177        (SignExt32to64 x)
  1178        (Const64 <typ.UInt64> [63])))
  1179  (Div32 <t> x (Const32 [c])) && smagicOK32(c) && config.RegSize == 4 && smagic32(c).m&1 == 0 && config.useHmul =>
  1180    (Sub32 <t>
  1181      (Rsh32x64 <t>
  1182        (Hmul32 <t>
  1183          (Const32 <typ.UInt32> [int32(smagic32(c).m/2)])
  1184          x)
  1185        (Const64 <typ.UInt64> [smagic32(c).s-1]))
  1186      (Rsh32x64 <t>
  1187        x
  1188        (Const64 <typ.UInt64> [31])))
  1189  (Div32 <t> x (Const32 [c])) && smagicOK32(c) && config.RegSize == 4 && smagic32(c).m&1 != 0 && config.useHmul =>
  1190    (Sub32 <t>
  1191      (Rsh32x64 <t>
  1192        (Add32 <t>
  1193          (Hmul32 <t>
  1194            (Const32 <typ.UInt32> [int32(smagic32(c).m)])
  1195            x)
  1196          x)
  1197        (Const64 <typ.UInt64> [smagic32(c).s]))
  1198      (Rsh32x64 <t>
  1199        x
  1200        (Const64 <typ.UInt64> [31])))
  1201  (Div64 <t> x (Const64 [c])) && smagicOK64(c) && smagic64(c).m&1 == 0 && config.useHmul =>
  1202    (Sub64 <t>
  1203      (Rsh64x64 <t>
  1204        (Hmul64 <t>
  1205          (Const64 <typ.UInt64> [int64(smagic64(c).m/2)])
  1206          x)
  1207        (Const64 <typ.UInt64> [smagic64(c).s-1]))
  1208      (Rsh64x64 <t>
  1209        x
  1210        (Const64 <typ.UInt64> [63])))
  1211  (Div64 <t> x (Const64 [c])) && smagicOK64(c) && smagic64(c).m&1 != 0 && config.useHmul =>
  1212    (Sub64 <t>
  1213      (Rsh64x64 <t>
  1214        (Add64 <t>
  1215          (Hmul64 <t>
  1216            (Const64 <typ.UInt64> [int64(smagic64(c).m)])
  1217            x)
  1218          x)
  1219        (Const64 <typ.UInt64> [smagic64(c).s]))
  1220      (Rsh64x64 <t>
  1221        x
  1222        (Const64 <typ.UInt64> [63])))
  1223  
  1224  // Unsigned mod by power of 2 constant.
  1225  (Mod8u  <t> n (Const8  [c])) && isPowerOfTwo8(c)  => (And8  n (Const8  <t> [c-1]))
  1226  (Mod16u <t> n (Const16 [c])) && isPowerOfTwo16(c) => (And16 n (Const16 <t> [c-1]))
  1227  (Mod32u <t> n (Const32 [c])) && isPowerOfTwo32(c) => (And32 n (Const32 <t> [c-1]))
  1228  (Mod64u <t> n (Const64 [c])) && isPowerOfTwo64(c) => (And64 n (Const64 <t> [c-1]))
  1229  (Mod64u <t> n (Const64 [-1<<63]))                 => (And64 n (Const64 <t> [1<<63-1]))
  1230  
  1231  // Signed non-negative mod by power of 2 constant.
  1232  (Mod8  <t> n (Const8  [c])) && isNonNegative(n) && isPowerOfTwo8(c)  => (And8  n (Const8  <t> [c-1]))
  1233  (Mod16 <t> n (Const16 [c])) && isNonNegative(n) && isPowerOfTwo16(c) => (And16 n (Const16 <t> [c-1]))
  1234  (Mod32 <t> n (Const32 [c])) && isNonNegative(n) && isPowerOfTwo32(c) => (And32 n (Const32 <t> [c-1]))
  1235  (Mod64 <t> n (Const64 [c])) && isNonNegative(n) && isPowerOfTwo64(c) => (And64 n (Const64 <t> [c-1]))
  1236  (Mod64 n (Const64 [-1<<63])) && isNonNegative(n)                   => n
  1237  
  1238  // Signed mod by negative constant.
  1239  (Mod8  <t> n (Const8  [c])) && c < 0 && c != -1<<7  => (Mod8  <t> n (Const8  <t> [-c]))
  1240  (Mod16 <t> n (Const16 [c])) && c < 0 && c != -1<<15 => (Mod16 <t> n (Const16 <t> [-c]))
  1241  (Mod32 <t> n (Const32 [c])) && c < 0 && c != -1<<31 => (Mod32 <t> n (Const32 <t> [-c]))
  1242  (Mod64 <t> n (Const64 [c])) && c < 0 && c != -1<<63 => (Mod64 <t> n (Const64 <t> [-c]))
  1243  
  1244  // All other mods by constants, do A%B = A-(A/B*B).
  1245  // This implements % with two * and a bunch of ancillary ops.
  1246  // One of the * is free if the user's code also computes A/B.
  1247  (Mod8   <t> x (Const8  [c])) && x.Op != OpConst8  && (c > 0 || c == -1<<7)
  1248    => (Sub8  x (Mul8  <t> (Div8   <t> x (Const8  <t> [c])) (Const8  <t> [c])))
  1249  (Mod16  <t> x (Const16 [c])) && x.Op != OpConst16 && (c > 0 || c == -1<<15)
  1250    => (Sub16 x (Mul16 <t> (Div16  <t> x (Const16 <t> [c])) (Const16 <t> [c])))
  1251  (Mod32  <t> x (Const32 [c])) && x.Op != OpConst32 && (c > 0 || c == -1<<31)
  1252    => (Sub32 x (Mul32 <t> (Div32  <t> x (Const32 <t> [c])) (Const32 <t> [c])))
  1253  (Mod64  <t> x (Const64 [c])) && x.Op != OpConst64 && (c > 0 || c == -1<<63)
  1254    => (Sub64 x (Mul64 <t> (Div64  <t> x (Const64 <t> [c])) (Const64 <t> [c])))
  1255  (Mod8u  <t> x (Const8  [c])) && x.Op != OpConst8  && c > 0 && umagicOK8( c)
  1256    => (Sub8  x (Mul8  <t> (Div8u  <t> x (Const8  <t> [c])) (Const8  <t> [c])))
  1257  (Mod16u <t> x (Const16 [c])) && x.Op != OpConst16 && c > 0 && umagicOK16(c)
  1258    => (Sub16 x (Mul16 <t> (Div16u <t> x (Const16 <t> [c])) (Const16 <t> [c])))
  1259  (Mod32u <t> x (Const32 [c])) && x.Op != OpConst32 && c > 0 && umagicOK32(c)
  1260    => (Sub32 x (Mul32 <t> (Div32u <t> x (Const32 <t> [c])) (Const32 <t> [c])))
  1261  (Mod64u <t> x (Const64 [c])) && x.Op != OpConst64 && c > 0 && umagicOK64(c)
  1262    => (Sub64 x (Mul64 <t> (Div64u <t> x (Const64 <t> [c])) (Const64 <t> [c])))
  1263  
  1264  // For architectures without rotates on less than 32-bits, promote these checks to 32-bit.
  1265  (Eq8 (Mod8u x (Const8  [c])) (Const8 [0])) && x.Op != OpConst8 && udivisibleOK8(c) && !hasSmallRotate(config) =>
  1266  	(Eq32 (Mod32u <typ.UInt32> (ZeroExt8to32 <typ.UInt32> x) (Const32 <typ.UInt32> [int32(uint8(c))])) (Const32 <typ.UInt32> [0]))
  1267  (Eq16 (Mod16u x (Const16  [c])) (Const16 [0])) && x.Op != OpConst16 && udivisibleOK16(c) && !hasSmallRotate(config) =>
  1268  	(Eq32 (Mod32u <typ.UInt32> (ZeroExt16to32 <typ.UInt32> x) (Const32 <typ.UInt32> [int32(uint16(c))])) (Const32 <typ.UInt32> [0]))
  1269  (Eq8 (Mod8 x (Const8  [c])) (Const8 [0])) && x.Op != OpConst8 && sdivisibleOK8(c) && !hasSmallRotate(config) =>
  1270  	(Eq32 (Mod32 <typ.Int32> (SignExt8to32 <typ.Int32> x) (Const32 <typ.Int32> [int32(c)])) (Const32 <typ.Int32> [0]))
  1271  (Eq16 (Mod16 x (Const16  [c])) (Const16 [0])) && x.Op != OpConst16 && sdivisibleOK16(c) && !hasSmallRotate(config) =>
  1272  	(Eq32 (Mod32 <typ.Int32> (SignExt16to32 <typ.Int32> x) (Const32 <typ.Int32> [int32(c)])) (Const32 <typ.Int32> [0]))
  1273  
  1274  // Divisibility checks x%c == 0 convert to multiply and rotate.
  1275  // Note, x%c == 0 is rewritten as x == c*(x/c) during the opt pass
  1276  // where (x/c) is performed using multiplication with magic constants.
  1277  // To rewrite x%c == 0 requires pattern matching the rewritten expression
  1278  // and checking that the division by the same constant wasn't already calculated.
  1279  // This check is made by counting uses of the magic constant multiplication.
  1280  // Note that if there were an intermediate opt pass, this rule could be applied
  1281  // directly on the Div op and magic division rewrites could be delayed to late opt.
  1282  
  1283  // Unsigned divisibility checks convert to multiply and rotate.
  1284  (Eq8 x (Mul8 (Const8 [c])
  1285    (Trunc32to8
  1286      (Rsh32Ux64
  1287        mul:(Mul32
  1288          (Const32 [m])
  1289          (ZeroExt8to32 x))
  1290        (Const64 [s])))
  1291  	)
  1292  )
  1293    && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1294    && m == int32(1<<8+umagic8(c).m) && s == 8+umagic8(c).s
  1295    && x.Op != OpConst8 && udivisibleOK8(c)
  1296   => (Leq8U
  1297  			(RotateLeft8 <typ.UInt8>
  1298  				(Mul8 <typ.UInt8>
  1299  					(Const8 <typ.UInt8> [int8(udivisible8(c).m)])
  1300  					x)
  1301  				(Const8 <typ.UInt8> [int8(8-udivisible8(c).k)])
  1302  				)
  1303  			(Const8 <typ.UInt8> [int8(udivisible8(c).max)])
  1304  		)
  1305  
  1306  (Eq16 x (Mul16 (Const16 [c])
  1307    (Trunc64to16
  1308      (Rsh64Ux64
  1309        mul:(Mul64
  1310          (Const64 [m])
  1311          (ZeroExt16to64 x))
  1312        (Const64 [s])))
  1313  	)
  1314  )
  1315    && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1316    && m == int64(1<<16+umagic16(c).m) && s == 16+umagic16(c).s
  1317    && x.Op != OpConst16 && udivisibleOK16(c)
  1318   => (Leq16U
  1319  			(RotateLeft16 <typ.UInt16>
  1320  				(Mul16 <typ.UInt16>
  1321  					(Const16 <typ.UInt16> [int16(udivisible16(c).m)])
  1322  					x)
  1323  				(Const16 <typ.UInt16> [int16(16-udivisible16(c).k)])
  1324  				)
  1325  			(Const16 <typ.UInt16> [int16(udivisible16(c).max)])
  1326  		)
  1327  
  1328  (Eq16 x (Mul16 (Const16 [c])
  1329    (Trunc32to16
  1330      (Rsh32Ux64
  1331        mul:(Mul32
  1332          (Const32 [m])
  1333          (ZeroExt16to32 x))
  1334        (Const64 [s])))
  1335  	)
  1336  )
  1337    && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1338    && m == int32(1<<15+umagic16(c).m/2) && s == 16+umagic16(c).s-1
  1339    && x.Op != OpConst16 && udivisibleOK16(c)
  1340   => (Leq16U
  1341  			(RotateLeft16 <typ.UInt16>
  1342  				(Mul16 <typ.UInt16>
  1343  					(Const16 <typ.UInt16> [int16(udivisible16(c).m)])
  1344  					x)
  1345  				(Const16 <typ.UInt16> [int16(16-udivisible16(c).k)])
  1346  				)
  1347  			(Const16 <typ.UInt16> [int16(udivisible16(c).max)])
  1348  		)
  1349  
  1350  (Eq16 x (Mul16 (Const16 [c])
  1351    (Trunc32to16
  1352      (Rsh32Ux64
  1353        mul:(Mul32
  1354          (Const32 [m])
  1355          (Rsh32Ux64 (ZeroExt16to32 x) (Const64 [1])))
  1356        (Const64 [s])))
  1357  	)
  1358  )
  1359    && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1360    && m == int32(1<<15+(umagic16(c).m+1)/2) && s == 16+umagic16(c).s-2
  1361    && x.Op != OpConst16 && udivisibleOK16(c)
  1362   => (Leq16U
  1363  			(RotateLeft16 <typ.UInt16>
  1364  				(Mul16 <typ.UInt16>
  1365  					(Const16 <typ.UInt16> [int16(udivisible16(c).m)])
  1366  					x)
  1367  				(Const16 <typ.UInt16> [int16(16-udivisible16(c).k)])
  1368  				)
  1369  			(Const16 <typ.UInt16> [int16(udivisible16(c).max)])
  1370  		)
  1371  
  1372  (Eq16 x (Mul16 (Const16 [c])
  1373    (Trunc32to16
  1374      (Rsh32Ux64
  1375        (Avg32u
  1376          (Lsh32x64 (ZeroExt16to32 x) (Const64 [16]))
  1377          mul:(Mul32
  1378            (Const32 [m])
  1379            (ZeroExt16to32 x)))
  1380        (Const64 [s])))
  1381  	)
  1382  )
  1383    && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1384    && m == int32(umagic16(c).m) && s == 16+umagic16(c).s-1
  1385    && x.Op != OpConst16 && udivisibleOK16(c)
  1386   => (Leq16U
  1387  			(RotateLeft16 <typ.UInt16>
  1388  				(Mul16 <typ.UInt16>
  1389  					(Const16 <typ.UInt16> [int16(udivisible16(c).m)])
  1390  					x)
  1391  				(Const16 <typ.UInt16> [int16(16-udivisible16(c).k)])
  1392  				)
  1393  			(Const16 <typ.UInt16> [int16(udivisible16(c).max)])
  1394  		)
  1395  
  1396  (Eq32 x (Mul32 (Const32 [c])
  1397  	(Rsh32Ux64
  1398  		mul:(Hmul32u
  1399  			(Const32 [m])
  1400  			x)
  1401  		(Const64 [s]))
  1402  	)
  1403  )
  1404    && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1405    && m == int32(1<<31+umagic32(c).m/2) && s == umagic32(c).s-1
  1406  	&& x.Op != OpConst32 && udivisibleOK32(c)
  1407   => (Leq32U
  1408  			(RotateLeft32 <typ.UInt32>
  1409  				(Mul32 <typ.UInt32>
  1410  					(Const32 <typ.UInt32> [int32(udivisible32(c).m)])
  1411  					x)
  1412  				(Const32 <typ.UInt32> [int32(32-udivisible32(c).k)])
  1413  				)
  1414  			(Const32 <typ.UInt32> [int32(udivisible32(c).max)])
  1415  		)
  1416  
  1417  (Eq32 x (Mul32 (Const32 [c])
  1418    (Rsh32Ux64
  1419      mul:(Hmul32u
  1420        (Const32 <typ.UInt32> [m])
  1421        (Rsh32Ux64 x (Const64 [1])))
  1422      (Const64 [s]))
  1423  	)
  1424  )
  1425    && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1426    && m == int32(1<<31+(umagic32(c).m+1)/2) && s == umagic32(c).s-2
  1427  	&& x.Op != OpConst32 && udivisibleOK32(c)
  1428   => (Leq32U
  1429  			(RotateLeft32 <typ.UInt32>
  1430  				(Mul32 <typ.UInt32>
  1431  					(Const32 <typ.UInt32> [int32(udivisible32(c).m)])
  1432  					x)
  1433  				(Const32 <typ.UInt32> [int32(32-udivisible32(c).k)])
  1434  				)
  1435  			(Const32 <typ.UInt32> [int32(udivisible32(c).max)])
  1436  		)
  1437  
  1438  (Eq32 x (Mul32 (Const32 [c])
  1439    (Rsh32Ux64
  1440      (Avg32u
  1441        x
  1442        mul:(Hmul32u
  1443          (Const32 [m])
  1444          x))
  1445      (Const64 [s]))
  1446  	)
  1447  )
  1448    && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1449    && m == int32(umagic32(c).m) && s == umagic32(c).s-1
  1450  	&& x.Op != OpConst32 && udivisibleOK32(c)
  1451   => (Leq32U
  1452  			(RotateLeft32 <typ.UInt32>
  1453  				(Mul32 <typ.UInt32>
  1454  					(Const32 <typ.UInt32> [int32(udivisible32(c).m)])
  1455  					x)
  1456  				(Const32 <typ.UInt32> [int32(32-udivisible32(c).k)])
  1457  				)
  1458  			(Const32 <typ.UInt32> [int32(udivisible32(c).max)])
  1459  		)
  1460  
  1461  (Eq32 x (Mul32 (Const32 [c])
  1462    (Trunc64to32
  1463      (Rsh64Ux64
  1464        mul:(Mul64
  1465          (Const64 [m])
  1466          (ZeroExt32to64 x))
  1467        (Const64 [s])))
  1468  	)
  1469  )
  1470    && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1471    && m == int64(1<<31+umagic32(c).m/2) && s == 32+umagic32(c).s-1
  1472  	&& x.Op != OpConst32 && udivisibleOK32(c)
  1473   => (Leq32U
  1474  			(RotateLeft32 <typ.UInt32>
  1475  				(Mul32 <typ.UInt32>
  1476  					(Const32 <typ.UInt32> [int32(udivisible32(c).m)])
  1477  					x)
  1478  				(Const32 <typ.UInt32> [int32(32-udivisible32(c).k)])
  1479  				)
  1480  			(Const32 <typ.UInt32> [int32(udivisible32(c).max)])
  1481  		)
  1482  
  1483  (Eq32 x (Mul32 (Const32 [c])
  1484    (Trunc64to32
  1485      (Rsh64Ux64
  1486        mul:(Mul64
  1487          (Const64 [m])
  1488          (Rsh64Ux64 (ZeroExt32to64 x) (Const64 [1])))
  1489        (Const64 [s])))
  1490  	)
  1491  )
  1492    && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1493    && m == int64(1<<31+(umagic32(c).m+1)/2) && s == 32+umagic32(c).s-2
  1494  	&& x.Op != OpConst32 && udivisibleOK32(c)
  1495   => (Leq32U
  1496  			(RotateLeft32 <typ.UInt32>
  1497  				(Mul32 <typ.UInt32>
  1498  					(Const32 <typ.UInt32> [int32(udivisible32(c).m)])
  1499  					x)
  1500  				(Const32 <typ.UInt32> [int32(32-udivisible32(c).k)])
  1501  				)
  1502  			(Const32 <typ.UInt32> [int32(udivisible32(c).max)])
  1503  		)
  1504  
  1505  (Eq32 x (Mul32 (Const32 [c])
  1506    (Trunc64to32
  1507      (Rsh64Ux64
  1508        (Avg64u
  1509          (Lsh64x64 (ZeroExt32to64 x) (Const64 [32]))
  1510          mul:(Mul64
  1511            (Const64 [m])
  1512            (ZeroExt32to64 x)))
  1513        (Const64 [s])))
  1514  	)
  1515  )
  1516    && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1517    && m == int64(umagic32(c).m) && s == 32+umagic32(c).s-1
  1518  	&& x.Op != OpConst32 && udivisibleOK32(c)
  1519   => (Leq32U
  1520  			(RotateLeft32 <typ.UInt32>
  1521  				(Mul32 <typ.UInt32>
  1522  					(Const32 <typ.UInt32> [int32(udivisible32(c).m)])
  1523  					x)
  1524  				(Const32 <typ.UInt32> [int32(32-udivisible32(c).k)])
  1525  				)
  1526  			(Const32 <typ.UInt32> [int32(udivisible32(c).max)])
  1527  		)
  1528  
  1529  (Eq64 x (Mul64 (Const64 [c])
  1530  	(Rsh64Ux64
  1531  		mul:(Hmul64u
  1532  			(Const64 [m])
  1533  			x)
  1534  		(Const64 [s]))
  1535  	)
  1536  ) && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1537    && m == int64(1<<63+umagic64(c).m/2) && s == umagic64(c).s-1
  1538    && x.Op != OpConst64 && udivisibleOK64(c)
  1539   => (Leq64U
  1540  			(RotateLeft64 <typ.UInt64>
  1541  				(Mul64 <typ.UInt64>
  1542  					(Const64 <typ.UInt64> [int64(udivisible64(c).m)])
  1543  					x)
  1544  				(Const64 <typ.UInt64> [64-udivisible64(c).k])
  1545  				)
  1546  			(Const64 <typ.UInt64> [int64(udivisible64(c).max)])
  1547  		)
  1548  (Eq64 x (Mul64 (Const64 [c])
  1549  	(Rsh64Ux64
  1550  		mul:(Hmul64u
  1551  			(Const64 [m])
  1552  			(Rsh64Ux64 x (Const64 [1])))
  1553  		(Const64 [s]))
  1554  	)
  1555  ) && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1556    && m == int64(1<<63+(umagic64(c).m+1)/2) && s == umagic64(c).s-2
  1557    && x.Op != OpConst64 && udivisibleOK64(c)
  1558   => (Leq64U
  1559  			(RotateLeft64 <typ.UInt64>
  1560  				(Mul64 <typ.UInt64>
  1561  					(Const64 <typ.UInt64> [int64(udivisible64(c).m)])
  1562  					x)
  1563  				(Const64 <typ.UInt64> [64-udivisible64(c).k])
  1564  				)
  1565  			(Const64 <typ.UInt64> [int64(udivisible64(c).max)])
  1566  		)
  1567  (Eq64 x (Mul64 (Const64 [c])
  1568  	(Rsh64Ux64
  1569  		(Avg64u
  1570  			x
  1571  			mul:(Hmul64u
  1572  				(Const64 [m])
  1573  				x))
  1574  		(Const64 [s]))
  1575  	)
  1576  ) && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1577    && m == int64(umagic64(c).m) && s == umagic64(c).s-1
  1578    && x.Op != OpConst64 && udivisibleOK64(c)
  1579   => (Leq64U
  1580  			(RotateLeft64 <typ.UInt64>
  1581  				(Mul64 <typ.UInt64>
  1582  					(Const64 <typ.UInt64> [int64(udivisible64(c).m)])
  1583  					x)
  1584  				(Const64 <typ.UInt64> [64-udivisible64(c).k])
  1585  				)
  1586  			(Const64 <typ.UInt64> [int64(udivisible64(c).max)])
  1587  		)
  1588  
  1589  // Signed divisibility checks convert to multiply, add and rotate.
  1590  (Eq8 x (Mul8 (Const8 [c])
  1591    (Sub8
  1592      (Rsh32x64
  1593        mul:(Mul32
  1594          (Const32 [m])
  1595          (SignExt8to32 x))
  1596        (Const64 [s]))
  1597      (Rsh32x64
  1598        (SignExt8to32 x)
  1599        (Const64 [31])))
  1600  	)
  1601  )
  1602    && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1603    && m == int32(smagic8(c).m) && s == 8+smagic8(c).s
  1604  	&& x.Op != OpConst8 && sdivisibleOK8(c)
  1605   => (Leq8U
  1606  			(RotateLeft8 <typ.UInt8>
  1607  				(Add8 <typ.UInt8>
  1608  					(Mul8 <typ.UInt8>
  1609  						(Const8 <typ.UInt8> [int8(sdivisible8(c).m)])
  1610  						x)
  1611  					(Const8 <typ.UInt8> [int8(sdivisible8(c).a)])
  1612  				)
  1613  				(Const8 <typ.UInt8> [int8(8-sdivisible8(c).k)])
  1614  			)
  1615  			(Const8 <typ.UInt8> [int8(sdivisible8(c).max)])
  1616  		)
  1617  
  1618  (Eq16 x (Mul16 (Const16 [c])
  1619    (Sub16
  1620      (Rsh32x64
  1621        mul:(Mul32
  1622          (Const32 [m])
  1623          (SignExt16to32 x))
  1624        (Const64 [s]))
  1625      (Rsh32x64
  1626        (SignExt16to32 x)
  1627        (Const64 [31])))
  1628  	)
  1629  )
  1630    && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1631    && m == int32(smagic16(c).m) && s == 16+smagic16(c).s
  1632  	&& x.Op != OpConst16 && sdivisibleOK16(c)
  1633   => (Leq16U
  1634  			(RotateLeft16 <typ.UInt16>
  1635  				(Add16 <typ.UInt16>
  1636  					(Mul16 <typ.UInt16>
  1637  						(Const16 <typ.UInt16> [int16(sdivisible16(c).m)])
  1638  						x)
  1639  					(Const16 <typ.UInt16> [int16(sdivisible16(c).a)])
  1640  				)
  1641  				(Const16 <typ.UInt16> [int16(16-sdivisible16(c).k)])
  1642  			)
  1643  			(Const16 <typ.UInt16> [int16(sdivisible16(c).max)])
  1644  		)
  1645  
  1646  (Eq32 x (Mul32 (Const32 [c])
  1647    (Sub32
  1648      (Rsh64x64
  1649        mul:(Mul64
  1650          (Const64 [m])
  1651          (SignExt32to64 x))
  1652        (Const64 [s]))
  1653      (Rsh64x64
  1654        (SignExt32to64 x)
  1655        (Const64 [63])))
  1656  	)
  1657  )
  1658    && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1659    && m == int64(smagic32(c).m) && s == 32+smagic32(c).s
  1660  	&& x.Op != OpConst32 && sdivisibleOK32(c)
  1661   => (Leq32U
  1662  			(RotateLeft32 <typ.UInt32>
  1663  				(Add32 <typ.UInt32>
  1664  					(Mul32 <typ.UInt32>
  1665  						(Const32 <typ.UInt32> [int32(sdivisible32(c).m)])
  1666  						x)
  1667  					(Const32 <typ.UInt32> [int32(sdivisible32(c).a)])
  1668  				)
  1669  				(Const32 <typ.UInt32> [int32(32-sdivisible32(c).k)])
  1670  			)
  1671  			(Const32 <typ.UInt32> [int32(sdivisible32(c).max)])
  1672  		)
  1673  
  1674  (Eq32 x (Mul32 (Const32 [c])
  1675    (Sub32
  1676      (Rsh32x64
  1677        mul:(Hmul32
  1678          (Const32 [m])
  1679          x)
  1680        (Const64 [s]))
  1681      (Rsh32x64
  1682        x
  1683        (Const64 [31])))
  1684  	)
  1685  )
  1686    && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1687    && m == int32(smagic32(c).m/2) && s == smagic32(c).s-1
  1688  	&& x.Op != OpConst32 && sdivisibleOK32(c)
  1689   => (Leq32U
  1690  			(RotateLeft32 <typ.UInt32>
  1691  				(Add32 <typ.UInt32>
  1692  					(Mul32 <typ.UInt32>
  1693  						(Const32 <typ.UInt32> [int32(sdivisible32(c).m)])
  1694  						x)
  1695  					(Const32 <typ.UInt32> [int32(sdivisible32(c).a)])
  1696  				)
  1697  				(Const32 <typ.UInt32> [int32(32-sdivisible32(c).k)])
  1698  			)
  1699  			(Const32 <typ.UInt32> [int32(sdivisible32(c).max)])
  1700  		)
  1701  
  1702  (Eq32 x (Mul32 (Const32 [c])
  1703    (Sub32
  1704      (Rsh32x64
  1705        (Add32
  1706          mul:(Hmul32
  1707            (Const32 [m])
  1708            x)
  1709          x)
  1710        (Const64 [s]))
  1711      (Rsh32x64
  1712        x
  1713        (Const64 [31])))
  1714  	)
  1715  )
  1716    && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1717    && m == int32(smagic32(c).m) && s == smagic32(c).s
  1718  	&& x.Op != OpConst32 && sdivisibleOK32(c)
  1719   => (Leq32U
  1720  			(RotateLeft32 <typ.UInt32>
  1721  				(Add32 <typ.UInt32>
  1722  					(Mul32 <typ.UInt32>
  1723  						(Const32 <typ.UInt32> [int32(sdivisible32(c).m)])
  1724  						x)
  1725  					(Const32 <typ.UInt32> [int32(sdivisible32(c).a)])
  1726  				)
  1727  				(Const32 <typ.UInt32> [int32(32-sdivisible32(c).k)])
  1728  			)
  1729  			(Const32 <typ.UInt32> [int32(sdivisible32(c).max)])
  1730  		)
  1731  
  1732  (Eq64 x (Mul64 (Const64 [c])
  1733    (Sub64
  1734      (Rsh64x64
  1735        mul:(Hmul64
  1736          (Const64 [m])
  1737          x)
  1738        (Const64 [s]))
  1739      (Rsh64x64
  1740        x
  1741        (Const64 [63])))
  1742  	)
  1743  )
  1744    && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1745    && m == int64(smagic64(c).m/2) && s == smagic64(c).s-1
  1746  	&& x.Op != OpConst64 && sdivisibleOK64(c)
  1747   => (Leq64U
  1748  			(RotateLeft64 <typ.UInt64>
  1749  				(Add64 <typ.UInt64>
  1750  					(Mul64 <typ.UInt64>
  1751  						(Const64 <typ.UInt64> [int64(sdivisible64(c).m)])
  1752  						x)
  1753  					(Const64 <typ.UInt64> [int64(sdivisible64(c).a)])
  1754  				)
  1755  				(Const64 <typ.UInt64> [64-sdivisible64(c).k])
  1756  			)
  1757  			(Const64 <typ.UInt64> [int64(sdivisible64(c).max)])
  1758  		)
  1759  
  1760  (Eq64 x (Mul64 (Const64 [c])
  1761    (Sub64
  1762      (Rsh64x64
  1763        (Add64
  1764          mul:(Hmul64
  1765            (Const64 [m])
  1766            x)
  1767          x)
  1768        (Const64 [s]))
  1769      (Rsh64x64
  1770        x
  1771        (Const64 [63])))
  1772  	)
  1773  )
  1774    && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1775    && m == int64(smagic64(c).m) && s == smagic64(c).s
  1776  	&& x.Op != OpConst64 && sdivisibleOK64(c)
  1777   => (Leq64U
  1778  			(RotateLeft64 <typ.UInt64>
  1779  				(Add64 <typ.UInt64>
  1780  					(Mul64 <typ.UInt64>
  1781  						(Const64 <typ.UInt64> [int64(sdivisible64(c).m)])
  1782  						x)
  1783  					(Const64 <typ.UInt64> [int64(sdivisible64(c).a)])
  1784  				)
  1785  				(Const64 <typ.UInt64> [64-sdivisible64(c).k])
  1786  			)
  1787  			(Const64 <typ.UInt64> [int64(sdivisible64(c).max)])
  1788  		)
  1789  
  1790  // Divisibility check for signed integers for power of two constant are simple mask.
  1791  // However, we must match against the rewritten n%c == 0 -> n - c*(n/c) == 0 -> n == c*(n/c)
  1792  // where n/c contains fixup code to handle signed n.
  1793  ((Eq8|Neq8) n (Lsh8x64
  1794    (Rsh8x64
  1795      (Add8  <t> n (Rsh8Ux64  <t> (Rsh8x64  <t> n (Const64 <typ.UInt64> [ 7])) (Const64 <typ.UInt64> [kbar])))
  1796      (Const64 <typ.UInt64> [k]))
  1797  	(Const64 <typ.UInt64> [k]))
  1798  ) && k > 0 && k < 7 && kbar == 8 - k
  1799    => ((Eq8|Neq8) (And8 <t> n (Const8 <t> [1<<uint(k)-1])) (Const8 <t> [0]))
  1800  
  1801  ((Eq16|Neq16) n (Lsh16x64
  1802    (Rsh16x64
  1803      (Add16 <t> n (Rsh16Ux64 <t> (Rsh16x64 <t> n (Const64 <typ.UInt64> [15])) (Const64 <typ.UInt64> [kbar])))
  1804      (Const64 <typ.UInt64> [k]))
  1805  	(Const64 <typ.UInt64> [k]))
  1806  ) && k > 0 && k < 15 && kbar == 16 - k
  1807    => ((Eq16|Neq16) (And16 <t> n (Const16 <t> [1<<uint(k)-1])) (Const16 <t> [0]))
  1808  
  1809  ((Eq32|Neq32) n (Lsh32x64
  1810    (Rsh32x64
  1811      (Add32 <t> n (Rsh32Ux64 <t> (Rsh32x64 <t> n (Const64 <typ.UInt64> [31])) (Const64 <typ.UInt64> [kbar])))
  1812      (Const64 <typ.UInt64> [k]))
  1813  	(Const64 <typ.UInt64> [k]))
  1814  ) && k > 0 && k < 31 && kbar == 32 - k
  1815    => ((Eq32|Neq32) (And32 <t> n (Const32 <t> [1<<uint(k)-1])) (Const32 <t> [0]))
  1816  
  1817  ((Eq64|Neq64) n (Lsh64x64
  1818    (Rsh64x64
  1819      (Add64 <t> n (Rsh64Ux64 <t> (Rsh64x64 <t> n (Const64 <typ.UInt64> [63])) (Const64 <typ.UInt64> [kbar])))
  1820      (Const64 <typ.UInt64> [k]))
  1821  	(Const64 <typ.UInt64> [k]))
  1822  ) && k > 0 && k < 63 && kbar == 64 - k
  1823    => ((Eq64|Neq64) (And64 <t> n (Const64 <t> [1<<uint(k)-1])) (Const64 <t> [0]))
  1824  
  1825  (Eq(8|16|32|64)  s:(Sub(8|16|32|64) x y) (Const(8|16|32|64) [0])) && s.Uses == 1 => (Eq(8|16|32|64)  x y)
  1826  (Neq(8|16|32|64) s:(Sub(8|16|32|64) x y) (Const(8|16|32|64) [0])) && s.Uses == 1 => (Neq(8|16|32|64) x y)
  1827  
  1828  // Optimize bitsets
  1829  (Eq8 (And8 <t> x (Const8 <t> [y])) (Const8 <t> [y])) && oneBit8(y)
  1830    => (Neq8 (And8 <t> x (Const8 <t> [y])) (Const8 <t> [0]))
  1831  (Eq16 (And16 <t> x (Const16 <t> [y])) (Const16 <t> [y])) && oneBit16(y)
  1832    => (Neq16 (And16 <t> x (Const16 <t> [y])) (Const16 <t> [0]))
  1833  (Eq32 (And32 <t> x (Const32 <t> [y])) (Const32 <t> [y])) && oneBit32(y)
  1834    => (Neq32 (And32 <t> x (Const32 <t> [y])) (Const32 <t> [0]))
  1835  (Eq64 (And64 <t> x (Const64 <t> [y])) (Const64 <t> [y])) && oneBit64(y)
  1836    => (Neq64 (And64 <t> x (Const64 <t> [y])) (Const64 <t> [0]))
  1837  (Neq8 (And8 <t> x (Const8 <t> [y])) (Const8 <t> [y])) && oneBit8(y)
  1838    => (Eq8 (And8 <t> x (Const8 <t> [y])) (Const8 <t> [0]))
  1839  (Neq16 (And16 <t> x (Const16 <t> [y])) (Const16 <t> [y])) && oneBit16(y)
  1840    => (Eq16 (And16 <t> x (Const16 <t> [y])) (Const16 <t> [0]))
  1841  (Neq32 (And32 <t> x (Const32 <t> [y])) (Const32 <t> [y])) && oneBit32(y)
  1842    => (Eq32 (And32 <t> x (Const32 <t> [y])) (Const32 <t> [0]))
  1843  (Neq64 (And64 <t> x (Const64 <t> [y])) (Const64 <t> [y])) && oneBit64(y)
  1844    => (Eq64 (And64 <t> x (Const64 <t> [y])) (Const64 <t> [0]))
  1845  
  1846  // Reassociate expressions involving
  1847  // constants such that constants come first,
  1848  // exposing obvious constant-folding opportunities.
  1849  // Reassociate (op (op y C) x) to (op C (op x y)) or similar, where C
  1850  // is constant, which pushes constants to the outside
  1851  // of the expression. At that point, any constant-folding
  1852  // opportunities should be obvious.
  1853  // Note: don't include AddPtr here! In order to maintain the
  1854  // invariant that pointers must stay within the pointed-to object,
  1855  // we can't pull part of a pointer computation above the AddPtr.
  1856  // See issue 37881.
  1857  // Note: we don't need to handle any (x-C) cases because we already rewrite
  1858  // (x-C) to (x+(-C)).
  1859  
  1860  // x + (C + z) -> C + (x + z)
  1861  (Add64 (Add64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Add64 i (Add64 <t> z x))
  1862  (Add32 (Add32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Add32 i (Add32 <t> z x))
  1863  (Add16 (Add16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Add16 i (Add16 <t> z x))
  1864  (Add8  (Add8  i:(Const8  <t>) z) x) && (z.Op != OpConst8  && x.Op != OpConst8)  => (Add8  i (Add8  <t> z x))
  1865  
  1866  // x + (C - z) -> C + (x - z)
  1867  (Add64 (Sub64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Add64 i (Sub64 <t> x z))
  1868  (Add32 (Sub32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Add32 i (Sub32 <t> x z))
  1869  (Add16 (Sub16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Add16 i (Sub16 <t> x z))
  1870  (Add8  (Sub8  i:(Const8  <t>) z) x) && (z.Op != OpConst8  && x.Op != OpConst8)  => (Add8  i (Sub8  <t> x z))
  1871  
  1872  // x - (C - z) -> x + (z - C) -> (x + z) - C
  1873  (Sub64 x (Sub64 i:(Const64 <t>) z)) && (z.Op != OpConst64 && x.Op != OpConst64) => (Sub64 (Add64 <t> x z) i)
  1874  (Sub32 x (Sub32 i:(Const32 <t>) z)) && (z.Op != OpConst32 && x.Op != OpConst32) => (Sub32 (Add32 <t> x z) i)
  1875  (Sub16 x (Sub16 i:(Const16 <t>) z)) && (z.Op != OpConst16 && x.Op != OpConst16) => (Sub16 (Add16 <t> x z) i)
  1876  (Sub8  x (Sub8  i:(Const8  <t>) z)) && (z.Op != OpConst8  && x.Op != OpConst8)  => (Sub8  (Add8  <t> x z) i)
  1877  
  1878  // x - (z + C) -> x + (-z - C) -> (x - z) - C
  1879  (Sub64 x (Add64 z i:(Const64 <t>))) && (z.Op != OpConst64 && x.Op != OpConst64) => (Sub64 (Sub64 <t> x z) i)
  1880  (Sub32 x (Add32 z i:(Const32 <t>))) && (z.Op != OpConst32 && x.Op != OpConst32) => (Sub32 (Sub32 <t> x z) i)
  1881  (Sub16 x (Add16 z i:(Const16 <t>))) && (z.Op != OpConst16 && x.Op != OpConst16) => (Sub16 (Sub16 <t> x z) i)
  1882  (Sub8  x (Add8  z i:(Const8  <t>))) && (z.Op != OpConst8  && x.Op != OpConst8)  => (Sub8 (Sub8  <t> x z) i)
  1883  
  1884  // (C - z) - x -> C - (z + x)
  1885  (Sub64 (Sub64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Sub64 i (Add64 <t> z x))
  1886  (Sub32 (Sub32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Sub32 i (Add32 <t> z x))
  1887  (Sub16 (Sub16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Sub16 i (Add16 <t> z x))
  1888  (Sub8  (Sub8  i:(Const8  <t>) z) x) && (z.Op != OpConst8  && x.Op != OpConst8)  => (Sub8  i (Add8  <t> z x))
  1889  
  1890  // (z + C) -x -> C + (z - x)
  1891  (Sub64 (Add64 z i:(Const64 <t>)) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Add64 i (Sub64 <t> z x))
  1892  (Sub32 (Add32 z i:(Const32 <t>)) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Add32 i (Sub32 <t> z x))
  1893  (Sub16 (Add16 z i:(Const16 <t>)) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Add16 i (Sub16 <t> z x))
  1894  (Sub8  (Add8  z i:(Const8  <t>)) x) && (z.Op != OpConst8  && x.Op != OpConst8)  => (Add8  i (Sub8  <t> z x))
  1895  
  1896  // x & (C & z) -> C & (x & z)
  1897  (And64 (And64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (And64 i (And64 <t> z x))
  1898  (And32 (And32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (And32 i (And32 <t> z x))
  1899  (And16 (And16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (And16 i (And16 <t> z x))
  1900  (And8  (And8  i:(Const8  <t>) z) x) && (z.Op != OpConst8  && x.Op != OpConst8)  => (And8  i (And8  <t> z x))
  1901  
  1902  // x | (C | z) -> C | (x | z)
  1903  (Or64 (Or64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Or64 i (Or64 <t> z x))
  1904  (Or32 (Or32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Or32 i (Or32 <t> z x))
  1905  (Or16 (Or16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Or16 i (Or16 <t> z x))
  1906  (Or8  (Or8  i:(Const8  <t>) z) x) && (z.Op != OpConst8  && x.Op != OpConst8)  => (Or8  i (Or8  <t> z x))
  1907  
  1908  // x ^ (C ^ z) -> C ^ (x ^ z)
  1909  (Xor64 (Xor64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Xor64 i (Xor64 <t> z x))
  1910  (Xor32 (Xor32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Xor32 i (Xor32 <t> z x))
  1911  (Xor16 (Xor16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Xor16 i (Xor16 <t> z x))
  1912  (Xor8  (Xor8  i:(Const8  <t>) z) x) && (z.Op != OpConst8  && x.Op != OpConst8)  => (Xor8  i (Xor8  <t> z x))
  1913  
  1914  // x * (D * z) = D * (x * z)
  1915  (Mul64 (Mul64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Mul64 i (Mul64 <t> x z))
  1916  (Mul32 (Mul32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Mul32 i (Mul32 <t> x z))
  1917  (Mul16 (Mul16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Mul16 i (Mul16 <t> x z))
  1918  (Mul8  (Mul8  i:(Const8  <t>) z) x) && (z.Op != OpConst8  && x.Op != OpConst8)  => (Mul8  i (Mul8  <t> x z))
  1919  
  1920  // C + (D + x) -> (C + D) + x
  1921  (Add64 (Const64 <t> [c]) (Add64 (Const64 <t> [d]) x)) => (Add64 (Const64 <t> [c+d]) x)
  1922  (Add32 (Const32 <t> [c]) (Add32 (Const32 <t> [d]) x)) => (Add32 (Const32 <t> [c+d]) x)
  1923  (Add16 (Const16 <t> [c]) (Add16 (Const16 <t> [d]) x)) => (Add16 (Const16 <t> [c+d]) x)
  1924  (Add8  (Const8  <t> [c]) (Add8  (Const8  <t> [d]) x)) => (Add8  (Const8  <t> [c+d]) x)
  1925  
  1926  // C + (D - x) -> (C + D) - x
  1927  (Add64 (Const64 <t> [c]) (Sub64 (Const64 <t> [d]) x)) => (Sub64 (Const64 <t> [c+d]) x)
  1928  (Add32 (Const32 <t> [c]) (Sub32 (Const32 <t> [d]) x)) => (Sub32 (Const32 <t> [c+d]) x)
  1929  (Add16 (Const16 <t> [c]) (Sub16 (Const16 <t> [d]) x)) => (Sub16 (Const16 <t> [c+d]) x)
  1930  (Add8  (Const8  <t> [c]) (Sub8  (Const8  <t> [d]) x)) => (Sub8  (Const8  <t> [c+d]) x)
  1931  
  1932  // C - (D - x) -> (C - D) + x
  1933  (Sub64 (Const64 <t> [c]) (Sub64 (Const64 <t> [d]) x)) => (Add64 (Const64 <t> [c-d]) x)
  1934  (Sub32 (Const32 <t> [c]) (Sub32 (Const32 <t> [d]) x)) => (Add32 (Const32 <t> [c-d]) x)
  1935  (Sub16 (Const16 <t> [c]) (Sub16 (Const16 <t> [d]) x)) => (Add16 (Const16 <t> [c-d]) x)
  1936  (Sub8  (Const8  <t> [c]) (Sub8  (Const8  <t> [d]) x)) => (Add8  (Const8  <t> [c-d]) x)
  1937  
  1938  // C - (D + x) -> (C - D) - x
  1939  (Sub64 (Const64 <t> [c]) (Add64 (Const64 <t> [d]) x)) => (Sub64 (Const64 <t> [c-d]) x)
  1940  (Sub32 (Const32 <t> [c]) (Add32 (Const32 <t> [d]) x)) => (Sub32 (Const32 <t> [c-d]) x)
  1941  (Sub16 (Const16 <t> [c]) (Add16 (Const16 <t> [d]) x)) => (Sub16 (Const16 <t> [c-d]) x)
  1942  (Sub8  (Const8  <t> [c]) (Add8  (Const8  <t> [d]) x)) => (Sub8  (Const8  <t> [c-d]) x)
  1943  
  1944  // C & (D & x) -> (C & D) & x
  1945  (And64 (Const64 <t> [c]) (And64 (Const64 <t> [d]) x)) => (And64 (Const64 <t> [c&d]) x)
  1946  (And32 (Const32 <t> [c]) (And32 (Const32 <t> [d]) x)) => (And32 (Const32 <t> [c&d]) x)
  1947  (And16 (Const16 <t> [c]) (And16 (Const16 <t> [d]) x)) => (And16 (Const16 <t> [c&d]) x)
  1948  (And8  (Const8  <t> [c]) (And8  (Const8  <t> [d]) x)) => (And8  (Const8  <t> [c&d]) x)
  1949  
  1950  // C | (D | x) -> (C | D) | x
  1951  (Or64 (Const64 <t> [c]) (Or64 (Const64 <t> [d]) x)) => (Or64 (Const64 <t> [c|d]) x)
  1952  (Or32 (Const32 <t> [c]) (Or32 (Const32 <t> [d]) x)) => (Or32 (Const32 <t> [c|d]) x)
  1953  (Or16 (Const16 <t> [c]) (Or16 (Const16 <t> [d]) x)) => (Or16 (Const16 <t> [c|d]) x)
  1954  (Or8  (Const8  <t> [c]) (Or8  (Const8  <t> [d]) x)) => (Or8  (Const8  <t> [c|d]) x)
  1955  
  1956  // C ^ (D ^ x) -> (C ^ D) ^ x
  1957  (Xor64 (Const64 <t> [c]) (Xor64 (Const64 <t> [d]) x)) => (Xor64 (Const64 <t> [c^d]) x)
  1958  (Xor32 (Const32 <t> [c]) (Xor32 (Const32 <t> [d]) x)) => (Xor32 (Const32 <t> [c^d]) x)
  1959  (Xor16 (Const16 <t> [c]) (Xor16 (Const16 <t> [d]) x)) => (Xor16 (Const16 <t> [c^d]) x)
  1960  (Xor8  (Const8  <t> [c]) (Xor8  (Const8  <t> [d]) x)) => (Xor8  (Const8  <t> [c^d]) x)
  1961  
  1962  // C * (D * x) = (C * D) * x
  1963  (Mul64 (Const64 <t> [c]) (Mul64 (Const64 <t> [d]) x)) => (Mul64 (Const64 <t> [c*d]) x)
  1964  (Mul32 (Const32 <t> [c]) (Mul32 (Const32 <t> [d]) x)) => (Mul32 (Const32 <t> [c*d]) x)
  1965  (Mul16 (Const16 <t> [c]) (Mul16 (Const16 <t> [d]) x)) => (Mul16 (Const16 <t> [c*d]) x)
  1966  (Mul8  (Const8  <t> [c]) (Mul8  (Const8  <t> [d]) x)) => (Mul8  (Const8  <t> [c*d]) x)
  1967  
  1968  // floating point optimizations
  1969  (Mul(32|64)F x (Const(32|64)F [1])) => x
  1970  (Mul32F x (Const32F [-1])) => (Neg32F x)
  1971  (Mul64F x (Const64F [-1])) => (Neg64F x)
  1972  (Mul32F x (Const32F [2])) => (Add32F x x)
  1973  (Mul64F x (Const64F [2])) => (Add64F x x)
  1974  
  1975  (Div32F x (Const32F <t> [c])) && reciprocalExact32(c) => (Mul32F x (Const32F <t> [1/c]))
  1976  (Div64F x (Const64F <t> [c])) && reciprocalExact64(c) => (Mul64F x (Const64F <t> [1/c]))
  1977  
  1978  // rewrite single-precision sqrt expression "float32(math.Sqrt(float64(x)))"
  1979  (Cvt64Fto32F sqrt0:(Sqrt (Cvt32Fto64F x))) && sqrt0.Uses==1 => (Sqrt32 x)
  1980  
  1981  (Sqrt (Const64F [c])) && !math.IsNaN(math.Sqrt(c)) => (Const64F [math.Sqrt(c)])
  1982  
  1983  // for rewriting results of some late-expanded rewrites (below)
  1984  (SelectN [0] (MakeResult x ___)) => x
  1985  (SelectN [1] (MakeResult x y ___)) => y
  1986  (SelectN [2] (MakeResult x y z ___)) => z
  1987  
  1988  // for late-expanded calls, recognize newobject and remove zeroing and nilchecks
  1989  (Zero (SelectN [0] call:(StaticLECall _ _)) mem:(SelectN [1] call))
  1990  	&& isSameCall(call.Aux, "runtime.newobject")
  1991  	=> mem
  1992  
  1993  (Store (SelectN [0] call:(StaticLECall _ _)) x mem:(SelectN [1] call))
  1994  	&& isConstZero(x)
  1995  	&& isSameCall(call.Aux, "runtime.newobject")
  1996  	=> mem
  1997  
  1998  (Store (OffPtr (SelectN [0] call:(StaticLECall _ _))) x mem:(SelectN [1] call))
  1999  	&& isConstZero(x)
  2000  	&& isSameCall(call.Aux, "runtime.newobject")
  2001  	=> mem
  2002  
  2003  (NilCheck (SelectN [0] call:(StaticLECall _ _)) _)
  2004  	&& isSameCall(call.Aux, "runtime.newobject")
  2005  	&& warnRule(fe.Debug_checknil(), v, "removed nil check")
  2006  	=> (Invalid)
  2007  
  2008  (NilCheck (OffPtr (SelectN [0] call:(StaticLECall _ _))) _)
  2009  	&& isSameCall(call.Aux, "runtime.newobject")
  2010  	&& warnRule(fe.Debug_checknil(), v, "removed nil check")
  2011  	=> (Invalid)
  2012  
  2013  // for late-expanded calls, recognize memequal applied to a single constant byte
  2014  // Support is limited by 1, 2, 4, 8 byte sizes
  2015  (StaticLECall {callAux} sptr (Addr {scon} (SB)) (Const64 [1]) mem)
  2016    && isSameCall(callAux, "runtime.memequal")
  2017    && symIsRO(scon)
  2018    => (MakeResult (Eq8 (Load <typ.Int8> sptr mem) (Const8 <typ.Int8> [int8(read8(scon,0))])) mem)
  2019  
  2020  (StaticLECall {callAux} sptr (Addr {scon} (SB)) (Const64 [2]) mem)
  2021    && isSameCall(callAux, "runtime.memequal")
  2022    && symIsRO(scon)
  2023    && canLoadUnaligned(config)
  2024    => (MakeResult (Eq16 (Load <typ.Int16> sptr mem) (Const16 <typ.Int16> [int16(read16(scon,0,config.ctxt.Arch.ByteOrder))])) mem)
  2025  
  2026  (StaticLECall {callAux} sptr (Addr {scon} (SB)) (Const64 [4]) mem)
  2027    && isSameCall(callAux, "runtime.memequal")
  2028    && symIsRO(scon)
  2029    && canLoadUnaligned(config)
  2030    => (MakeResult (Eq32 (Load <typ.Int32> sptr mem) (Const32 <typ.Int32> [int32(read32(scon,0,config.ctxt.Arch.ByteOrder))])) mem)
  2031  
  2032  (StaticLECall {callAux} sptr (Addr {scon} (SB)) (Const64 [8]) mem)
  2033    && isSameCall(callAux, "runtime.memequal")
  2034    && symIsRO(scon)
  2035    && canLoadUnaligned(config) && config.PtrSize == 8
  2036    => (MakeResult (Eq64 (Load <typ.Int64> sptr mem) (Const64 <typ.Int64> [int64(read64(scon,0,config.ctxt.Arch.ByteOrder))])) mem)
  2037  
  2038  // Evaluate constant address comparisons.
  2039  (EqPtr  x x) => (ConstBool [true])
  2040  (NeqPtr x x) => (ConstBool [false])
  2041  (EqPtr  (Addr {x} _) (Addr {y} _)) => (ConstBool [x == y])
  2042  (EqPtr  (Addr {x} _) (OffPtr [o] (Addr {y} _))) => (ConstBool [x == y && o == 0])
  2043  (EqPtr  (OffPtr [o1] (Addr {x} _)) (OffPtr [o2] (Addr {y} _))) => (ConstBool [x == y && o1 == o2])
  2044  (NeqPtr (Addr {x} _) (Addr {y} _)) => (ConstBool [x != y])
  2045  (NeqPtr (Addr {x} _) (OffPtr [o] (Addr {y} _))) => (ConstBool [x != y || o != 0])
  2046  (NeqPtr (OffPtr [o1] (Addr {x} _)) (OffPtr [o2] (Addr {y} _))) => (ConstBool [x != y || o1 != o2])
  2047  (EqPtr  (LocalAddr {x} _ _) (LocalAddr {y} _ _)) => (ConstBool [x == y])
  2048  (EqPtr  (LocalAddr {x} _ _) (OffPtr [o] (LocalAddr {y} _ _))) => (ConstBool [x == y && o == 0])
  2049  (EqPtr  (OffPtr [o1] (LocalAddr {x} _ _)) (OffPtr [o2] (LocalAddr {y} _ _))) => (ConstBool [x == y && o1 == o2])
  2050  (NeqPtr (LocalAddr {x} _ _) (LocalAddr {y} _ _)) => (ConstBool [x != y])
  2051  (NeqPtr (LocalAddr {x} _ _) (OffPtr [o] (LocalAddr {y} _ _))) => (ConstBool [x != y || o != 0])
  2052  (NeqPtr (OffPtr [o1] (LocalAddr {x} _ _)) (OffPtr [o2] (LocalAddr {y} _ _))) => (ConstBool [x != y || o1 != o2])
  2053  (EqPtr  (OffPtr [o1] p1) p2) && isSamePtr(p1, p2) => (ConstBool [o1 == 0])
  2054  (NeqPtr (OffPtr [o1] p1) p2) && isSamePtr(p1, p2) => (ConstBool [o1 != 0])
  2055  (EqPtr  (OffPtr [o1] p1) (OffPtr [o2] p2)) && isSamePtr(p1, p2) => (ConstBool [o1 == o2])
  2056  (NeqPtr (OffPtr [o1] p1) (OffPtr [o2] p2)) && isSamePtr(p1, p2) => (ConstBool [o1 != o2])
  2057  (EqPtr  (Const(32|64) [c]) (Const(32|64) [d])) => (ConstBool [c == d])
  2058  (NeqPtr (Const(32|64) [c]) (Const(32|64) [d])) => (ConstBool [c != d])
  2059  
  2060  (EqPtr  (LocalAddr _ _) (Addr _)) => (ConstBool [false])
  2061  (EqPtr  (OffPtr (LocalAddr _ _)) (Addr _)) => (ConstBool [false])
  2062  (EqPtr  (LocalAddr _ _) (OffPtr (Addr _))) => (ConstBool [false])
  2063  (EqPtr  (OffPtr (LocalAddr _ _)) (OffPtr (Addr _))) => (ConstBool [false])
  2064  (NeqPtr (LocalAddr _ _) (Addr _)) => (ConstBool [true])
  2065  (NeqPtr (OffPtr (LocalAddr _ _)) (Addr _)) => (ConstBool [true])
  2066  (NeqPtr (LocalAddr _ _) (OffPtr (Addr _))) => (ConstBool [true])
  2067  (NeqPtr (OffPtr (LocalAddr _ _)) (OffPtr (Addr _))) => (ConstBool [true])
  2068  
  2069  // Simplify address comparisons.
  2070  (EqPtr  (AddPtr p1 o1) p2) && isSamePtr(p1, p2) => (Not (IsNonNil o1))
  2071  (NeqPtr (AddPtr p1 o1) p2) && isSamePtr(p1, p2) => (IsNonNil o1)
  2072  (EqPtr  (Const(32|64) [0]) p) => (Not (IsNonNil p))
  2073  (NeqPtr (Const(32|64) [0]) p) => (IsNonNil p)
  2074  (EqPtr  (ConstNil) p) => (Not (IsNonNil p))
  2075  (NeqPtr (ConstNil) p) => (IsNonNil p)
  2076  
  2077  // Evaluate constant user nil checks.
  2078  (IsNonNil (ConstNil)) => (ConstBool [false])
  2079  (IsNonNil (Const(32|64) [c])) => (ConstBool [c != 0])
  2080  (IsNonNil (Addr _)) => (ConstBool [true])
  2081  (IsNonNil (LocalAddr _ _)) => (ConstBool [true])
  2082  
  2083  // Inline small or disjoint runtime.memmove calls with constant length.
  2084  // See the comment in op Move in genericOps.go for discussion of the type.
  2085  
  2086  // Because expand calls runs after prove, constants useful to this pattern may not appear.
  2087  // Both versions need to exist; the memory and register variants.
  2088  //
  2089  // Match post-expansion calls, memory version.
  2090  (SelectN [0] call:(StaticCall {sym} s1:(Store _ (Const(64|32) [sz]) s2:(Store  _ src s3:(Store {t} _ dst mem)))))
  2091  	&& sz >= 0
  2092  	&& isSameCall(sym, "runtime.memmove")
  2093  	&& t.IsPtr() // avoids TUNSAFEPTR, see issue 30061
  2094  	&& s1.Uses == 1 && s2.Uses == 1 && s3.Uses == 1
  2095  	&& isInlinableMemmove(dst, src, int64(sz), config)
  2096  	&& clobber(s1, s2, s3, call)
  2097  	=> (Move {t.Elem()} [int64(sz)] dst src mem)
  2098  
  2099  // Match post-expansion calls, register version.
  2100  (SelectN [0] call:(StaticCall {sym} dst src (Const(64|32) [sz]) mem))
  2101  	&& sz >= 0
  2102  	&& call.Uses == 1 // this will exclude all calls with results
  2103  	&& isSameCall(sym, "runtime.memmove")
  2104  	&& dst.Type.IsPtr() // avoids TUNSAFEPTR, see issue 30061
  2105  	&& isInlinableMemmove(dst, src, int64(sz), config)
  2106  	&& clobber(call)
  2107  	=> (Move {dst.Type.Elem()} [int64(sz)] dst src mem)
  2108  
  2109  // Match pre-expansion calls.
  2110  (SelectN [0] call:(StaticLECall {sym} dst src (Const(64|32) [sz]) mem))
  2111  	&& sz >= 0
  2112  	&& call.Uses == 1 // this will exclude all calls with results
  2113  	&& isSameCall(sym, "runtime.memmove")
  2114  	&& dst.Type.IsPtr() // avoids TUNSAFEPTR, see issue 30061
  2115  	&& isInlinableMemmove(dst, src, int64(sz), config)
  2116  	&& clobber(call)
  2117  	=> (Move {dst.Type.Elem()} [int64(sz)] dst src mem)
  2118  
  2119  // De-virtualize late-expanded interface calls into late-expanded static calls.
  2120  // Note that (ITab (IMake)) doesn't get rewritten until after the first opt pass,
  2121  // so this rule should trigger reliably.
  2122  // devirtLECall removes the first argument, adds the devirtualized symbol to the AuxCall, and changes the opcode
  2123  (InterLECall [argsize] {auxCall} (Load (OffPtr [off] (ITab (IMake (Addr {itab} (SB)) _))) _) ___) && devirtLESym(v, auxCall, itab, off) !=
  2124      nil => devirtLECall(v, devirtLESym(v, auxCall, itab, off))
  2125  
  2126  // Move and Zero optimizations.
  2127  // Move source and destination may overlap.
  2128  
  2129  // Convert Moves into Zeros when the source is known to be zeros.
  2130  (Move {t} [n] dst1 src mem:(Zero {t} [n] dst2 _)) && isSamePtr(src, dst2)
  2131  	=> (Zero {t} [n] dst1 mem)
  2132  (Move {t} [n] dst1 src mem:(VarDef (Zero {t} [n] dst0 _))) && isSamePtr(src, dst0)
  2133  	=> (Zero {t} [n] dst1 mem)
  2134  (Move {t} [n] dst (Addr {sym} (SB)) mem) && symIsROZero(sym) => (Zero {t} [n] dst mem)
  2135  
  2136  // Don't Store to variables that are about to be overwritten by Move/Zero.
  2137  (Zero {t1} [n] p1 store:(Store {t2} (OffPtr [o2] p2) _ mem))
  2138  	&& isSamePtr(p1, p2) && store.Uses == 1
  2139  	&& n >= o2 + t2.Size()
  2140  	&& clobber(store)
  2141  	=> (Zero {t1} [n] p1 mem)
  2142  (Move {t1} [n] dst1 src1 store:(Store {t2} op:(OffPtr [o2] dst2) _ mem))
  2143  	&& isSamePtr(dst1, dst2) && store.Uses == 1
  2144  	&& n >= o2 + t2.Size()
  2145  	&& disjoint(src1, n, op, t2.Size())
  2146  	&& clobber(store)
  2147  	=> (Move {t1} [n] dst1 src1 mem)
  2148  
  2149  // Don't Move to variables that are immediately completely overwritten.
  2150  (Zero {t} [n] dst1 move:(Move {t} [n] dst2 _ mem))
  2151  	&& move.Uses == 1
  2152  	&& isSamePtr(dst1, dst2)
  2153  	&& clobber(move)
  2154  	=> (Zero {t} [n] dst1 mem)
  2155  (Move {t} [n] dst1 src1 move:(Move {t} [n] dst2 _ mem))
  2156  	&& move.Uses == 1
  2157  	&& isSamePtr(dst1, dst2) && disjoint(src1, n, dst2, n)
  2158  	&& clobber(move)
  2159  	=> (Move {t} [n] dst1 src1 mem)
  2160  (Zero {t} [n] dst1 vardef:(VarDef {x} move:(Move {t} [n] dst2 _ mem)))
  2161  	&& move.Uses == 1 && vardef.Uses == 1
  2162  	&& isSamePtr(dst1, dst2)
  2163  	&& clobber(move, vardef)
  2164  	=> (Zero {t} [n] dst1 (VarDef {x} mem))
  2165  (Move {t} [n] dst1 src1 vardef:(VarDef {x} move:(Move {t} [n] dst2 _ mem)))
  2166  	&& move.Uses == 1 && vardef.Uses == 1
  2167  	&& isSamePtr(dst1, dst2) && disjoint(src1, n, dst2, n)
  2168  	&& clobber(move, vardef)
  2169  	=> (Move {t} [n] dst1 src1 (VarDef {x} mem))
  2170  (Store {t1} op1:(OffPtr [o1] p1) d1
  2171  	m2:(Store {t2} op2:(OffPtr [0] p2) d2
  2172  		m3:(Move [n] p3 _ mem)))
  2173  	&& m2.Uses == 1 && m3.Uses == 1
  2174  	&& o1 == t2.Size()
  2175  	&& n == t2.Size() + t1.Size()
  2176  	&& isSamePtr(p1, p2) && isSamePtr(p2, p3)
  2177  	&& clobber(m2, m3)
  2178  	=> (Store {t1} op1 d1 (Store {t2} op2 d2 mem))
  2179  (Store {t1} op1:(OffPtr [o1] p1) d1
  2180  	m2:(Store {t2} op2:(OffPtr [o2] p2) d2
  2181  		m3:(Store {t3} op3:(OffPtr [0] p3) d3
  2182  			m4:(Move [n] p4 _ mem))))
  2183  	&& m2.Uses == 1 && m3.Uses == 1 && m4.Uses == 1
  2184  	&& o2 == t3.Size()
  2185  	&& o1-o2 == t2.Size()
  2186  	&& n == t3.Size() + t2.Size() + t1.Size()
  2187  	&& isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4)
  2188  	&& clobber(m2, m3, m4)
  2189  	=> (Store {t1} op1 d1 (Store {t2} op2 d2 (Store {t3} op3 d3 mem)))
  2190  (Store {t1} op1:(OffPtr [o1] p1) d1
  2191  	m2:(Store {t2} op2:(OffPtr [o2] p2) d2
  2192  		m3:(Store {t3} op3:(OffPtr [o3] p3) d3
  2193  			m4:(Store {t4} op4:(OffPtr [0] p4) d4
  2194  				m5:(Move [n] p5 _ mem)))))
  2195  	&& m2.Uses == 1 && m3.Uses == 1 && m4.Uses == 1 && m5.Uses == 1
  2196  	&& o3 == t4.Size()
  2197  	&& o2-o3 == t3.Size()
  2198  	&& o1-o2 == t2.Size()
  2199  	&& n == t4.Size() + t3.Size() + t2.Size() + t1.Size()
  2200  	&& isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5)
  2201  	&& clobber(m2, m3, m4, m5)
  2202  	=> (Store {t1} op1 d1 (Store {t2} op2 d2 (Store {t3} op3 d3 (Store {t4} op4 d4 mem))))
  2203  
  2204  // Don't Zero variables that are immediately completely overwritten
  2205  // before being accessed.
  2206  (Move {t} [n] dst1 src1 zero:(Zero {t} [n] dst2 mem))
  2207  	&& zero.Uses == 1
  2208  	&& isSamePtr(dst1, dst2) && disjoint(src1, n, dst2, n)
  2209  	&& clobber(zero)
  2210  	=> (Move {t} [n] dst1 src1 mem)
  2211  (Move {t} [n] dst1 src1 vardef:(VarDef {x} zero:(Zero {t} [n] dst2 mem)))
  2212  	&& zero.Uses == 1 && vardef.Uses == 1
  2213  	&& isSamePtr(dst1, dst2) && disjoint(src1, n, dst2, n)
  2214  	&& clobber(zero, vardef)
  2215  	=> (Move {t} [n] dst1 src1 (VarDef {x} mem))
  2216  (Store {t1} op1:(OffPtr [o1] p1) d1
  2217  	m2:(Store {t2} op2:(OffPtr [0] p2) d2
  2218  		m3:(Zero [n] p3 mem)))
  2219  	&& m2.Uses == 1 && m3.Uses == 1
  2220  	&& o1 == t2.Size()
  2221  	&& n == t2.Size() + t1.Size()
  2222  	&& isSamePtr(p1, p2) && isSamePtr(p2, p3)
  2223  	&& clobber(m2, m3)
  2224  	=> (Store {t1} op1 d1 (Store {t2} op2 d2 mem))
  2225  (Store {t1} op1:(OffPtr [o1] p1) d1
  2226  	m2:(Store {t2} op2:(OffPtr [o2] p2) d2
  2227  		m3:(Store {t3} op3:(OffPtr [0] p3) d3
  2228  			m4:(Zero [n] p4 mem))))
  2229  	&& m2.Uses == 1 && m3.Uses == 1 && m4.Uses == 1
  2230  	&& o2 == t3.Size()
  2231  	&& o1-o2 == t2.Size()
  2232  	&& n == t3.Size() + t2.Size() + t1.Size()
  2233  	&& isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4)
  2234  	&& clobber(m2, m3, m4)
  2235  	=> (Store {t1} op1 d1 (Store {t2} op2 d2 (Store {t3} op3 d3 mem)))
  2236  (Store {t1} op1:(OffPtr [o1] p1) d1
  2237  	m2:(Store {t2} op2:(OffPtr [o2] p2) d2
  2238  		m3:(Store {t3} op3:(OffPtr [o3] p3) d3
  2239  			m4:(Store {t4} op4:(OffPtr [0] p4) d4
  2240  				m5:(Zero [n] p5 mem)))))
  2241  	&& m2.Uses == 1 && m3.Uses == 1 && m4.Uses == 1 && m5.Uses == 1
  2242  	&& o3 == t4.Size()
  2243  	&& o2-o3 == t3.Size()
  2244  	&& o1-o2 == t2.Size()
  2245  	&& n == t4.Size() + t3.Size() + t2.Size() + t1.Size()
  2246  	&& isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5)
  2247  	&& clobber(m2, m3, m4, m5)
  2248  	=> (Store {t1} op1 d1 (Store {t2} op2 d2 (Store {t3} op3 d3 (Store {t4} op4 d4 mem))))
  2249  
  2250  // Don't Move from memory if the values are likely to already be
  2251  // in registers.
  2252  (Move {t1} [n] dst p1
  2253  	mem:(Store {t2} op2:(OffPtr <tt2> [o2] p2) d1
  2254  		(Store {t3} op3:(OffPtr <tt3> [0] p3) d2 _)))
  2255  	&& isSamePtr(p1, p2) && isSamePtr(p2, p3)
  2256  	&& t2.Alignment() <= t1.Alignment()
  2257  	&& t3.Alignment() <= t1.Alignment()
  2258  	&& registerizable(b, t2)
  2259  	&& registerizable(b, t3)
  2260  	&& o2 == t3.Size()
  2261  	&& n == t2.Size() + t3.Size()
  2262  	=> (Store {t2} (OffPtr <tt2> [o2] dst) d1
  2263  		(Store {t3} (OffPtr <tt3> [0] dst) d2 mem))
  2264  (Move {t1} [n] dst p1
  2265  	mem:(Store {t2} op2:(OffPtr <tt2> [o2] p2) d1
  2266  		(Store {t3} op3:(OffPtr <tt3> [o3] p3) d2
  2267  			(Store {t4} op4:(OffPtr <tt4> [0] p4) d3 _))))
  2268  	&& isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4)
  2269  	&& t2.Alignment() <= t1.Alignment()
  2270  	&& t3.Alignment() <= t1.Alignment()
  2271  	&& t4.Alignment() <= t1.Alignment()
  2272  	&& registerizable(b, t2)
  2273  	&& registerizable(b, t3)
  2274  	&& registerizable(b, t4)
  2275  	&& o3 == t4.Size()
  2276  	&& o2-o3 == t3.Size()
  2277  	&& n == t2.Size() + t3.Size() + t4.Size()
  2278  	=> (Store {t2} (OffPtr <tt2> [o2] dst) d1
  2279  		(Store {t3} (OffPtr <tt3> [o3] dst) d2
  2280  			(Store {t4} (OffPtr <tt4> [0] dst) d3 mem)))
  2281  (Move {t1} [n] dst p1
  2282  	mem:(Store {t2} op2:(OffPtr <tt2> [o2] p2) d1
  2283  		(Store {t3} op3:(OffPtr <tt3> [o3] p3) d2
  2284  			(Store {t4} op4:(OffPtr <tt4> [o4] p4) d3
  2285  				(Store {t5} op5:(OffPtr <tt5> [0] p5) d4 _)))))
  2286  	&& isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5)
  2287  	&& t2.Alignment() <= t1.Alignment()
  2288  	&& t3.Alignment() <= t1.Alignment()
  2289  	&& t4.Alignment() <= t1.Alignment()
  2290  	&& t5.Alignment() <= t1.Alignment()
  2291  	&& registerizable(b, t2)
  2292  	&& registerizable(b, t3)
  2293  	&& registerizable(b, t4)
  2294  	&& registerizable(b, t5)
  2295  	&& o4 == t5.Size()
  2296  	&& o3-o4 == t4.Size()
  2297  	&& o2-o3 == t3.Size()
  2298  	&& n == t2.Size() + t3.Size() + t4.Size() + t5.Size()
  2299  	=> (Store {t2} (OffPtr <tt2> [o2] dst) d1
  2300  		(Store {t3} (OffPtr <tt3> [o3] dst) d2
  2301  			(Store {t4} (OffPtr <tt4> [o4] dst) d3
  2302  				(Store {t5} (OffPtr <tt5> [0] dst) d4 mem))))
  2303  
  2304  // Same thing but with VarDef in the middle.
  2305  (Move {t1} [n] dst p1
  2306  	mem:(VarDef
  2307  		(Store {t2} op2:(OffPtr <tt2> [o2] p2) d1
  2308  			(Store {t3} op3:(OffPtr <tt3> [0] p3) d2 _))))
  2309  	&& isSamePtr(p1, p2) && isSamePtr(p2, p3)
  2310  	&& t2.Alignment() <= t1.Alignment()
  2311  	&& t3.Alignment() <= t1.Alignment()
  2312  	&& registerizable(b, t2)
  2313  	&& registerizable(b, t3)
  2314  	&& o2 == t3.Size()
  2315  	&& n == t2.Size() + t3.Size()
  2316  	=> (Store {t2} (OffPtr <tt2> [o2] dst) d1
  2317  		(Store {t3} (OffPtr <tt3> [0] dst) d2 mem))
  2318  (Move {t1} [n] dst p1
  2319  	mem:(VarDef
  2320  		(Store {t2} op2:(OffPtr <tt2> [o2] p2) d1
  2321  			(Store {t3} op3:(OffPtr <tt3> [o3] p3) d2
  2322  				(Store {t4} op4:(OffPtr <tt4> [0] p4) d3 _)))))
  2323  	&& isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4)
  2324  	&& t2.Alignment() <= t1.Alignment()
  2325  	&& t3.Alignment() <= t1.Alignment()
  2326  	&& t4.Alignment() <= t1.Alignment()
  2327  	&& registerizable(b, t2)
  2328  	&& registerizable(b, t3)
  2329  	&& registerizable(b, t4)
  2330  	&& o3 == t4.Size()
  2331  	&& o2-o3 == t3.Size()
  2332  	&& n == t2.Size() + t3.Size() + t4.Size()
  2333  	=> (Store {t2} (OffPtr <tt2> [o2] dst) d1
  2334  		(Store {t3} (OffPtr <tt3> [o3] dst) d2
  2335  			(Store {t4} (OffPtr <tt4> [0] dst) d3 mem)))
  2336  (Move {t1} [n] dst p1
  2337  	mem:(VarDef
  2338  		(Store {t2} op2:(OffPtr <tt2> [o2] p2) d1
  2339  			(Store {t3} op3:(OffPtr <tt3> [o3] p3) d2
  2340  				(Store {t4} op4:(OffPtr <tt4> [o4] p4) d3
  2341  					(Store {t5} op5:(OffPtr <tt5> [0] p5) d4 _))))))
  2342  	&& isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5)
  2343  	&& t2.Alignment() <= t1.Alignment()
  2344  	&& t3.Alignment() <= t1.Alignment()
  2345  	&& t4.Alignment() <= t1.Alignment()
  2346  	&& t5.Alignment() <= t1.Alignment()
  2347  	&& registerizable(b, t2)
  2348  	&& registerizable(b, t3)
  2349  	&& registerizable(b, t4)
  2350  	&& registerizable(b, t5)
  2351  	&& o4 == t5.Size()
  2352  	&& o3-o4 == t4.Size()
  2353  	&& o2-o3 == t3.Size()
  2354  	&& n == t2.Size() + t3.Size() + t4.Size() + t5.Size()
  2355  	=> (Store {t2} (OffPtr <tt2> [o2] dst) d1
  2356  		(Store {t3} (OffPtr <tt3> [o3] dst) d2
  2357  			(Store {t4} (OffPtr <tt4> [o4] dst) d3
  2358  				(Store {t5} (OffPtr <tt5> [0] dst) d4 mem))))
  2359  
  2360  // Prefer to Zero and Store than to Move.
  2361  (Move {t1} [n] dst p1
  2362  	mem:(Store {t2} op2:(OffPtr <tt2> [o2] p2) d1
  2363  		(Zero {t3} [n] p3 _)))
  2364  	&& isSamePtr(p1, p2) && isSamePtr(p2, p3)
  2365  	&& t2.Alignment() <= t1.Alignment()
  2366  	&& t3.Alignment() <= t1.Alignment()
  2367  	&& registerizable(b, t2)
  2368  	&& n >= o2 + t2.Size()
  2369  	=> (Store {t2} (OffPtr <tt2> [o2] dst) d1
  2370  		(Zero {t1} [n] dst mem))
  2371  (Move {t1} [n] dst p1
  2372  	mem:(Store {t2} (OffPtr <tt2> [o2] p2) d1
  2373  		(Store {t3} (OffPtr <tt3> [o3] p3) d2
  2374  			(Zero {t4} [n] p4 _))))
  2375  	&& isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4)
  2376  	&& t2.Alignment() <= t1.Alignment()
  2377  	&& t3.Alignment() <= t1.Alignment()
  2378  	&& t4.Alignment() <= t1.Alignment()
  2379  	&& registerizable(b, t2)
  2380  	&& registerizable(b, t3)
  2381  	&& n >= o2 + t2.Size()
  2382  	&& n >= o3 + t3.Size()
  2383  	=> (Store {t2} (OffPtr <tt2> [o2] dst) d1
  2384  		(Store {t3} (OffPtr <tt3> [o3] dst) d2
  2385  			(Zero {t1} [n] dst mem)))
  2386  (Move {t1} [n] dst p1
  2387  	mem:(Store {t2} (OffPtr <tt2> [o2] p2) d1
  2388  		(Store {t3} (OffPtr <tt3> [o3] p3) d2
  2389  			(Store {t4} (OffPtr <tt4> [o4] p4) d3
  2390  				(Zero {t5} [n] p5 _)))))
  2391  	&& isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5)
  2392  	&& t2.Alignment() <= t1.Alignment()
  2393  	&& t3.Alignment() <= t1.Alignment()
  2394  	&& t4.Alignment() <= t1.Alignment()
  2395  	&& t5.Alignment() <= t1.Alignment()
  2396  	&& registerizable(b, t2)
  2397  	&& registerizable(b, t3)
  2398  	&& registerizable(b, t4)
  2399  	&& n >= o2 + t2.Size()
  2400  	&& n >= o3 + t3.Size()
  2401  	&& n >= o4 + t4.Size()
  2402  	=> (Store {t2} (OffPtr <tt2> [o2] dst) d1
  2403  		(Store {t3} (OffPtr <tt3> [o3] dst) d2
  2404  			(Store {t4} (OffPtr <tt4> [o4] dst) d3
  2405  				(Zero {t1} [n] dst mem))))
  2406  (Move {t1} [n] dst p1
  2407  	mem:(Store {t2} (OffPtr <tt2> [o2] p2) d1
  2408  		(Store {t3} (OffPtr <tt3> [o3] p3) d2
  2409  			(Store {t4} (OffPtr <tt4> [o4] p4) d3
  2410  				(Store {t5} (OffPtr <tt5> [o5] p5) d4
  2411  					(Zero {t6} [n] p6 _))))))
  2412  	&& isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5) && isSamePtr(p5, p6)
  2413  	&& t2.Alignment() <= t1.Alignment()
  2414  	&& t3.Alignment() <= t1.Alignment()
  2415  	&& t4.Alignment() <= t1.Alignment()
  2416  	&& t5.Alignment() <= t1.Alignment()
  2417  	&& t6.Alignment() <= t1.Alignment()
  2418  	&& registerizable(b, t2)
  2419  	&& registerizable(b, t3)
  2420  	&& registerizable(b, t4)
  2421  	&& registerizable(b, t5)
  2422  	&& n >= o2 + t2.Size()
  2423  	&& n >= o3 + t3.Size()
  2424  	&& n >= o4 + t4.Size()
  2425  	&& n >= o5 + t5.Size()
  2426  	=> (Store {t2} (OffPtr <tt2> [o2] dst) d1
  2427  		(Store {t3} (OffPtr <tt3> [o3] dst) d2
  2428  			(Store {t4} (OffPtr <tt4> [o4] dst) d3
  2429  				(Store {t5} (OffPtr <tt5> [o5] dst) d4
  2430  					(Zero {t1} [n] dst mem)))))
  2431  (Move {t1} [n] dst p1
  2432  	mem:(VarDef
  2433  		(Store {t2} op2:(OffPtr <tt2> [o2] p2) d1
  2434  			(Zero {t3} [n] p3 _))))
  2435  	&& isSamePtr(p1, p2) && isSamePtr(p2, p3)
  2436  	&& t2.Alignment() <= t1.Alignment()
  2437  	&& t3.Alignment() <= t1.Alignment()
  2438  	&& registerizable(b, t2)
  2439  	&& n >= o2 + t2.Size()
  2440  	=> (Store {t2} (OffPtr <tt2> [o2] dst) d1
  2441  		(Zero {t1} [n] dst mem))
  2442  (Move {t1} [n] dst p1
  2443  	mem:(VarDef
  2444  		(Store {t2} (OffPtr <tt2> [o2] p2) d1
  2445  			(Store {t3} (OffPtr <tt3> [o3] p3) d2
  2446  				(Zero {t4} [n] p4 _)))))
  2447  	&& isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4)
  2448  	&& t2.Alignment() <= t1.Alignment()
  2449  	&& t3.Alignment() <= t1.Alignment()
  2450  	&& t4.Alignment() <= t1.Alignment()
  2451  	&& registerizable(b, t2)
  2452  	&& registerizable(b, t3)
  2453  	&& n >= o2 + t2.Size()
  2454  	&& n >= o3 + t3.Size()
  2455  	=> (Store {t2} (OffPtr <tt2> [o2] dst) d1
  2456  		(Store {t3} (OffPtr <tt3> [o3] dst) d2
  2457  			(Zero {t1} [n] dst mem)))
  2458  (Move {t1} [n] dst p1
  2459  	mem:(VarDef
  2460  		(Store {t2} (OffPtr <tt2> [o2] p2) d1
  2461  			(Store {t3} (OffPtr <tt3> [o3] p3) d2
  2462  				(Store {t4} (OffPtr <tt4> [o4] p4) d3
  2463  					(Zero {t5} [n] p5 _))))))
  2464  	&& isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5)
  2465  	&& t2.Alignment() <= t1.Alignment()
  2466  	&& t3.Alignment() <= t1.Alignment()
  2467  	&& t4.Alignment() <= t1.Alignment()
  2468  	&& t5.Alignment() <= t1.Alignment()
  2469  	&& registerizable(b, t2)
  2470  	&& registerizable(b, t3)
  2471  	&& registerizable(b, t4)
  2472  	&& n >= o2 + t2.Size()
  2473  	&& n >= o3 + t3.Size()
  2474  	&& n >= o4 + t4.Size()
  2475  	=> (Store {t2} (OffPtr <tt2> [o2] dst) d1
  2476  		(Store {t3} (OffPtr <tt3> [o3] dst) d2
  2477  			(Store {t4} (OffPtr <tt4> [o4] dst) d3
  2478  				(Zero {t1} [n] dst mem))))
  2479  (Move {t1} [n] dst p1
  2480  	mem:(VarDef
  2481  		(Store {t2} (OffPtr <tt2> [o2] p2) d1
  2482  			(Store {t3} (OffPtr <tt3> [o3] p3) d2
  2483  				(Store {t4} (OffPtr <tt4> [o4] p4) d3
  2484  					(Store {t5} (OffPtr <tt5> [o5] p5) d4
  2485  						(Zero {t6} [n] p6 _)))))))
  2486  	&& isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5) && isSamePtr(p5, p6)
  2487  	&& t2.Alignment() <= t1.Alignment()
  2488  	&& t3.Alignment() <= t1.Alignment()
  2489  	&& t4.Alignment() <= t1.Alignment()
  2490  	&& t5.Alignment() <= t1.Alignment()
  2491  	&& t6.Alignment() <= t1.Alignment()
  2492  	&& registerizable(b, t2)
  2493  	&& registerizable(b, t3)
  2494  	&& registerizable(b, t4)
  2495  	&& registerizable(b, t5)
  2496  	&& n >= o2 + t2.Size()
  2497  	&& n >= o3 + t3.Size()
  2498  	&& n >= o4 + t4.Size()
  2499  	&& n >= o5 + t5.Size()
  2500  	=> (Store {t2} (OffPtr <tt2> [o2] dst) d1
  2501  		(Store {t3} (OffPtr <tt3> [o3] dst) d2
  2502  			(Store {t4} (OffPtr <tt4> [o4] dst) d3
  2503  				(Store {t5} (OffPtr <tt5> [o5] dst) d4
  2504  					(Zero {t1} [n] dst mem)))))
  2505  
  2506  (SelectN [0] call:(StaticLECall {sym} a x)) && needRaceCleanup(sym, call) && clobber(call) => x
  2507  (SelectN [0] call:(StaticLECall {sym} x)) && needRaceCleanup(sym, call) && clobber(call) => x
  2508  
  2509  // Collapse moving A -> B -> C into just A -> C.
  2510  // Later passes (deadstore, elim unread auto) will remove the A -> B move, if possible.
  2511  // This happens most commonly when B is an autotmp inserted earlier
  2512  // during compilation to ensure correctness.
  2513  // Take care that overlapping moves are preserved.
  2514  // Restrict this optimization to the stack, to avoid duplicating loads from the heap;
  2515  // see CL 145208 for discussion.
  2516  (Move {t1} [s] dst tmp1 midmem:(Move {t2} [s] tmp2 src _))
  2517  	&& t1.Compare(t2) == types.CMPeq
  2518  	&& isSamePtr(tmp1, tmp2)
  2519  	&& isStackPtr(src) && !isVolatile(src)
  2520  	&& disjoint(src, s, tmp2, s)
  2521  	&& (disjoint(src, s, dst, s) || isInlinableMemmove(dst, src, s, config))
  2522  	=> (Move {t1} [s] dst src midmem)
  2523  
  2524  // Same, but for large types that require VarDefs.
  2525  (Move {t1} [s] dst tmp1 midmem:(VarDef (Move {t2} [s] tmp2 src _)))
  2526  	&& t1.Compare(t2) == types.CMPeq
  2527  	&& isSamePtr(tmp1, tmp2)
  2528  	&& isStackPtr(src) && !isVolatile(src)
  2529  	&& disjoint(src, s, tmp2, s)
  2530  	&& (disjoint(src, s, dst, s) || isInlinableMemmove(dst, src, s, config))
  2531  	=> (Move {t1} [s] dst src midmem)
  2532  
  2533  // Don't zero the same bits twice.
  2534  (Zero {t} [s] dst1 zero:(Zero {t} [s] dst2 _)) && isSamePtr(dst1, dst2) => zero
  2535  (Zero {t} [s] dst1 vardef:(VarDef (Zero {t} [s] dst2 _))) && isSamePtr(dst1, dst2) => vardef
  2536  
  2537  // Elide self-moves. This only happens rarely (e.g test/fixedbugs/bug277.go).
  2538  // However, this rule is needed to prevent the previous rule from looping forever in such cases.
  2539  (Move dst src mem) && isSamePtr(dst, src) => mem
  2540  

View as plain text