Source file src/cmd/compile/internal/ssa/gen/genericOps.go

     1  // Copyright 2015 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  //go:build ignore
     6  // +build ignore
     7  
     8  package main
     9  
    10  // Generic opcodes typically specify a width. The inputs and outputs
    11  // of that op are the given number of bits wide. There is no notion of
    12  // "sign", so Add32 can be used both for signed and unsigned 32-bit
    13  // addition.
    14  
    15  // Signed/unsigned is explicit with the extension ops
    16  // (SignExt*/ZeroExt*) and implicit as the arg to some opcodes
    17  // (e.g. the second argument to shifts is unsigned). If not mentioned,
    18  // all args take signed inputs, or don't care whether their inputs
    19  // are signed or unsigned.
    20  
    21  var genericOps = []opData{
    22  	// 2-input arithmetic
    23  	// Types must be consistent with Go typing. Add, for example, must take two values
    24  	// of the same type and produces that same type.
    25  	{name: "Add8", argLength: 2, commutative: true}, // arg0 + arg1
    26  	{name: "Add16", argLength: 2, commutative: true},
    27  	{name: "Add32", argLength: 2, commutative: true},
    28  	{name: "Add64", argLength: 2, commutative: true},
    29  	{name: "AddPtr", argLength: 2}, // For address calculations.  arg0 is a pointer and arg1 is an int.
    30  	{name: "Add32F", argLength: 2, commutative: true},
    31  	{name: "Add64F", argLength: 2, commutative: true},
    32  
    33  	{name: "Sub8", argLength: 2}, // arg0 - arg1
    34  	{name: "Sub16", argLength: 2},
    35  	{name: "Sub32", argLength: 2},
    36  	{name: "Sub64", argLength: 2},
    37  	{name: "SubPtr", argLength: 2},
    38  	{name: "Sub32F", argLength: 2},
    39  	{name: "Sub64F", argLength: 2},
    40  
    41  	{name: "Mul8", argLength: 2, commutative: true}, // arg0 * arg1
    42  	{name: "Mul16", argLength: 2, commutative: true},
    43  	{name: "Mul32", argLength: 2, commutative: true},
    44  	{name: "Mul64", argLength: 2, commutative: true},
    45  	{name: "Mul32F", argLength: 2, commutative: true},
    46  	{name: "Mul64F", argLength: 2, commutative: true},
    47  
    48  	{name: "Div32F", argLength: 2}, // arg0 / arg1
    49  	{name: "Div64F", argLength: 2},
    50  
    51  	{name: "Hmul32", argLength: 2, commutative: true},
    52  	{name: "Hmul32u", argLength: 2, commutative: true},
    53  	{name: "Hmul64", argLength: 2, commutative: true},
    54  	{name: "Hmul64u", argLength: 2, commutative: true},
    55  
    56  	{name: "Mul32uhilo", argLength: 2, typ: "(UInt32,UInt32)", commutative: true}, // arg0 * arg1, returns (hi, lo)
    57  	{name: "Mul64uhilo", argLength: 2, typ: "(UInt64,UInt64)", commutative: true}, // arg0 * arg1, returns (hi, lo)
    58  
    59  	{name: "Mul32uover", argLength: 2, typ: "(UInt32,Bool)", commutative: true}, // Let x = arg0*arg1 (full 32x32-> 64 unsigned multiply), returns (uint32(x), (uint32(x) != x))
    60  	{name: "Mul64uover", argLength: 2, typ: "(UInt64,Bool)", commutative: true}, // Let x = arg0*arg1 (full 64x64->128 unsigned multiply), returns (uint64(x), (uint64(x) != x))
    61  
    62  	// Weird special instructions for use in the strength reduction of divides.
    63  	// These ops compute unsigned (arg0 + arg1) / 2, correct to all
    64  	// 32/64 bits, even when the intermediate result of the add has 33/65 bits.
    65  	// These ops can assume arg0 >= arg1.
    66  	// Note: these ops aren't commutative!
    67  	{name: "Avg32u", argLength: 2, typ: "UInt32"}, // 32-bit platforms only
    68  	{name: "Avg64u", argLength: 2, typ: "UInt64"}, // 64-bit platforms only
    69  
    70  	// For Div16, Div32 and Div64, AuxInt non-zero means that the divisor has been proved to be not -1
    71  	// or that the dividend is not the most negative value.
    72  	{name: "Div8", argLength: 2},  // arg0 / arg1, signed
    73  	{name: "Div8u", argLength: 2}, // arg0 / arg1, unsigned
    74  	{name: "Div16", argLength: 2, aux: "Bool"},
    75  	{name: "Div16u", argLength: 2},
    76  	{name: "Div32", argLength: 2, aux: "Bool"},
    77  	{name: "Div32u", argLength: 2},
    78  	{name: "Div64", argLength: 2, aux: "Bool"},
    79  	{name: "Div64u", argLength: 2},
    80  	{name: "Div128u", argLength: 3}, // arg0:arg1 / arg2 (128-bit divided by 64-bit), returns (q, r)
    81  
    82  	// For Mod16, Mod32 and Mod64, AuxInt non-zero means that the divisor has been proved to be not -1.
    83  	{name: "Mod8", argLength: 2},  // arg0 % arg1, signed
    84  	{name: "Mod8u", argLength: 2}, // arg0 % arg1, unsigned
    85  	{name: "Mod16", argLength: 2, aux: "Bool"},
    86  	{name: "Mod16u", argLength: 2},
    87  	{name: "Mod32", argLength: 2, aux: "Bool"},
    88  	{name: "Mod32u", argLength: 2},
    89  	{name: "Mod64", argLength: 2, aux: "Bool"},
    90  	{name: "Mod64u", argLength: 2},
    91  
    92  	{name: "And8", argLength: 2, commutative: true}, // arg0 & arg1
    93  	{name: "And16", argLength: 2, commutative: true},
    94  	{name: "And32", argLength: 2, commutative: true},
    95  	{name: "And64", argLength: 2, commutative: true},
    96  
    97  	{name: "Or8", argLength: 2, commutative: true}, // arg0 | arg1
    98  	{name: "Or16", argLength: 2, commutative: true},
    99  	{name: "Or32", argLength: 2, commutative: true},
   100  	{name: "Or64", argLength: 2, commutative: true},
   101  
   102  	{name: "Xor8", argLength: 2, commutative: true}, // arg0 ^ arg1
   103  	{name: "Xor16", argLength: 2, commutative: true},
   104  	{name: "Xor32", argLength: 2, commutative: true},
   105  	{name: "Xor64", argLength: 2, commutative: true},
   106  
   107  	// For shifts, AxB means the shifted value has A bits and the shift amount has B bits.
   108  	// Shift amounts are considered unsigned.
   109  	// If arg1 is known to be nonnegative and less than the number of bits in arg0,
   110  	// then auxInt may be set to 1.
   111  	// This enables better code generation on some platforms.
   112  	{name: "Lsh8x8", argLength: 2, aux: "Bool"}, // arg0 << arg1
   113  	{name: "Lsh8x16", argLength: 2, aux: "Bool"},
   114  	{name: "Lsh8x32", argLength: 2, aux: "Bool"},
   115  	{name: "Lsh8x64", argLength: 2, aux: "Bool"},
   116  	{name: "Lsh16x8", argLength: 2, aux: "Bool"},
   117  	{name: "Lsh16x16", argLength: 2, aux: "Bool"},
   118  	{name: "Lsh16x32", argLength: 2, aux: "Bool"},
   119  	{name: "Lsh16x64", argLength: 2, aux: "Bool"},
   120  	{name: "Lsh32x8", argLength: 2, aux: "Bool"},
   121  	{name: "Lsh32x16", argLength: 2, aux: "Bool"},
   122  	{name: "Lsh32x32", argLength: 2, aux: "Bool"},
   123  	{name: "Lsh32x64", argLength: 2, aux: "Bool"},
   124  	{name: "Lsh64x8", argLength: 2, aux: "Bool"},
   125  	{name: "Lsh64x16", argLength: 2, aux: "Bool"},
   126  	{name: "Lsh64x32", argLength: 2, aux: "Bool"},
   127  	{name: "Lsh64x64", argLength: 2, aux: "Bool"},
   128  
   129  	{name: "Rsh8x8", argLength: 2, aux: "Bool"}, // arg0 >> arg1, signed
   130  	{name: "Rsh8x16", argLength: 2, aux: "Bool"},
   131  	{name: "Rsh8x32", argLength: 2, aux: "Bool"},
   132  	{name: "Rsh8x64", argLength: 2, aux: "Bool"},
   133  	{name: "Rsh16x8", argLength: 2, aux: "Bool"},
   134  	{name: "Rsh16x16", argLength: 2, aux: "Bool"},
   135  	{name: "Rsh16x32", argLength: 2, aux: "Bool"},
   136  	{name: "Rsh16x64", argLength: 2, aux: "Bool"},
   137  	{name: "Rsh32x8", argLength: 2, aux: "Bool"},
   138  	{name: "Rsh32x16", argLength: 2, aux: "Bool"},
   139  	{name: "Rsh32x32", argLength: 2, aux: "Bool"},
   140  	{name: "Rsh32x64", argLength: 2, aux: "Bool"},
   141  	{name: "Rsh64x8", argLength: 2, aux: "Bool"},
   142  	{name: "Rsh64x16", argLength: 2, aux: "Bool"},
   143  	{name: "Rsh64x32", argLength: 2, aux: "Bool"},
   144  	{name: "Rsh64x64", argLength: 2, aux: "Bool"},
   145  
   146  	{name: "Rsh8Ux8", argLength: 2, aux: "Bool"}, // arg0 >> arg1, unsigned
   147  	{name: "Rsh8Ux16", argLength: 2, aux: "Bool"},
   148  	{name: "Rsh8Ux32", argLength: 2, aux: "Bool"},
   149  	{name: "Rsh8Ux64", argLength: 2, aux: "Bool"},
   150  	{name: "Rsh16Ux8", argLength: 2, aux: "Bool"},
   151  	{name: "Rsh16Ux16", argLength: 2, aux: "Bool"},
   152  	{name: "Rsh16Ux32", argLength: 2, aux: "Bool"},
   153  	{name: "Rsh16Ux64", argLength: 2, aux: "Bool"},
   154  	{name: "Rsh32Ux8", argLength: 2, aux: "Bool"},
   155  	{name: "Rsh32Ux16", argLength: 2, aux: "Bool"},
   156  	{name: "Rsh32Ux32", argLength: 2, aux: "Bool"},
   157  	{name: "Rsh32Ux64", argLength: 2, aux: "Bool"},
   158  	{name: "Rsh64Ux8", argLength: 2, aux: "Bool"},
   159  	{name: "Rsh64Ux16", argLength: 2, aux: "Bool"},
   160  	{name: "Rsh64Ux32", argLength: 2, aux: "Bool"},
   161  	{name: "Rsh64Ux64", argLength: 2, aux: "Bool"},
   162  
   163  	// 2-input comparisons
   164  	{name: "Eq8", argLength: 2, commutative: true, typ: "Bool"}, // arg0 == arg1
   165  	{name: "Eq16", argLength: 2, commutative: true, typ: "Bool"},
   166  	{name: "Eq32", argLength: 2, commutative: true, typ: "Bool"},
   167  	{name: "Eq64", argLength: 2, commutative: true, typ: "Bool"},
   168  	{name: "EqPtr", argLength: 2, commutative: true, typ: "Bool"},
   169  	{name: "EqInter", argLength: 2, typ: "Bool"}, // arg0 or arg1 is nil; other cases handled by frontend
   170  	{name: "EqSlice", argLength: 2, typ: "Bool"}, // arg0 or arg1 is nil; other cases handled by frontend
   171  	{name: "Eq32F", argLength: 2, commutative: true, typ: "Bool"},
   172  	{name: "Eq64F", argLength: 2, commutative: true, typ: "Bool"},
   173  
   174  	{name: "Neq8", argLength: 2, commutative: true, typ: "Bool"}, // arg0 != arg1
   175  	{name: "Neq16", argLength: 2, commutative: true, typ: "Bool"},
   176  	{name: "Neq32", argLength: 2, commutative: true, typ: "Bool"},
   177  	{name: "Neq64", argLength: 2, commutative: true, typ: "Bool"},
   178  	{name: "NeqPtr", argLength: 2, commutative: true, typ: "Bool"},
   179  	{name: "NeqInter", argLength: 2, typ: "Bool"}, // arg0 or arg1 is nil; other cases handled by frontend
   180  	{name: "NeqSlice", argLength: 2, typ: "Bool"}, // arg0 or arg1 is nil; other cases handled by frontend
   181  	{name: "Neq32F", argLength: 2, commutative: true, typ: "Bool"},
   182  	{name: "Neq64F", argLength: 2, commutative: true, typ: "Bool"},
   183  
   184  	{name: "Less8", argLength: 2, typ: "Bool"},  // arg0 < arg1, signed
   185  	{name: "Less8U", argLength: 2, typ: "Bool"}, // arg0 < arg1, unsigned
   186  	{name: "Less16", argLength: 2, typ: "Bool"},
   187  	{name: "Less16U", argLength: 2, typ: "Bool"},
   188  	{name: "Less32", argLength: 2, typ: "Bool"},
   189  	{name: "Less32U", argLength: 2, typ: "Bool"},
   190  	{name: "Less64", argLength: 2, typ: "Bool"},
   191  	{name: "Less64U", argLength: 2, typ: "Bool"},
   192  	{name: "Less32F", argLength: 2, typ: "Bool"},
   193  	{name: "Less64F", argLength: 2, typ: "Bool"},
   194  
   195  	{name: "Leq8", argLength: 2, typ: "Bool"},  // arg0 <= arg1, signed
   196  	{name: "Leq8U", argLength: 2, typ: "Bool"}, // arg0 <= arg1, unsigned
   197  	{name: "Leq16", argLength: 2, typ: "Bool"},
   198  	{name: "Leq16U", argLength: 2, typ: "Bool"},
   199  	{name: "Leq32", argLength: 2, typ: "Bool"},
   200  	{name: "Leq32U", argLength: 2, typ: "Bool"},
   201  	{name: "Leq64", argLength: 2, typ: "Bool"},
   202  	{name: "Leq64U", argLength: 2, typ: "Bool"},
   203  	{name: "Leq32F", argLength: 2, typ: "Bool"},
   204  	{name: "Leq64F", argLength: 2, typ: "Bool"},
   205  
   206  	// the type of a CondSelect is the same as the type of its first
   207  	// two arguments, which should be register-width scalars; the third
   208  	// argument should be a boolean
   209  	{name: "CondSelect", argLength: 3}, // arg2 ? arg0 : arg1
   210  
   211  	// boolean ops
   212  	{name: "AndB", argLength: 2, commutative: true, typ: "Bool"}, // arg0 && arg1 (not shortcircuited)
   213  	{name: "OrB", argLength: 2, commutative: true, typ: "Bool"},  // arg0 || arg1 (not shortcircuited)
   214  	{name: "EqB", argLength: 2, commutative: true, typ: "Bool"},  // arg0 == arg1
   215  	{name: "NeqB", argLength: 2, commutative: true, typ: "Bool"}, // arg0 != arg1
   216  	{name: "Not", argLength: 1, typ: "Bool"},                     // !arg0, boolean
   217  
   218  	// 1-input ops
   219  	{name: "Neg8", argLength: 1}, // -arg0
   220  	{name: "Neg16", argLength: 1},
   221  	{name: "Neg32", argLength: 1},
   222  	{name: "Neg64", argLength: 1},
   223  	{name: "Neg32F", argLength: 1},
   224  	{name: "Neg64F", argLength: 1},
   225  
   226  	{name: "Com8", argLength: 1}, // ^arg0
   227  	{name: "Com16", argLength: 1},
   228  	{name: "Com32", argLength: 1},
   229  	{name: "Com64", argLength: 1},
   230  
   231  	{name: "Ctz8", argLength: 1},         // Count trailing (low order) zeroes (returns 0-8)
   232  	{name: "Ctz16", argLength: 1},        // Count trailing (low order) zeroes (returns 0-16)
   233  	{name: "Ctz32", argLength: 1},        // Count trailing (low order) zeroes (returns 0-32)
   234  	{name: "Ctz64", argLength: 1},        // Count trailing (low order) zeroes (returns 0-64)
   235  	{name: "Ctz8NonZero", argLength: 1},  // same as above, but arg[0] known to be non-zero, returns 0-7
   236  	{name: "Ctz16NonZero", argLength: 1}, // same as above, but arg[0] known to be non-zero, returns 0-15
   237  	{name: "Ctz32NonZero", argLength: 1}, // same as above, but arg[0] known to be non-zero, returns 0-31
   238  	{name: "Ctz64NonZero", argLength: 1}, // same as above, but arg[0] known to be non-zero, returns 0-63
   239  	{name: "BitLen8", argLength: 1},      // Number of bits in arg[0] (returns 0-8)
   240  	{name: "BitLen16", argLength: 1},     // Number of bits in arg[0] (returns 0-16)
   241  	{name: "BitLen32", argLength: 1},     // Number of bits in arg[0] (returns 0-32)
   242  	{name: "BitLen64", argLength: 1},     // Number of bits in arg[0] (returns 0-64)
   243  
   244  	{name: "Bswap32", argLength: 1}, // Swap bytes
   245  	{name: "Bswap64", argLength: 1}, // Swap bytes
   246  
   247  	{name: "BitRev8", argLength: 1},  // Reverse the bits in arg[0]
   248  	{name: "BitRev16", argLength: 1}, // Reverse the bits in arg[0]
   249  	{name: "BitRev32", argLength: 1}, // Reverse the bits in arg[0]
   250  	{name: "BitRev64", argLength: 1}, // Reverse the bits in arg[0]
   251  
   252  	{name: "PopCount8", argLength: 1},    // Count bits in arg[0]
   253  	{name: "PopCount16", argLength: 1},   // Count bits in arg[0]
   254  	{name: "PopCount32", argLength: 1},   // Count bits in arg[0]
   255  	{name: "PopCount64", argLength: 1},   // Count bits in arg[0]
   256  	{name: "RotateLeft8", argLength: 2},  // Rotate bits in arg[0] left by arg[1]
   257  	{name: "RotateLeft16", argLength: 2}, // Rotate bits in arg[0] left by arg[1]
   258  	{name: "RotateLeft32", argLength: 2}, // Rotate bits in arg[0] left by arg[1]
   259  	{name: "RotateLeft64", argLength: 2}, // Rotate bits in arg[0] left by arg[1]
   260  
   261  	// Square root.
   262  	// Special cases:
   263  	//   +∞  → +∞
   264  	//   ±0  → ±0 (sign preserved)
   265  	//   x<0 → NaN
   266  	//   NaN → NaN
   267  	{name: "Sqrt", argLength: 1},   // √arg0 (floating point, double precision)
   268  	{name: "Sqrt32", argLength: 1}, // √arg0 (floating point, single precision)
   269  
   270  	// Round to integer, float64 only.
   271  	// Special cases:
   272  	//   ±∞  → ±∞ (sign preserved)
   273  	//   ±0  → ±0 (sign preserved)
   274  	//   NaN → NaN
   275  	{name: "Floor", argLength: 1},       // round arg0 toward -∞
   276  	{name: "Ceil", argLength: 1},        // round arg0 toward +∞
   277  	{name: "Trunc", argLength: 1},       // round arg0 toward 0
   278  	{name: "Round", argLength: 1},       // round arg0 to nearest, ties away from 0
   279  	{name: "RoundToEven", argLength: 1}, // round arg0 to nearest, ties to even
   280  
   281  	// Modify the sign bit
   282  	{name: "Abs", argLength: 1},      // absolute value arg0
   283  	{name: "Copysign", argLength: 2}, // copy sign from arg0 to arg1
   284  
   285  	// 3-input opcode.
   286  	// Fused-multiply-add, float64 only.
   287  	// When a*b+c is exactly zero (before rounding), then the result is +0 or -0.
   288  	// The 0's sign is determined according to the standard rules for the
   289  	// addition (-0 if both a*b and c are -0, +0 otherwise).
   290  	//
   291  	// Otherwise, when a*b+c rounds to zero, then the resulting 0's sign is
   292  	// determined by the sign of the exact result a*b+c.
   293  	// See section 6.3 in ieee754.
   294  	//
   295  	// When the multiply is an infinity times a zero, the result is NaN.
   296  	// See section 7.2 in ieee754.
   297  	{name: "FMA", argLength: 3}, // compute (a*b)+c without intermediate rounding
   298  
   299  	// Data movement. Max argument length for Phi is indefinite.
   300  	{name: "Phi", argLength: -1, zeroWidth: true}, // select an argument based on which predecessor block we came from
   301  	{name: "Copy", argLength: 1},                  // output = arg0
   302  	// Convert converts between pointers and integers.
   303  	// We have a special op for this so as to not confuse GC
   304  	// (particularly stack maps).  It takes a memory arg so it
   305  	// gets correctly ordered with respect to GC safepoints.
   306  	// It gets compiled to nothing, so its result must in the same
   307  	// register as its argument. regalloc knows it can use any
   308  	// allocatable integer register for OpConvert.
   309  	// arg0=ptr/int arg1=mem, output=int/ptr
   310  	{name: "Convert", argLength: 2, zeroWidth: true, resultInArg0: true},
   311  
   312  	// constants. Constant values are stored in the aux or
   313  	// auxint fields.
   314  	{name: "ConstBool", aux: "Bool"},     // auxint is 0 for false and 1 for true
   315  	{name: "ConstString", aux: "String"}, // value is aux.(string)
   316  	{name: "ConstNil", typ: "BytePtr"},   // nil pointer
   317  	{name: "Const8", aux: "Int8"},        // auxint is sign-extended 8 bits
   318  	{name: "Const16", aux: "Int16"},      // auxint is sign-extended 16 bits
   319  	{name: "Const32", aux: "Int32"},      // auxint is sign-extended 32 bits
   320  	// Note: ConstX are sign-extended even when the type of the value is unsigned.
   321  	// For instance, uint8(0xaa) is stored as auxint=0xffffffffffffffaa.
   322  	{name: "Const64", aux: "Int64"}, // value is auxint
   323  	// Note: for both Const32F and Const64F, we disallow encoding NaNs.
   324  	// Signaling NaNs are tricky because if you do anything with them, they become quiet.
   325  	// Particularly, converting a 32 bit sNaN to 64 bit and back converts it to a qNaN.
   326  	// See issue 36399 and 36400.
   327  	// Encodings of +inf, -inf, and -0 are fine.
   328  	{name: "Const32F", aux: "Float32"}, // value is math.Float64frombits(uint64(auxint)) and is exactly representable as float 32
   329  	{name: "Const64F", aux: "Float64"}, // value is math.Float64frombits(uint64(auxint))
   330  	{name: "ConstInterface"},           // nil interface
   331  	{name: "ConstSlice"},               // nil slice
   332  
   333  	// Constant-like things
   334  	{name: "InitMem", zeroWidth: true},                               // memory input to the function.
   335  	{name: "Arg", aux: "SymOff", symEffect: "Read", zeroWidth: true}, // argument to the function.  aux=GCNode of arg, off = offset in that arg.
   336  
   337  	// Like Arg, these are generic ops that survive lowering. AuxInt is a register index, and the actual output register for each index is defined by the architecture.
   338  	// AuxInt = integer argument index (not a register number). ABI-specified spill loc obtained from function
   339  	{name: "ArgIntReg", aux: "NameOffsetInt8", zeroWidth: true},   // argument to the function in an int reg.
   340  	{name: "ArgFloatReg", aux: "NameOffsetInt8", zeroWidth: true}, // argument to the function in a float reg.
   341  
   342  	// The address of a variable.  arg0 is the base pointer.
   343  	// If the variable is a global, the base pointer will be SB and
   344  	// the Aux field will be a *obj.LSym.
   345  	// If the variable is a local, the base pointer will be SP and
   346  	// the Aux field will be a *gc.Node.
   347  	{name: "Addr", argLength: 1, aux: "Sym", symEffect: "Addr"},      // Address of a variable.  Arg0=SB.  Aux identifies the variable.
   348  	{name: "LocalAddr", argLength: 2, aux: "Sym", symEffect: "Addr"}, // Address of a variable.  Arg0=SP. Arg1=mem. Aux identifies the variable.
   349  
   350  	{name: "SP", zeroWidth: true},                 // stack pointer
   351  	{name: "SB", typ: "Uintptr", zeroWidth: true}, // static base pointer (a.k.a. globals pointer)
   352  	{name: "Invalid"},                             // unused value
   353  
   354  	// Memory operations
   355  	{name: "Load", argLength: 2},                          // Load from arg0.  arg1=memory
   356  	{name: "Dereference", argLength: 2},                   // Load from arg0.  arg1=memory.  Helper op for arg/result passing, result is an otherwise not-SSA-able "value".
   357  	{name: "Store", argLength: 3, typ: "Mem", aux: "Typ"}, // Store arg1 to arg0.  arg2=memory, aux=type.  Returns memory.
   358  	// The source and destination of Move may overlap in some cases. See e.g.
   359  	// memmove inlining in generic.rules. When inlineablememmovesize (in ../rewrite.go)
   360  	// returns true, we must do all loads before all stores, when lowering Move.
   361  	// The type of Move is used for the write barrier pass to insert write barriers
   362  	// and for alignment on some architectures.
   363  	// For pointerless types, it is possible for the type to be inaccurate.
   364  	// For type alignment and pointer information, use the type in Aux;
   365  	// for type size, use the size in AuxInt.
   366  	// The "inline runtime.memmove" rewrite rule generates Moves with inaccurate types,
   367  	// such as type byte instead of the more accurate type [8]byte.
   368  	{name: "Move", argLength: 3, typ: "Mem", aux: "TypSize"}, // arg0=destptr, arg1=srcptr, arg2=mem, auxint=size, aux=type.  Returns memory.
   369  	{name: "Zero", argLength: 2, typ: "Mem", aux: "TypSize"}, // arg0=destptr, arg1=mem, auxint=size, aux=type. Returns memory.
   370  
   371  	// Memory operations with write barriers.
   372  	// Expand to runtime calls. Write barrier will be removed if write on stack.
   373  	{name: "StoreWB", argLength: 3, typ: "Mem", aux: "Typ"},    // Store arg1 to arg0. arg2=memory, aux=type.  Returns memory.
   374  	{name: "MoveWB", argLength: 3, typ: "Mem", aux: "TypSize"}, // arg0=destptr, arg1=srcptr, arg2=mem, auxint=size, aux=type.  Returns memory.
   375  	{name: "ZeroWB", argLength: 2, typ: "Mem", aux: "TypSize"}, // arg0=destptr, arg1=mem, auxint=size, aux=type. Returns memory.
   376  
   377  	// WB invokes runtime.gcWriteBarrier. This is not a normal
   378  	// call: it takes arguments in registers, doesn't clobber
   379  	// general-purpose registers (the exact clobber set is
   380  	// arch-dependent), and is not a safe-point.
   381  	{name: "WB", argLength: 3, typ: "Mem", aux: "Sym", symEffect: "None"}, // arg0=destptr, arg1=srcptr, arg2=mem, aux=runtime.gcWriteBarrier
   382  
   383  	{name: "HasCPUFeature", argLength: 0, typ: "bool", aux: "Sym", symEffect: "None"}, // aux=place that this feature flag can be loaded from
   384  
   385  	// PanicBounds and PanicExtend generate a runtime panic.
   386  	// Their arguments provide index values to use in panic messages.
   387  	// Both PanicBounds and PanicExtend have an AuxInt value from the BoundsKind type (in ../op.go).
   388  	// PanicBounds' index is int sized.
   389  	// PanicExtend's index is int64 sized. (PanicExtend is only used on 32-bit archs.)
   390  	{name: "PanicBounds", argLength: 3, aux: "Int64", typ: "Mem", call: true}, // arg0=idx, arg1=len, arg2=mem, returns memory.
   391  	{name: "PanicExtend", argLength: 4, aux: "Int64", typ: "Mem", call: true}, // arg0=idxHi, arg1=idxLo, arg2=len, arg3=mem, returns memory.
   392  
   393  	// Function calls. Arguments to the call have already been written to the stack.
   394  	// Return values appear on the stack. The method receiver, if any, is treated
   395  	// as a phantom first argument.
   396  	// TODO(josharian): ClosureCall and InterCall should have Int32 aux
   397  	// to match StaticCall's 32 bit arg size limit.
   398  	// TODO(drchase,josharian): could the arg size limit be bundled into the rules for CallOff?
   399  
   400  	// Before lowering, LECalls receive their fixed inputs (first), memory (last),
   401  	// and a variable number of input values in the middle.
   402  	// They produce a variable number of result values.
   403  	// These values are not necessarily "SSA-able"; they can be too large,
   404  	// but in that case inputs are loaded immediately before with OpDereference,
   405  	// and outputs are stored immediately with OpStore.
   406  	//
   407  	// After call expansion, Calls have the same fixed-middle-memory arrangement of inputs,
   408  	// with the difference that the "middle" is only the register-resident inputs,
   409  	// and the non-register inputs are instead stored at ABI-defined offsets from SP
   410  	// (and the stores thread through the memory that is ultimately an input to the call).
   411  	// Outputs follow a similar pattern; register-resident outputs are the leading elements
   412  	// of a Result-typed output, with memory last, and any memory-resident outputs have been
   413  	// stored to ABI-defined locations.  Each non-memory input or output fits in a register.
   414  	//
   415  	// Subsequent architecture-specific lowering only changes the opcode.
   416  
   417  	{name: "ClosureCall", argLength: -1, aux: "CallOff", call: true}, // arg0=code pointer, arg1=context ptr, arg2..argN-1 are register inputs, argN=memory.  auxint=arg size.  Returns Result of register results, plus memory.
   418  	{name: "StaticCall", argLength: -1, aux: "CallOff", call: true},  // call function aux.(*obj.LSym), arg0..argN-1 are register inputs, argN=memory.  auxint=arg size.  Returns Result of register results, plus memory.
   419  	{name: "InterCall", argLength: -1, aux: "CallOff", call: true},   // interface call.  arg0=code pointer, arg1..argN-1 are register inputs, argN=memory, auxint=arg size.  Returns Result of register results, plus memory.
   420  	{name: "TailCall", argLength: -1, aux: "CallOff", call: true},    // tail call function aux.(*obj.LSym), arg0..argN-1 are register inputs, argN=memory.  auxint=arg size.  Returns Result of register results, plus memory.
   421  
   422  	{name: "ClosureLECall", argLength: -1, aux: "CallOff", call: true}, // late-expanded closure call. arg0=code pointer, arg1=context ptr,  arg2..argN-1 are inputs, argN is mem. auxint = arg size. Result is tuple of result(s), plus mem.
   423  	{name: "StaticLECall", argLength: -1, aux: "CallOff", call: true},  // late-expanded static call function aux.(*ssa.AuxCall.Fn). arg0..argN-1 are inputs, argN is mem. auxint = arg size. Result is tuple of result(s), plus mem.
   424  	{name: "InterLECall", argLength: -1, aux: "CallOff", call: true},   // late-expanded interface call. arg0=code pointer, arg1..argN-1 are inputs, argN is mem. auxint = arg size. Result is tuple of result(s), plus mem.
   425  	{name: "TailLECall", argLength: -1, aux: "CallOff", call: true},    // late-expanded static tail call function aux.(*ssa.AuxCall.Fn). arg0..argN-1 are inputs, argN is mem. auxint = arg size. Result is tuple of result(s), plus mem.
   426  
   427  	// Conversions: signed extensions, zero (unsigned) extensions, truncations
   428  	{name: "SignExt8to16", argLength: 1, typ: "Int16"},
   429  	{name: "SignExt8to32", argLength: 1, typ: "Int32"},
   430  	{name: "SignExt8to64", argLength: 1, typ: "Int64"},
   431  	{name: "SignExt16to32", argLength: 1, typ: "Int32"},
   432  	{name: "SignExt16to64", argLength: 1, typ: "Int64"},
   433  	{name: "SignExt32to64", argLength: 1, typ: "Int64"},
   434  	{name: "ZeroExt8to16", argLength: 1, typ: "UInt16"},
   435  	{name: "ZeroExt8to32", argLength: 1, typ: "UInt32"},
   436  	{name: "ZeroExt8to64", argLength: 1, typ: "UInt64"},
   437  	{name: "ZeroExt16to32", argLength: 1, typ: "UInt32"},
   438  	{name: "ZeroExt16to64", argLength: 1, typ: "UInt64"},
   439  	{name: "ZeroExt32to64", argLength: 1, typ: "UInt64"},
   440  	{name: "Trunc16to8", argLength: 1},
   441  	{name: "Trunc32to8", argLength: 1},
   442  	{name: "Trunc32to16", argLength: 1},
   443  	{name: "Trunc64to8", argLength: 1},
   444  	{name: "Trunc64to16", argLength: 1},
   445  	{name: "Trunc64to32", argLength: 1},
   446  
   447  	{name: "Cvt32to32F", argLength: 1},
   448  	{name: "Cvt32to64F", argLength: 1},
   449  	{name: "Cvt64to32F", argLength: 1},
   450  	{name: "Cvt64to64F", argLength: 1},
   451  	{name: "Cvt32Fto32", argLength: 1},
   452  	{name: "Cvt32Fto64", argLength: 1},
   453  	{name: "Cvt64Fto32", argLength: 1},
   454  	{name: "Cvt64Fto64", argLength: 1},
   455  	{name: "Cvt32Fto64F", argLength: 1},
   456  	{name: "Cvt64Fto32F", argLength: 1},
   457  	{name: "CvtBoolToUint8", argLength: 1},
   458  
   459  	// Force rounding to precision of type.
   460  	{name: "Round32F", argLength: 1},
   461  	{name: "Round64F", argLength: 1},
   462  
   463  	// Automatically inserted safety checks
   464  	{name: "IsNonNil", argLength: 1, typ: "Bool"},        // arg0 != nil
   465  	{name: "IsInBounds", argLength: 2, typ: "Bool"},      // 0 <= arg0 < arg1. arg1 is guaranteed >= 0.
   466  	{name: "IsSliceInBounds", argLength: 2, typ: "Bool"}, // 0 <= arg0 <= arg1. arg1 is guaranteed >= 0.
   467  	{name: "NilCheck", argLength: 2, typ: "Void"},        // arg0=ptr, arg1=mem. Panics if arg0 is nil. Returns void.
   468  
   469  	// Pseudo-ops
   470  	{name: "GetG", argLength: 1, zeroWidth: true}, // runtime.getg() (read g pointer). arg0=mem
   471  	{name: "GetClosurePtr"},                       // get closure pointer from dedicated register
   472  	{name: "GetCallerPC"},                         // for getcallerpc intrinsic
   473  	{name: "GetCallerSP"},                         // for getcallersp intrinsic
   474  
   475  	// Indexing operations
   476  	{name: "PtrIndex", argLength: 2},             // arg0=ptr, arg1=index. Computes ptr+sizeof(*v.type)*index, where index is extended to ptrwidth type
   477  	{name: "OffPtr", argLength: 1, aux: "Int64"}, // arg0 + auxint (arg0 and result are pointers)
   478  
   479  	// Slices
   480  	{name: "SliceMake", argLength: 3},                // arg0=ptr, arg1=len, arg2=cap
   481  	{name: "SlicePtr", argLength: 1, typ: "BytePtr"}, // ptr(arg0)
   482  	{name: "SliceLen", argLength: 1},                 // len(arg0)
   483  	{name: "SliceCap", argLength: 1},                 // cap(arg0)
   484  	// SlicePtrUnchecked, like SlicePtr, extracts the pointer from a slice.
   485  	// SlicePtr values are assumed non-nil, because they are guarded by bounds checks.
   486  	// SlicePtrUnchecked values can be nil.
   487  	{name: "SlicePtrUnchecked", argLength: 1},
   488  
   489  	// Complex (part/whole)
   490  	{name: "ComplexMake", argLength: 2}, // arg0=real, arg1=imag
   491  	{name: "ComplexReal", argLength: 1}, // real(arg0)
   492  	{name: "ComplexImag", argLength: 1}, // imag(arg0)
   493  
   494  	// Strings
   495  	{name: "StringMake", argLength: 2},                // arg0=ptr, arg1=len
   496  	{name: "StringPtr", argLength: 1, typ: "BytePtr"}, // ptr(arg0)
   497  	{name: "StringLen", argLength: 1, typ: "Int"},     // len(arg0)
   498  
   499  	// Interfaces
   500  	{name: "IMake", argLength: 2},                // arg0=itab, arg1=data
   501  	{name: "ITab", argLength: 1, typ: "Uintptr"}, // arg0=interface, returns itable field
   502  	{name: "IData", argLength: 1},                // arg0=interface, returns data field
   503  
   504  	// Structs
   505  	{name: "StructMake0"},                              // Returns struct with 0 fields.
   506  	{name: "StructMake1", argLength: 1},                // arg0=field0.  Returns struct.
   507  	{name: "StructMake2", argLength: 2},                // arg0,arg1=field0,field1.  Returns struct.
   508  	{name: "StructMake3", argLength: 3},                // arg0..2=field0..2.  Returns struct.
   509  	{name: "StructMake4", argLength: 4},                // arg0..3=field0..3.  Returns struct.
   510  	{name: "StructSelect", argLength: 1, aux: "Int64"}, // arg0=struct, auxint=field index.  Returns the auxint'th field.
   511  
   512  	// Arrays
   513  	{name: "ArrayMake0"},                              // Returns array with 0 elements
   514  	{name: "ArrayMake1", argLength: 1},                // Returns array with 1 element
   515  	{name: "ArraySelect", argLength: 1, aux: "Int64"}, // arg0=array, auxint=index. Returns a[i].
   516  
   517  	// Spill&restore ops for the register allocator. These are
   518  	// semantically identical to OpCopy; they do not take/return
   519  	// stores like regular memory ops do. We can get away without memory
   520  	// args because we know there is no aliasing of spill slots on the stack.
   521  	{name: "StoreReg", argLength: 1},
   522  	{name: "LoadReg", argLength: 1},
   523  
   524  	// Used during ssa construction. Like Copy, but the arg has not been specified yet.
   525  	{name: "FwdRef", aux: "Sym", symEffect: "None"},
   526  
   527  	// Unknown value. Used for Values whose values don't matter because they are dead code.
   528  	{name: "Unknown"},
   529  
   530  	{name: "VarDef", argLength: 1, aux: "Sym", typ: "Mem", symEffect: "None", zeroWidth: true}, // aux is a *gc.Node of a variable that is about to be initialized.  arg0=mem, returns mem
   531  	{name: "VarKill", argLength: 1, aux: "Sym", symEffect: "None"},                             // aux is a *gc.Node of a variable that is known to be dead.  arg0=mem, returns mem
   532  	// TODO: what's the difference between VarLive and KeepAlive?
   533  	{name: "VarLive", argLength: 1, aux: "Sym", symEffect: "Read", zeroWidth: true}, // aux is a *gc.Node of a variable that must be kept live.  arg0=mem, returns mem
   534  	{name: "KeepAlive", argLength: 2, typ: "Mem", zeroWidth: true},                  // arg[0] is a value that must be kept alive until this mark.  arg[1]=mem, returns mem
   535  
   536  	// InlMark marks the start of an inlined function body. Its AuxInt field
   537  	// distinguishes which entry in the local inline tree it is marking.
   538  	{name: "InlMark", argLength: 1, aux: "Int32", typ: "Void"}, // arg[0]=mem, returns void.
   539  
   540  	// Ops for breaking 64-bit operations on 32-bit architectures
   541  	{name: "Int64Make", argLength: 2, typ: "UInt64"}, // arg0=hi, arg1=lo
   542  	{name: "Int64Hi", argLength: 1, typ: "UInt32"},   // high 32-bit of arg0
   543  	{name: "Int64Lo", argLength: 1, typ: "UInt32"},   // low 32-bit of arg0
   544  
   545  	{name: "Add32carry", argLength: 2, commutative: true, typ: "(UInt32,Flags)"}, // arg0 + arg1, returns (value, carry)
   546  	{name: "Add32withcarry", argLength: 3, commutative: true},                    // arg0 + arg1 + arg2, arg2=carry (0 or 1)
   547  
   548  	{name: "Sub32carry", argLength: 2, typ: "(UInt32,Flags)"}, // arg0 - arg1, returns (value, carry)
   549  	{name: "Sub32withcarry", argLength: 3},                    // arg0 - arg1 - arg2, arg2=carry (0 or 1)
   550  
   551  	{name: "Add64carry", argLength: 3, commutative: true, typ: "(UInt64,UInt64)"}, // arg0 + arg1 + arg2, arg2 must be 0 or 1. returns (value, value>>64)
   552  	{name: "Sub64borrow", argLength: 3, typ: "(UInt64,UInt64)"},                   // arg0 - (arg1 + arg2), arg2 must be 0 or 1. returns (value, value>>64&1)
   553  
   554  	{name: "Signmask", argLength: 1, typ: "Int32"},  // 0 if arg0 >= 0, -1 if arg0 < 0
   555  	{name: "Zeromask", argLength: 1, typ: "UInt32"}, // 0 if arg0 == 0, 0xffffffff if arg0 != 0
   556  	{name: "Slicemask", argLength: 1},               // 0 if arg0 == 0, -1 if arg0 > 0, undef if arg0<0. Type is native int size.
   557  
   558  	{name: "SpectreIndex", argLength: 2},      // arg0 if 0 <= arg0 < arg1, 0 otherwise. Type is native int size.
   559  	{name: "SpectreSliceIndex", argLength: 2}, // arg0 if 0 <= arg0 <= arg1, 0 otherwise. Type is native int size.
   560  
   561  	{name: "Cvt32Uto32F", argLength: 1}, // uint32 -> float32, only used on 32-bit arch
   562  	{name: "Cvt32Uto64F", argLength: 1}, // uint32 -> float64, only used on 32-bit arch
   563  	{name: "Cvt32Fto32U", argLength: 1}, // float32 -> uint32, only used on 32-bit arch
   564  	{name: "Cvt64Fto32U", argLength: 1}, // float64 -> uint32, only used on 32-bit arch
   565  	{name: "Cvt64Uto32F", argLength: 1}, // uint64 -> float32, only used on archs that has the instruction
   566  	{name: "Cvt64Uto64F", argLength: 1}, // uint64 -> float64, only used on archs that has the instruction
   567  	{name: "Cvt32Fto64U", argLength: 1}, // float32 -> uint64, only used on archs that has the instruction
   568  	{name: "Cvt64Fto64U", argLength: 1}, // float64 -> uint64, only used on archs that has the instruction
   569  
   570  	// pseudo-ops for breaking Tuple
   571  	{name: "Select0", argLength: 1, zeroWidth: true},  // the first component of a tuple
   572  	{name: "Select1", argLength: 1, zeroWidth: true},  // the second component of a tuple
   573  	{name: "SelectN", argLength: 1, aux: "Int64"},     // arg0=result, auxint=field index.  Returns the auxint'th member.
   574  	{name: "SelectNAddr", argLength: 1, aux: "Int64"}, // arg0=result, auxint=field index.  Returns the address of auxint'th member. Used for un-SSA-able result types.
   575  	{name: "MakeResult", argLength: -1},               // arg0 .. are components of a "Result" (like the result from a Call). The last arg should be memory (like the result from a call).
   576  
   577  	// Atomic operations used for semantically inlining sync/atomic and
   578  	// runtime/internal/atomic. Atomic loads return a new memory so that
   579  	// the loads are properly ordered with respect to other loads and
   580  	// stores.
   581  	{name: "AtomicLoad8", argLength: 2, typ: "(UInt8,Mem)"},                                    // Load from arg0.  arg1=memory.  Returns loaded value and new memory.
   582  	{name: "AtomicLoad32", argLength: 2, typ: "(UInt32,Mem)"},                                  // Load from arg0.  arg1=memory.  Returns loaded value and new memory.
   583  	{name: "AtomicLoad64", argLength: 2, typ: "(UInt64,Mem)"},                                  // Load from arg0.  arg1=memory.  Returns loaded value and new memory.
   584  	{name: "AtomicLoadPtr", argLength: 2, typ: "(BytePtr,Mem)"},                                // Load from arg0.  arg1=memory.  Returns loaded value and new memory.
   585  	{name: "AtomicLoadAcq32", argLength: 2, typ: "(UInt32,Mem)"},                               // Load from arg0.  arg1=memory.  Lock acquisition, returns loaded value and new memory.
   586  	{name: "AtomicLoadAcq64", argLength: 2, typ: "(UInt64,Mem)"},                               // Load from arg0.  arg1=memory.  Lock acquisition, returns loaded value and new memory.
   587  	{name: "AtomicStore8", argLength: 3, typ: "Mem", hasSideEffects: true},                     // Store arg1 to *arg0.  arg2=memory.  Returns memory.
   588  	{name: "AtomicStore32", argLength: 3, typ: "Mem", hasSideEffects: true},                    // Store arg1 to *arg0.  arg2=memory.  Returns memory.
   589  	{name: "AtomicStore64", argLength: 3, typ: "Mem", hasSideEffects: true},                    // Store arg1 to *arg0.  arg2=memory.  Returns memory.
   590  	{name: "AtomicStorePtrNoWB", argLength: 3, typ: "Mem", hasSideEffects: true},               // Store arg1 to *arg0.  arg2=memory.  Returns memory.
   591  	{name: "AtomicStoreRel32", argLength: 3, typ: "Mem", hasSideEffects: true},                 // Store arg1 to *arg0.  arg2=memory.  Lock release, returns memory.
   592  	{name: "AtomicStoreRel64", argLength: 3, typ: "Mem", hasSideEffects: true},                 // Store arg1 to *arg0.  arg2=memory.  Lock release, returns memory.
   593  	{name: "AtomicExchange32", argLength: 3, typ: "(UInt32,Mem)", hasSideEffects: true},        // Store arg1 to *arg0.  arg2=memory.  Returns old contents of *arg0 and new memory.
   594  	{name: "AtomicExchange64", argLength: 3, typ: "(UInt64,Mem)", hasSideEffects: true},        // Store arg1 to *arg0.  arg2=memory.  Returns old contents of *arg0 and new memory.
   595  	{name: "AtomicAdd32", argLength: 3, typ: "(UInt32,Mem)", hasSideEffects: true},             // Do *arg0 += arg1.  arg2=memory.  Returns sum and new memory.
   596  	{name: "AtomicAdd64", argLength: 3, typ: "(UInt64,Mem)", hasSideEffects: true},             // Do *arg0 += arg1.  arg2=memory.  Returns sum and new memory.
   597  	{name: "AtomicCompareAndSwap32", argLength: 4, typ: "(Bool,Mem)", hasSideEffects: true},    // if *arg0==arg1, then set *arg0=arg2.  Returns true if store happens and new memory.
   598  	{name: "AtomicCompareAndSwap64", argLength: 4, typ: "(Bool,Mem)", hasSideEffects: true},    // if *arg0==arg1, then set *arg0=arg2.  Returns true if store happens and new memory.
   599  	{name: "AtomicCompareAndSwapRel32", argLength: 4, typ: "(Bool,Mem)", hasSideEffects: true}, // if *arg0==arg1, then set *arg0=arg2.  Lock release, reports whether store happens and new memory.
   600  	{name: "AtomicAnd8", argLength: 3, typ: "Mem", hasSideEffects: true},                       // *arg0 &= arg1.  arg2=memory.  Returns memory.
   601  	{name: "AtomicAnd32", argLength: 3, typ: "Mem", hasSideEffects: true},                      // *arg0 &= arg1.  arg2=memory.  Returns memory.
   602  	{name: "AtomicOr8", argLength: 3, typ: "Mem", hasSideEffects: true},                        // *arg0 |= arg1.  arg2=memory.  Returns memory.
   603  	{name: "AtomicOr32", argLength: 3, typ: "Mem", hasSideEffects: true},                       // *arg0 |= arg1.  arg2=memory.  Returns memory.
   604  
   605  	// Atomic operation variants
   606  	// These variants have the same semantics as above atomic operations.
   607  	// But they are used for generating more efficient code on certain modern machines, with run-time CPU feature detection.
   608  	// Currently, they are used on ARM64 only.
   609  	{name: "AtomicAdd32Variant", argLength: 3, typ: "(UInt32,Mem)", hasSideEffects: true},          // Do *arg0 += arg1.  arg2=memory.  Returns sum and new memory.
   610  	{name: "AtomicAdd64Variant", argLength: 3, typ: "(UInt64,Mem)", hasSideEffects: true},          // Do *arg0 += arg1.  arg2=memory.  Returns sum and new memory.
   611  	{name: "AtomicExchange32Variant", argLength: 3, typ: "(UInt32,Mem)", hasSideEffects: true},     // Store arg1 to *arg0.  arg2=memory.  Returns old contents of *arg0 and new memory.
   612  	{name: "AtomicExchange64Variant", argLength: 3, typ: "(UInt64,Mem)", hasSideEffects: true},     // Store arg1 to *arg0.  arg2=memory.  Returns old contents of *arg0 and new memory.
   613  	{name: "AtomicCompareAndSwap32Variant", argLength: 4, typ: "(Bool,Mem)", hasSideEffects: true}, // if *arg0==arg1, then set *arg0=arg2.  Returns true if store happens and new memory.
   614  	{name: "AtomicCompareAndSwap64Variant", argLength: 4, typ: "(Bool,Mem)", hasSideEffects: true}, // if *arg0==arg1, then set *arg0=arg2.  Returns true if store happens and new memory.
   615  	{name: "AtomicAnd8Variant", argLength: 3, typ: "Mem", hasSideEffects: true},                    // *arg0 &= arg1.  arg2=memory.  Returns memory.
   616  	{name: "AtomicAnd32Variant", argLength: 3, typ: "Mem", hasSideEffects: true},                   // *arg0 &= arg1.  arg2=memory.  Returns memory.
   617  	{name: "AtomicOr8Variant", argLength: 3, typ: "Mem", hasSideEffects: true},                     // *arg0 |= arg1.  arg2=memory.  Returns memory.
   618  	{name: "AtomicOr32Variant", argLength: 3, typ: "Mem", hasSideEffects: true},                    // *arg0 |= arg1.  arg2=memory.  Returns memory.
   619  
   620  	// Publication barrier
   621  	{name: "PubBarrier", argLength: 1, hasSideEffects: true}, // Do data barrier. arg0=memory.
   622  
   623  	// Clobber experiment op
   624  	{name: "Clobber", argLength: 0, typ: "Void", aux: "SymOff", symEffect: "None"}, // write an invalid pointer value to the given pointer slot of a stack variable
   625  	{name: "ClobberReg", argLength: 0, typ: "Void"},                                // clobber a register
   626  
   627  	// Prefetch instruction
   628  	{name: "PrefetchCache", argLength: 2, hasSideEffects: true},         // Do prefetch arg0 to cache. arg0=addr, arg1=memory.
   629  	{name: "PrefetchCacheStreamed", argLength: 2, hasSideEffects: true}, // Do non-temporal or streamed prefetch arg0 to cache. arg0=addr, arg1=memory.
   630  }
   631  
   632  //     kind          controls        successors   implicit exit
   633  //   ----------------------------------------------------------
   634  //     Exit      [return mem]                []             yes
   635  //      Ret      [return mem]                []             yes
   636  //   RetJmp      [return mem]                []             yes
   637  //    Plain                []            [next]
   638  //       If   [boolean Value]      [then, else]
   639  //    First                []   [always, never]
   640  
   641  var genericBlocks = []blockData{
   642  	{name: "Plain"},               // a single successor
   643  	{name: "If", controls: 1},     // if Controls[0] goto Succs[0] else goto Succs[1]
   644  	{name: "Defer", controls: 1},  // Succs[0]=defer queued, Succs[1]=defer recovered. Controls[0] is call op (of memory type)
   645  	{name: "Ret", controls: 1},    // no successors, Controls[0] value is memory result
   646  	{name: "RetJmp", controls: 1}, // no successors, Controls[0] value is a tail call
   647  	{name: "Exit", controls: 1},   // no successors, Controls[0] value generates a panic
   648  
   649  	// transient block state used for dead code removal
   650  	{name: "First"}, // 2 successors, always takes the first one (second is dead)
   651  }
   652  
   653  func init() {
   654  	archs = append(archs, arch{
   655  		name:    "generic",
   656  		ops:     genericOps,
   657  		blocks:  genericBlocks,
   658  		generic: true,
   659  	})
   660  }
   661  

View as plain text