Source file src/cmd/go/internal/modload/buildlist.go

     1  // Copyright 2018 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package modload
     6  
     7  import (
     8  	"cmd/go/internal/base"
     9  	"cmd/go/internal/cfg"
    10  	"cmd/go/internal/mvs"
    11  	"cmd/go/internal/par"
    12  	"context"
    13  	"fmt"
    14  	"os"
    15  	"reflect"
    16  	"runtime"
    17  	"runtime/debug"
    18  	"strings"
    19  	"sync"
    20  	"sync/atomic"
    21  
    22  	"golang.org/x/mod/module"
    23  	"golang.org/x/mod/semver"
    24  )
    25  
    26  // capVersionSlice returns s with its cap reduced to its length.
    27  func capVersionSlice(s []module.Version) []module.Version {
    28  	return s[:len(s):len(s)]
    29  }
    30  
    31  // A Requirements represents a logically-immutable set of root module requirements.
    32  type Requirements struct {
    33  	// pruning is the pruning at which the requirement graph is computed.
    34  	//
    35  	// If unpruned, the graph includes all transitive requirements regardless
    36  	// of whether the requiring module supports pruning.
    37  	//
    38  	// If pruned, the graph includes only the root modules, the explicit
    39  	// requirements of those root modules, and the transitive requirements of only
    40  	// the root modules that do not support pruning.
    41  	//
    42  	// If workspace, the graph includes only the workspace modules, the explicit
    43  	// requirements of the workspace modules, and the transitive requirements of
    44  	// the workspace modules that do not support pruning.
    45  	pruning modPruning
    46  
    47  	// rootModules is the set of root modules of the graph, sorted and capped to
    48  	// length. It may contain duplicates, and may contain multiple versions for a
    49  	// given module path. The root modules of the groph are the set of main
    50  	// modules in workspace mode, and the main module's direct requirements
    51  	// outside workspace mode.
    52  	rootModules    []module.Version
    53  	maxRootVersion map[string]string
    54  
    55  	// direct is the set of module paths for which we believe the module provides
    56  	// a package directly imported by a package or test in the main module.
    57  	//
    58  	// The "direct" map controls which modules are annotated with "// indirect"
    59  	// comments in the go.mod file, and may impact which modules are listed as
    60  	// explicit roots (vs. indirect-only dependencies). However, it should not
    61  	// have a semantic effect on the build list overall.
    62  	//
    63  	// The initial direct map is populated from the existing "// indirect"
    64  	// comments (or lack thereof) in the go.mod file. It is updated by the
    65  	// package loader: dependencies may be promoted to direct if new
    66  	// direct imports are observed, and may be demoted to indirect during
    67  	// 'go mod tidy' or 'go mod vendor'.
    68  	//
    69  	// The direct map is keyed by module paths, not module versions. When a
    70  	// module's selected version changes, we assume that it remains direct if the
    71  	// previous version was a direct dependency. That assumption might not hold in
    72  	// rare cases (such as if a dependency splits out a nested module, or merges a
    73  	// nested module back into a parent module).
    74  	direct map[string]bool
    75  
    76  	graphOnce sync.Once    // guards writes to (but not reads from) graph
    77  	graph     atomic.Value // cachedGraph
    78  }
    79  
    80  // A cachedGraph is a non-nil *ModuleGraph, together with any error discovered
    81  // while loading that graph.
    82  type cachedGraph struct {
    83  	mg  *ModuleGraph
    84  	err error // If err is non-nil, mg may be incomplete (but must still be non-nil).
    85  }
    86  
    87  // requirements is the requirement graph for the main module.
    88  //
    89  // It is always non-nil if the main module's go.mod file has been loaded.
    90  //
    91  // This variable should only be read from the loadModFile function, and should
    92  // only be written in the loadModFile and commitRequirements functions.
    93  // All other functions that need or produce a *Requirements should
    94  // accept and/or return an explicit parameter.
    95  var requirements *Requirements
    96  
    97  // newRequirements returns a new requirement set with the given root modules.
    98  // The dependencies of the roots will be loaded lazily at the first call to the
    99  // Graph method.
   100  //
   101  // The rootModules slice must be sorted according to module.Sort.
   102  // The caller must not modify the rootModules slice or direct map after passing
   103  // them to newRequirements.
   104  //
   105  // If vendoring is in effect, the caller must invoke initVendor on the returned
   106  // *Requirements before any other method.
   107  func newRequirements(pruning modPruning, rootModules []module.Version, direct map[string]bool) *Requirements {
   108  	if pruning == workspace {
   109  		return &Requirements{
   110  			pruning:        pruning,
   111  			rootModules:    capVersionSlice(rootModules),
   112  			maxRootVersion: nil,
   113  			direct:         direct,
   114  		}
   115  	}
   116  
   117  	if workFilePath != "" && pruning != workspace {
   118  		panic("in workspace mode, but pruning is not workspace in newRequirements")
   119  	}
   120  
   121  	for i, m := range rootModules {
   122  		if m.Version == "" && MainModules.Contains(m.Path) {
   123  			panic(fmt.Sprintf("newRequirements called with untrimmed build list: rootModules[%v] is a main module", i))
   124  		}
   125  		if m.Path == "" || m.Version == "" {
   126  			panic(fmt.Sprintf("bad requirement: rootModules[%v] = %v", i, m))
   127  		}
   128  		if i > 0 {
   129  			prev := rootModules[i-1]
   130  			if prev.Path > m.Path || (prev.Path == m.Path && semver.Compare(prev.Version, m.Version) > 0) {
   131  				panic(fmt.Sprintf("newRequirements called with unsorted roots: %v", rootModules))
   132  			}
   133  		}
   134  	}
   135  
   136  	rs := &Requirements{
   137  		pruning:        pruning,
   138  		rootModules:    capVersionSlice(rootModules),
   139  		maxRootVersion: make(map[string]string, len(rootModules)),
   140  		direct:         direct,
   141  	}
   142  
   143  	for _, m := range rootModules {
   144  		if v, ok := rs.maxRootVersion[m.Path]; ok && cmpVersion(v, m.Version) >= 0 {
   145  			continue
   146  		}
   147  		rs.maxRootVersion[m.Path] = m.Version
   148  	}
   149  	return rs
   150  }
   151  
   152  // initVendor initializes rs.graph from the given list of vendored module
   153  // dependencies, overriding the graph that would normally be loaded from module
   154  // requirements.
   155  func (rs *Requirements) initVendor(vendorList []module.Version) {
   156  	rs.graphOnce.Do(func() {
   157  		mg := &ModuleGraph{
   158  			g: mvs.NewGraph(cmpVersion, MainModules.Versions()),
   159  		}
   160  
   161  		if MainModules.Len() != 1 {
   162  			panic("There should be exactly one main module in Vendor mode.")
   163  		}
   164  		mainModule := MainModules.Versions()[0]
   165  
   166  		if rs.pruning == pruned {
   167  			// The roots of a pruned module should already include every module in the
   168  			// vendor list, because the vendored modules are the same as those needed
   169  			// for graph pruning.
   170  			//
   171  			// Just to be sure, we'll double-check that here.
   172  			inconsistent := false
   173  			for _, m := range vendorList {
   174  				if v, ok := rs.rootSelected(m.Path); !ok || v != m.Version {
   175  					base.Errorf("go: vendored module %v should be required explicitly in go.mod", m)
   176  					inconsistent = true
   177  				}
   178  			}
   179  			if inconsistent {
   180  				base.Fatalf("go: %v", errGoModDirty)
   181  			}
   182  
   183  			// Now we can treat the rest of the module graph as effectively “pruned
   184  			// out”, as though we are viewing the main module from outside: in vendor
   185  			// mode, the root requirements *are* the complete module graph.
   186  			mg.g.Require(mainModule, rs.rootModules)
   187  		} else {
   188  			// The transitive requirements of the main module are not in general available
   189  			// from the vendor directory, and we don't actually know how we got from
   190  			// the roots to the final build list.
   191  			//
   192  			// Instead, we'll inject a fake "vendor/modules.txt" module that provides
   193  			// those transitive dependencies, and mark it as a dependency of the main
   194  			// module. That allows us to elide the actual structure of the module
   195  			// graph, but still distinguishes between direct and indirect
   196  			// dependencies.
   197  			vendorMod := module.Version{Path: "vendor/modules.txt", Version: ""}
   198  			mg.g.Require(mainModule, append(rs.rootModules, vendorMod))
   199  			mg.g.Require(vendorMod, vendorList)
   200  		}
   201  
   202  		rs.graph.Store(cachedGraph{mg, nil})
   203  	})
   204  }
   205  
   206  // rootSelected returns the version of the root dependency with the given module
   207  // path, or the zero module.Version and ok=false if the module is not a root
   208  // dependency.
   209  func (rs *Requirements) rootSelected(path string) (version string, ok bool) {
   210  	if MainModules.Contains(path) {
   211  		return "", true
   212  	}
   213  	if v, ok := rs.maxRootVersion[path]; ok {
   214  		return v, true
   215  	}
   216  	return "", false
   217  }
   218  
   219  // hasRedundantRoot returns true if the root list contains multiple requirements
   220  // of the same module or a requirement on any version of the main module.
   221  // Redundant requirements should be pruned, but they may influence version
   222  // selection.
   223  func (rs *Requirements) hasRedundantRoot() bool {
   224  	for i, m := range rs.rootModules {
   225  		if MainModules.Contains(m.Path) || (i > 0 && m.Path == rs.rootModules[i-1].Path) {
   226  			return true
   227  		}
   228  	}
   229  	return false
   230  }
   231  
   232  // Graph returns the graph of module requirements loaded from the current
   233  // root modules (as reported by RootModules).
   234  //
   235  // Graph always makes a best effort to load the requirement graph despite any
   236  // errors, and always returns a non-nil *ModuleGraph.
   237  //
   238  // If the requirements of any relevant module fail to load, Graph also
   239  // returns a non-nil error of type *mvs.BuildListError.
   240  func (rs *Requirements) Graph(ctx context.Context) (*ModuleGraph, error) {
   241  	rs.graphOnce.Do(func() {
   242  		mg, mgErr := readModGraph(ctx, rs.pruning, rs.rootModules)
   243  		rs.graph.Store(cachedGraph{mg, mgErr})
   244  	})
   245  	cached := rs.graph.Load().(cachedGraph)
   246  	return cached.mg, cached.err
   247  }
   248  
   249  // IsDirect returns whether the given module provides a package directly
   250  // imported by a package or test in the main module.
   251  func (rs *Requirements) IsDirect(path string) bool {
   252  	return rs.direct[path]
   253  }
   254  
   255  // A ModuleGraph represents the complete graph of module dependencies
   256  // of a main module.
   257  //
   258  // If the main module supports module graph pruning, the graph does not include
   259  // transitive dependencies of non-root (implicit) dependencies.
   260  type ModuleGraph struct {
   261  	g         *mvs.Graph
   262  	loadCache par.Cache // module.Version → summaryError
   263  
   264  	buildListOnce sync.Once
   265  	buildList     []module.Version
   266  }
   267  
   268  // A summaryError is either a non-nil modFileSummary or a non-nil error
   269  // encountered while reading or parsing that summary.
   270  type summaryError struct {
   271  	summary *modFileSummary
   272  	err     error
   273  }
   274  
   275  var readModGraphDebugOnce sync.Once
   276  
   277  // readModGraph reads and returns the module dependency graph starting at the
   278  // given roots.
   279  //
   280  // Unlike LoadModGraph, readModGraph does not attempt to diagnose or update
   281  // inconsistent roots.
   282  func readModGraph(ctx context.Context, pruning modPruning, roots []module.Version) (*ModuleGraph, error) {
   283  	if pruning == pruned {
   284  		// Enable diagnostics for lazy module loading
   285  		// (https://golang.org/ref/mod#lazy-loading) only if the module graph is
   286  		// pruned.
   287  		//
   288  		// In unpruned modules,we load the module graph much more aggressively (in
   289  		// order to detect inconsistencies that wouldn't be feasible to spot-check),
   290  		// so it wouldn't be useful to log when that occurs (because it happens in
   291  		// normal operation all the time).
   292  		readModGraphDebugOnce.Do(func() {
   293  			for _, f := range strings.Split(os.Getenv("GODEBUG"), ",") {
   294  				switch f {
   295  				case "lazymod=log":
   296  					debug.PrintStack()
   297  					fmt.Fprintf(os.Stderr, "go: read full module graph.\n")
   298  				case "lazymod=strict":
   299  					debug.PrintStack()
   300  					base.Fatalf("go: read full module graph (forbidden by GODEBUG=lazymod=strict).")
   301  				}
   302  			}
   303  		})
   304  	}
   305  
   306  	var (
   307  		mu       sync.Mutex // guards mg.g and hasError during loading
   308  		hasError bool
   309  		mg       = &ModuleGraph{
   310  			g: mvs.NewGraph(cmpVersion, MainModules.Versions()),
   311  		}
   312  	)
   313  	if pruning != workspace {
   314  		if inWorkspaceMode() {
   315  			panic("pruning is not workspace in workspace mode")
   316  		}
   317  		mg.g.Require(MainModules.mustGetSingleMainModule(), roots)
   318  	}
   319  
   320  	var (
   321  		loadQueue       = par.NewQueue(runtime.GOMAXPROCS(0))
   322  		loadingUnpruned sync.Map // module.Version → nil; the set of modules that have been or are being loaded via roots that do not support pruning
   323  	)
   324  
   325  	// loadOne synchronously loads the explicit requirements for module m.
   326  	// It does not load the transitive requirements of m even if the go version in
   327  	// m's go.mod file indicates that it supports graph pruning.
   328  	loadOne := func(m module.Version) (*modFileSummary, error) {
   329  		cached := mg.loadCache.Do(m, func() any {
   330  			summary, err := goModSummary(m)
   331  
   332  			mu.Lock()
   333  			if err == nil {
   334  				mg.g.Require(m, summary.require)
   335  			} else {
   336  				hasError = true
   337  			}
   338  			mu.Unlock()
   339  
   340  			return summaryError{summary, err}
   341  		}).(summaryError)
   342  
   343  		return cached.summary, cached.err
   344  	}
   345  
   346  	var enqueue func(m module.Version, pruning modPruning)
   347  	enqueue = func(m module.Version, pruning modPruning) {
   348  		if m.Version == "none" {
   349  			return
   350  		}
   351  
   352  		if pruning == unpruned {
   353  			if _, dup := loadingUnpruned.LoadOrStore(m, nil); dup {
   354  				// m has already been enqueued for loading. Since unpruned loading may
   355  				// follow cycles in the requirement graph, we need to return early
   356  				// to avoid making the load queue infinitely long.
   357  				return
   358  			}
   359  		}
   360  
   361  		loadQueue.Add(func() {
   362  			summary, err := loadOne(m)
   363  			if err != nil {
   364  				return // findError will report the error later.
   365  			}
   366  
   367  			// If the version in m's go.mod file does not support pruning, then we
   368  			// cannot assume that the explicit requirements of m (added by loadOne)
   369  			// are sufficient to build the packages it contains. We must load its full
   370  			// transitive dependency graph to be sure that we see all relevant
   371  			// dependencies.
   372  			if pruning != pruned || summary.pruning == unpruned {
   373  				nextPruning := summary.pruning
   374  				if pruning == unpruned {
   375  					nextPruning = unpruned
   376  				}
   377  				for _, r := range summary.require {
   378  					enqueue(r, nextPruning)
   379  				}
   380  			}
   381  		})
   382  	}
   383  
   384  	for _, m := range roots {
   385  		enqueue(m, pruning)
   386  	}
   387  	<-loadQueue.Idle()
   388  
   389  	// Reload any dependencies of the main modules which are not
   390  	// at their selected versions at workspace mode, because the
   391  	// requirements don't accurately reflect the transitive imports.
   392  	if pruning == workspace {
   393  		// hasDepsInAll contains the set of modules that need to be loaded
   394  		// at workspace pruning because any of their dependencies may
   395  		// provide packages in all.
   396  		hasDepsInAll := make(map[string]bool)
   397  		seen := map[module.Version]bool{}
   398  		for _, m := range roots {
   399  			hasDepsInAll[m.Path] = true
   400  			seen[m] = true
   401  		}
   402  		// This loop will terminate because it will call enqueue on each version of
   403  		// each dependency of the modules in hasDepsInAll at most once (and only
   404  		// calls enqueue on successively increasing versions of each dependency).
   405  		for {
   406  			needsEnqueueing := map[module.Version]bool{}
   407  			for p := range hasDepsInAll {
   408  				m := module.Version{Path: p, Version: mg.g.Selected(p)}
   409  				reqs, ok := mg.g.RequiredBy(m)
   410  				if !ok {
   411  					needsEnqueueing[m] = true
   412  					continue
   413  				}
   414  				for _, r := range reqs {
   415  					s := module.Version{Path: r.Path, Version: mg.g.Selected(r.Path)}
   416  					if cmpVersion(s.Version, r.Version) > 0 && !seen[s] {
   417  						needsEnqueueing[s] = true
   418  					}
   419  				}
   420  			}
   421  			// add all needs enqueueing to paths we care about
   422  			if len(needsEnqueueing) == 0 {
   423  				break
   424  			}
   425  
   426  			for p := range needsEnqueueing {
   427  				enqueue(p, workspace)
   428  				seen[p] = true
   429  				hasDepsInAll[p.Path] = true
   430  			}
   431  			<-loadQueue.Idle()
   432  		}
   433  	}
   434  
   435  	if hasError {
   436  		return mg, mg.findError()
   437  	}
   438  	return mg, nil
   439  }
   440  
   441  // RequiredBy returns the dependencies required by module m in the graph,
   442  // or ok=false if module m's dependencies are pruned out.
   443  //
   444  // The caller must not modify the returned slice, but may safely append to it
   445  // and may rely on it not to be modified.
   446  func (mg *ModuleGraph) RequiredBy(m module.Version) (reqs []module.Version, ok bool) {
   447  	return mg.g.RequiredBy(m)
   448  }
   449  
   450  // Selected returns the selected version of the module with the given path.
   451  //
   452  // If no version is selected, Selected returns version "none".
   453  func (mg *ModuleGraph) Selected(path string) (version string) {
   454  	return mg.g.Selected(path)
   455  }
   456  
   457  // WalkBreadthFirst invokes f once, in breadth-first order, for each module
   458  // version other than "none" that appears in the graph, regardless of whether
   459  // that version is selected.
   460  func (mg *ModuleGraph) WalkBreadthFirst(f func(m module.Version)) {
   461  	mg.g.WalkBreadthFirst(f)
   462  }
   463  
   464  // BuildList returns the selected versions of all modules present in the graph,
   465  // beginning with Target.
   466  //
   467  // The order of the remaining elements in the list is deterministic
   468  // but arbitrary.
   469  //
   470  // The caller must not modify the returned list, but may safely append to it
   471  // and may rely on it not to be modified.
   472  func (mg *ModuleGraph) BuildList() []module.Version {
   473  	mg.buildListOnce.Do(func() {
   474  		mg.buildList = capVersionSlice(mg.g.BuildList())
   475  	})
   476  	return mg.buildList
   477  }
   478  
   479  func (mg *ModuleGraph) findError() error {
   480  	errStack := mg.g.FindPath(func(m module.Version) bool {
   481  		cached := mg.loadCache.Get(m)
   482  		return cached != nil && cached.(summaryError).err != nil
   483  	})
   484  	if len(errStack) > 0 {
   485  		err := mg.loadCache.Get(errStack[len(errStack)-1]).(summaryError).err
   486  		var noUpgrade func(from, to module.Version) bool
   487  		return mvs.NewBuildListError(err, errStack, noUpgrade)
   488  	}
   489  
   490  	return nil
   491  }
   492  
   493  func (mg *ModuleGraph) allRootsSelected() bool {
   494  	var roots []module.Version
   495  	if inWorkspaceMode() {
   496  		roots = MainModules.Versions()
   497  	} else {
   498  		roots, _ = mg.g.RequiredBy(MainModules.mustGetSingleMainModule())
   499  	}
   500  	for _, m := range roots {
   501  		if mg.Selected(m.Path) != m.Version {
   502  			return false
   503  		}
   504  	}
   505  	return true
   506  }
   507  
   508  // LoadModGraph loads and returns the graph of module dependencies of the main module,
   509  // without loading any packages.
   510  //
   511  // If the goVersion string is non-empty, the returned graph is the graph
   512  // as interpreted by the given Go version (instead of the version indicated
   513  // in the go.mod file).
   514  //
   515  // Modules are loaded automatically (and lazily) in LoadPackages:
   516  // LoadModGraph need only be called if LoadPackages is not,
   517  // typically in commands that care about modules but no particular package.
   518  func LoadModGraph(ctx context.Context, goVersion string) *ModuleGraph {
   519  	rs := LoadModFile(ctx)
   520  
   521  	if goVersion != "" {
   522  		pruning := pruningForGoVersion(goVersion)
   523  		if pruning == unpruned && rs.pruning != unpruned {
   524  			// Use newRequirements instead of convertDepth because convertDepth
   525  			// also updates roots; here, we want to report the unmodified roots
   526  			// even though they may seem inconsistent.
   527  			rs = newRequirements(unpruned, rs.rootModules, rs.direct)
   528  		}
   529  
   530  		mg, err := rs.Graph(ctx)
   531  		if err != nil {
   532  			base.Fatalf("go: %v", err)
   533  		}
   534  		return mg
   535  	}
   536  
   537  	rs, mg, err := expandGraph(ctx, rs)
   538  	if err != nil {
   539  		base.Fatalf("go: %v", err)
   540  	}
   541  
   542  	requirements = rs
   543  
   544  	return mg
   545  }
   546  
   547  // expandGraph loads the complete module graph from rs.
   548  //
   549  // If the complete graph reveals that some root of rs is not actually the
   550  // selected version of its path, expandGraph computes a new set of roots that
   551  // are consistent. (With a pruned module graph, this may result in upgrades to
   552  // other modules due to requirements that were previously pruned out.)
   553  //
   554  // expandGraph returns the updated roots, along with the module graph loaded
   555  // from those roots and any error encountered while loading that graph.
   556  // expandGraph returns non-nil requirements and a non-nil graph regardless of
   557  // errors. On error, the roots might not be updated to be consistent.
   558  func expandGraph(ctx context.Context, rs *Requirements) (*Requirements, *ModuleGraph, error) {
   559  	mg, mgErr := rs.Graph(ctx)
   560  	if mgErr != nil {
   561  		// Without the graph, we can't update the roots: we don't know which
   562  		// versions of transitive dependencies would be selected.
   563  		return rs, mg, mgErr
   564  	}
   565  
   566  	if !mg.allRootsSelected() {
   567  		// The roots of rs are not consistent with the rest of the graph. Update
   568  		// them. In an unpruned module this is a no-op for the build list as a whole —
   569  		// it just promotes what were previously transitive requirements to be
   570  		// roots — but in a pruned module it may pull in previously-irrelevant
   571  		// transitive dependencies.
   572  
   573  		newRS, rsErr := updateRoots(ctx, rs.direct, rs, nil, nil, false)
   574  		if rsErr != nil {
   575  			// Failed to update roots, perhaps because of an error in a transitive
   576  			// dependency needed for the update. Return the original Requirements
   577  			// instead.
   578  			return rs, mg, rsErr
   579  		}
   580  		rs = newRS
   581  		mg, mgErr = rs.Graph(ctx)
   582  	}
   583  
   584  	return rs, mg, mgErr
   585  }
   586  
   587  // EditBuildList edits the global build list by first adding every module in add
   588  // to the existing build list, then adjusting versions (and adding or removing
   589  // requirements as needed) until every module in mustSelect is selected at the
   590  // given version.
   591  //
   592  // (Note that the newly-added modules might not be selected in the resulting
   593  // build list: they could be lower than existing requirements or conflict with
   594  // versions in mustSelect.)
   595  //
   596  // If the versions listed in mustSelect are mutually incompatible (due to one of
   597  // the listed modules requiring a higher version of another), EditBuildList
   598  // returns a *ConstraintError and leaves the build list in its previous state.
   599  //
   600  // On success, EditBuildList reports whether the selected version of any module
   601  // in the build list may have been changed (possibly to or from "none") as a
   602  // result.
   603  func EditBuildList(ctx context.Context, add, mustSelect []module.Version) (changed bool, err error) {
   604  	rs, changed, err := editRequirements(ctx, LoadModFile(ctx), add, mustSelect)
   605  	if err != nil {
   606  		return false, err
   607  	}
   608  	requirements = rs
   609  	return changed, err
   610  }
   611  
   612  // A ConstraintError describes inconsistent constraints in EditBuildList
   613  type ConstraintError struct {
   614  	// Conflict lists the source of the conflict for each version in mustSelect
   615  	// that could not be selected due to the requirements of some other version in
   616  	// mustSelect.
   617  	Conflicts []Conflict
   618  }
   619  
   620  func (e *ConstraintError) Error() string {
   621  	b := new(strings.Builder)
   622  	b.WriteString("version constraints conflict:")
   623  	for _, c := range e.Conflicts {
   624  		fmt.Fprintf(b, "\n\t%v requires %v, but %v is requested", c.Source, c.Dep, c.Constraint)
   625  	}
   626  	return b.String()
   627  }
   628  
   629  // A Conflict documents that Source requires Dep, which conflicts with Constraint.
   630  // (That is, Dep has the same module path as Constraint but a higher version.)
   631  type Conflict struct {
   632  	Source     module.Version
   633  	Dep        module.Version
   634  	Constraint module.Version
   635  }
   636  
   637  // tidyRoots trims the root dependencies to the minimal requirements needed to
   638  // both retain the same versions of all packages in pkgs and satisfy the
   639  // graph-pruning invariants (if applicable).
   640  func tidyRoots(ctx context.Context, rs *Requirements, pkgs []*loadPkg) (*Requirements, error) {
   641  	mainModule := MainModules.mustGetSingleMainModule()
   642  	if rs.pruning == unpruned {
   643  		return tidyUnprunedRoots(ctx, mainModule, rs.direct, pkgs)
   644  	}
   645  	return tidyPrunedRoots(ctx, mainModule, rs.direct, pkgs)
   646  }
   647  
   648  func updateRoots(ctx context.Context, direct map[string]bool, rs *Requirements, pkgs []*loadPkg, add []module.Version, rootsImported bool) (*Requirements, error) {
   649  	switch rs.pruning {
   650  	case unpruned:
   651  		return updateUnprunedRoots(ctx, direct, rs, add)
   652  	case pruned:
   653  		return updatePrunedRoots(ctx, direct, rs, pkgs, add, rootsImported)
   654  	case workspace:
   655  		return updateWorkspaceRoots(ctx, rs, add)
   656  	default:
   657  		panic(fmt.Sprintf("unsupported pruning mode: %v", rs.pruning))
   658  	}
   659  }
   660  
   661  func updateWorkspaceRoots(ctx context.Context, rs *Requirements, add []module.Version) (*Requirements, error) {
   662  	if len(add) != 0 {
   663  		// add should be empty in workspace mode because workspace mode implies
   664  		// -mod=readonly, which in turn implies no new requirements. The code path
   665  		// that would result in add being non-empty returns an error before it
   666  		// reaches this point: The set of modules to add comes from
   667  		// resolveMissingImports, which in turn resolves each package by calling
   668  		// queryImport. But queryImport explicitly checks for -mod=readonly, and
   669  		// return an error.
   670  		panic("add is not empty")
   671  	}
   672  	return rs, nil
   673  }
   674  
   675  // tidyPrunedRoots returns a minimal set of root requirements that maintains the
   676  // invariants of the go.mod file needed to support graph pruning for the given
   677  // packages:
   678  //
   679  // 	1. For each package marked with pkgInAll, the module path that provided that
   680  // 	   package is included as a root.
   681  // 	2. For all packages, the module that provided that package either remains
   682  // 	   selected at the same version or is upgraded by the dependencies of a
   683  // 	   root.
   684  //
   685  // If any module that provided a package has been upgraded above its previous
   686  // version, the caller may need to reload and recompute the package graph.
   687  //
   688  // To ensure that the loading process eventually converges, the caller should
   689  // add any needed roots from the tidy root set (without removing existing untidy
   690  // roots) until the set of roots has converged.
   691  func tidyPrunedRoots(ctx context.Context, mainModule module.Version, direct map[string]bool, pkgs []*loadPkg) (*Requirements, error) {
   692  	var (
   693  		roots        []module.Version
   694  		pathIncluded = map[string]bool{mainModule.Path: true}
   695  	)
   696  	// We start by adding roots for every package in "all".
   697  	//
   698  	// Once that is done, we may still need to add more roots to cover upgraded or
   699  	// otherwise-missing test dependencies for packages in "all". For those test
   700  	// dependencies, we prefer to add roots for packages with shorter import
   701  	// stacks first, on the theory that the module requirements for those will
   702  	// tend to fill in the requirements for their transitive imports (which have
   703  	// deeper import stacks). So we add the missing dependencies for one depth at
   704  	// a time, starting with the packages actually in "all" and expanding outwards
   705  	// until we have scanned every package that was loaded.
   706  	var (
   707  		queue  []*loadPkg
   708  		queued = map[*loadPkg]bool{}
   709  	)
   710  	for _, pkg := range pkgs {
   711  		if !pkg.flags.has(pkgInAll) {
   712  			continue
   713  		}
   714  		if pkg.fromExternalModule() && !pathIncluded[pkg.mod.Path] {
   715  			roots = append(roots, pkg.mod)
   716  			pathIncluded[pkg.mod.Path] = true
   717  		}
   718  		queue = append(queue, pkg)
   719  		queued[pkg] = true
   720  	}
   721  	module.Sort(roots)
   722  	tidy := newRequirements(pruned, roots, direct)
   723  
   724  	for len(queue) > 0 {
   725  		roots = tidy.rootModules
   726  		mg, err := tidy.Graph(ctx)
   727  		if err != nil {
   728  			return nil, err
   729  		}
   730  
   731  		prevQueue := queue
   732  		queue = nil
   733  		for _, pkg := range prevQueue {
   734  			m := pkg.mod
   735  			if m.Path == "" {
   736  				continue
   737  			}
   738  			for _, dep := range pkg.imports {
   739  				if !queued[dep] {
   740  					queue = append(queue, dep)
   741  					queued[dep] = true
   742  				}
   743  			}
   744  			if pkg.test != nil && !queued[pkg.test] {
   745  				queue = append(queue, pkg.test)
   746  				queued[pkg.test] = true
   747  			}
   748  			if !pathIncluded[m.Path] {
   749  				if s := mg.Selected(m.Path); cmpVersion(s, m.Version) < 0 {
   750  					roots = append(roots, m)
   751  				}
   752  				pathIncluded[m.Path] = true
   753  			}
   754  		}
   755  
   756  		if len(roots) > len(tidy.rootModules) {
   757  			module.Sort(roots)
   758  			tidy = newRequirements(pruned, roots, tidy.direct)
   759  		}
   760  	}
   761  
   762  	_, err := tidy.Graph(ctx)
   763  	if err != nil {
   764  		return nil, err
   765  	}
   766  	return tidy, nil
   767  }
   768  
   769  // updatePrunedRoots returns a set of root requirements that maintains the
   770  // invariants of the go.mod file needed to support graph pruning:
   771  //
   772  // 	1. The selected version of the module providing each package marked with
   773  // 	   either pkgInAll or pkgIsRoot is included as a root.
   774  // 	   Note that certain root patterns (such as '...') may explode the root set
   775  // 	   to contain every module that provides any package imported (or merely
   776  // 	   required) by any other module.
   777  // 	2. Each root appears only once, at the selected version of its path
   778  // 	   (if rs.graph is non-nil) or at the highest version otherwise present as a
   779  // 	   root (otherwise).
   780  // 	3. Every module path that appears as a root in rs remains a root.
   781  // 	4. Every version in add is selected at its given version unless upgraded by
   782  // 	   (the dependencies of) an existing root or another module in add.
   783  //
   784  // The packages in pkgs are assumed to have been loaded from either the roots of
   785  // rs or the modules selected in the graph of rs.
   786  //
   787  // The above invariants together imply the graph-pruning invariants for the
   788  // go.mod file:
   789  //
   790  // 	1. (The import invariant.) Every module that provides a package transitively
   791  // 	   imported by any package or test in the main module is included as a root.
   792  // 	   This follows by induction from (1) and (3) above. Transitively-imported
   793  // 	   packages loaded during this invocation are marked with pkgInAll (1),
   794  // 	   and by hypothesis any transitively-imported packages loaded in previous
   795  // 	   invocations were already roots in rs (3).
   796  //
   797  // 	2. (The argument invariant.) Every module that provides a package matching
   798  // 	   an explicit package pattern is included as a root. This follows directly
   799  // 	   from (1): packages matching explicit package patterns are marked with
   800  // 	   pkgIsRoot.
   801  //
   802  // 	3. (The completeness invariant.) Every module that contributed any package
   803  // 	   to the build is required by either the main module or one of the modules
   804  // 	   it requires explicitly. This invariant is left up to the caller, who must
   805  // 	   not load packages from outside the module graph but may add roots to the
   806  // 	   graph, but is facilited by (3). If the caller adds roots to the graph in
   807  // 	   order to resolve missing packages, then updatePrunedRoots will retain them,
   808  // 	   the selected versions of those roots cannot regress, and they will
   809  // 	   eventually be written back to the main module's go.mod file.
   810  //
   811  // (See https://golang.org/design/36460-lazy-module-loading#invariants for more
   812  // detail.)
   813  func updatePrunedRoots(ctx context.Context, direct map[string]bool, rs *Requirements, pkgs []*loadPkg, add []module.Version, rootsImported bool) (*Requirements, error) {
   814  	roots := rs.rootModules
   815  	rootsUpgraded := false
   816  
   817  	spotCheckRoot := map[module.Version]bool{}
   818  
   819  	// “The selected version of the module providing each package marked with
   820  	// either pkgInAll or pkgIsRoot is included as a root.”
   821  	needSort := false
   822  	for _, pkg := range pkgs {
   823  		if !pkg.fromExternalModule() {
   824  			// pkg was not loaded from a module dependency, so we don't need
   825  			// to do anything special to maintain that dependency.
   826  			continue
   827  		}
   828  
   829  		switch {
   830  		case pkg.flags.has(pkgInAll):
   831  			// pkg is transitively imported by a package or test in the main module.
   832  			// We need to promote the module that maintains it to a root: if some
   833  			// other module depends on the main module, and that other module also
   834  			// uses a pruned module graph, it will expect to find all of our
   835  			// transitive dependencies by reading just our go.mod file, not the go.mod
   836  			// files of everything we depend on.
   837  			//
   838  			// (This is the “import invariant” that makes graph pruning possible.)
   839  
   840  		case rootsImported && pkg.flags.has(pkgFromRoot):
   841  			// pkg is a transitive dependency of some root, and we are treating the
   842  			// roots as if they are imported by the main module (as in 'go get').
   843  
   844  		case pkg.flags.has(pkgIsRoot):
   845  			// pkg is a root of the package-import graph. (Generally this means that
   846  			// it matches a command-line argument.) We want future invocations of the
   847  			// 'go' command — such as 'go test' on the same package — to continue to
   848  			// use the same versions of its dependencies that we are using right now.
   849  			// So we need to bring this package's dependencies inside the pruned
   850  			// module graph.
   851  			//
   852  			// Making the module containing this package a root of the module graph
   853  			// does exactly that: if the module containing the package supports graph
   854  			// pruning then it should satisfy the import invariant itself, so all of
   855  			// its dependencies should be in its go.mod file, and if the module
   856  			// containing the package does not support pruning then if we make it a
   857  			// root we will load all of its (unpruned) transitive dependencies into
   858  			// the module graph.
   859  			//
   860  			// (This is the “argument invariant”, and is important for
   861  			// reproducibility.)
   862  
   863  		default:
   864  			// pkg is a dependency of some other package outside of the main module.
   865  			// As far as we know it's not relevant to the main module (and thus not
   866  			// relevant to consumers of the main module either), and its dependencies
   867  			// should already be in the module graph — included in the dependencies of
   868  			// the package that imported it.
   869  			continue
   870  		}
   871  
   872  		if _, ok := rs.rootSelected(pkg.mod.Path); ok {
   873  			// It is possible that the main module's go.mod file is incomplete or
   874  			// otherwise erroneous — for example, perhaps the author forgot to 'git
   875  			// add' their updated go.mod file after adding a new package import, or
   876  			// perhaps they made an edit to the go.mod file using a third-party tool
   877  			// ('git merge'?) that doesn't maintain consistency for module
   878  			// dependencies. If that happens, ideally we want to detect the missing
   879  			// requirements and fix them up here.
   880  			//
   881  			// However, we also need to be careful not to be too aggressive. For
   882  			// transitive dependencies of external tests, the go.mod file for the
   883  			// module containing the test itself is expected to provide all of the
   884  			// relevant dependencies, and we explicitly don't want to pull in
   885  			// requirements on *irrelevant* requirements that happen to occur in the
   886  			// go.mod files for these transitive-test-only dependencies. (See the test
   887  			// in mod_lazy_test_horizon.txt for a concrete example.
   888  			//
   889  			// The “goldilocks zone” seems to be to spot-check exactly the same
   890  			// modules that we promote to explicit roots: namely, those that provide
   891  			// packages transitively imported by the main module, and those that
   892  			// provide roots of the package-import graph. That will catch erroneous
   893  			// edits to the main module's go.mod file and inconsistent requirements in
   894  			// dependencies that provide imported packages, but will ignore erroneous
   895  			// or misleading requirements in dependencies that aren't obviously
   896  			// relevant to the packages in the main module.
   897  			spotCheckRoot[pkg.mod] = true
   898  		} else {
   899  			roots = append(roots, pkg.mod)
   900  			rootsUpgraded = true
   901  			// The roots slice was initially sorted because rs.rootModules was sorted,
   902  			// but the root we just added could be out of order.
   903  			needSort = true
   904  		}
   905  	}
   906  
   907  	for _, m := range add {
   908  		if v, ok := rs.rootSelected(m.Path); !ok || cmpVersion(v, m.Version) < 0 {
   909  			roots = append(roots, m)
   910  			rootsUpgraded = true
   911  			needSort = true
   912  		}
   913  	}
   914  	if needSort {
   915  		module.Sort(roots)
   916  	}
   917  
   918  	// "Each root appears only once, at the selected version of its path ….”
   919  	for {
   920  		var mg *ModuleGraph
   921  		if rootsUpgraded {
   922  			// We've added or upgraded one or more roots, so load the full module
   923  			// graph so that we can update those roots to be consistent with other
   924  			// requirements.
   925  			if mustHaveCompleteRequirements() {
   926  				// Our changes to the roots may have moved dependencies into or out of
   927  				// the graph-pruning horizon, which could in turn change the selected
   928  				// versions of other modules. (For pruned modules adding or removing an
   929  				// explicit root is a semantic change, not just a cosmetic one.)
   930  				return rs, errGoModDirty
   931  			}
   932  
   933  			rs = newRequirements(pruned, roots, direct)
   934  			var err error
   935  			mg, err = rs.Graph(ctx)
   936  			if err != nil {
   937  				return rs, err
   938  			}
   939  		} else {
   940  			// Since none of the roots have been upgraded, we have no reason to
   941  			// suspect that they are inconsistent with the requirements of any other
   942  			// roots. Only look at the full module graph if we've already loaded it;
   943  			// otherwise, just spot-check the explicit requirements of the roots from
   944  			// which we loaded packages.
   945  			if rs.graph.Load() != nil {
   946  				// We've already loaded the full module graph, which includes the
   947  				// requirements of all of the root modules — even the transitive
   948  				// requirements, if they are unpruned!
   949  				mg, _ = rs.Graph(ctx)
   950  			} else if cfg.BuildMod == "vendor" {
   951  				// We can't spot-check the requirements of other modules because we
   952  				// don't in general have their go.mod files available in the vendor
   953  				// directory. (Fortunately this case is impossible, because mg.graph is
   954  				// always non-nil in vendor mode!)
   955  				panic("internal error: rs.graph is unexpectedly nil with -mod=vendor")
   956  			} else if !spotCheckRoots(ctx, rs, spotCheckRoot) {
   957  				// We spot-checked the explicit requirements of the roots that are
   958  				// relevant to the packages we've loaded. Unfortunately, they're
   959  				// inconsistent in some way; we need to load the full module graph
   960  				// so that we can fix the roots properly.
   961  				var err error
   962  				mg, err = rs.Graph(ctx)
   963  				if err != nil {
   964  					return rs, err
   965  				}
   966  			}
   967  		}
   968  
   969  		roots = make([]module.Version, 0, len(rs.rootModules))
   970  		rootsUpgraded = false
   971  		inRootPaths := make(map[string]bool, len(rs.rootModules)+1)
   972  		for _, mm := range MainModules.Versions() {
   973  			inRootPaths[mm.Path] = true
   974  		}
   975  		for _, m := range rs.rootModules {
   976  			if inRootPaths[m.Path] {
   977  				// This root specifies a redundant path. We already retained the
   978  				// selected version of this path when we saw it before, so omit the
   979  				// redundant copy regardless of its version.
   980  				//
   981  				// When we read the full module graph, we include the dependencies of
   982  				// every root even if that root is redundant. That better preserves
   983  				// reproducibility if, say, some automated tool adds a redundant
   984  				// 'require' line and then runs 'go mod tidy' to try to make everything
   985  				// consistent, since the requirements of the older version are carried
   986  				// over.
   987  				//
   988  				// So omitting a root that was previously present may *reduce* the
   989  				// selected versions of non-roots, but merely removing a requirement
   990  				// cannot *increase* the selected versions of other roots as a result —
   991  				// we don't need to mark this change as an upgrade. (This particular
   992  				// change cannot invalidate any other roots.)
   993  				continue
   994  			}
   995  
   996  			var v string
   997  			if mg == nil {
   998  				v, _ = rs.rootSelected(m.Path)
   999  			} else {
  1000  				v = mg.Selected(m.Path)
  1001  			}
  1002  			roots = append(roots, module.Version{Path: m.Path, Version: v})
  1003  			inRootPaths[m.Path] = true
  1004  			if v != m.Version {
  1005  				rootsUpgraded = true
  1006  			}
  1007  		}
  1008  		// Note that rs.rootModules was already sorted by module path and version,
  1009  		// and we appended to the roots slice in the same order and guaranteed that
  1010  		// each path has only one version, so roots is also sorted by module path
  1011  		// and (trivially) version.
  1012  
  1013  		if !rootsUpgraded {
  1014  			if cfg.BuildMod != "mod" {
  1015  				// The only changes to the root set (if any) were to remove duplicates.
  1016  				// The requirements are consistent (if perhaps redundant), so keep the
  1017  				// original rs to preserve its ModuleGraph.
  1018  				return rs, nil
  1019  			}
  1020  			// The root set has converged: every root going into this iteration was
  1021  			// already at its selected version, although we have have removed other
  1022  			// (redundant) roots for the same path.
  1023  			break
  1024  		}
  1025  	}
  1026  
  1027  	if rs.pruning == pruned && reflect.DeepEqual(roots, rs.rootModules) && reflect.DeepEqual(direct, rs.direct) {
  1028  		// The root set is unchanged and rs was already pruned, so keep rs to
  1029  		// preserve its cached ModuleGraph (if any).
  1030  		return rs, nil
  1031  	}
  1032  	return newRequirements(pruned, roots, direct), nil
  1033  }
  1034  
  1035  // spotCheckRoots reports whether the versions of the roots in rs satisfy the
  1036  // explicit requirements of the modules in mods.
  1037  func spotCheckRoots(ctx context.Context, rs *Requirements, mods map[module.Version]bool) bool {
  1038  	ctx, cancel := context.WithCancel(ctx)
  1039  	defer cancel()
  1040  
  1041  	work := par.NewQueue(runtime.GOMAXPROCS(0))
  1042  	for m := range mods {
  1043  		m := m
  1044  		work.Add(func() {
  1045  			if ctx.Err() != nil {
  1046  				return
  1047  			}
  1048  
  1049  			summary, err := goModSummary(m)
  1050  			if err != nil {
  1051  				cancel()
  1052  				return
  1053  			}
  1054  
  1055  			for _, r := range summary.require {
  1056  				if v, ok := rs.rootSelected(r.Path); ok && cmpVersion(v, r.Version) < 0 {
  1057  					cancel()
  1058  					return
  1059  				}
  1060  			}
  1061  		})
  1062  	}
  1063  	<-work.Idle()
  1064  
  1065  	if ctx.Err() != nil {
  1066  		// Either we failed a spot-check, or the caller no longer cares about our
  1067  		// answer anyway.
  1068  		return false
  1069  	}
  1070  
  1071  	return true
  1072  }
  1073  
  1074  // tidyUnprunedRoots returns a minimal set of root requirements that maintains
  1075  // the selected version of every module that provided or lexically could have
  1076  // provided a package in pkgs, and includes the selected version of every such
  1077  // module in direct as a root.
  1078  func tidyUnprunedRoots(ctx context.Context, mainModule module.Version, direct map[string]bool, pkgs []*loadPkg) (*Requirements, error) {
  1079  	var (
  1080  		// keep is a set of of modules that provide packages or are needed to
  1081  		// disambiguate imports.
  1082  		keep     []module.Version
  1083  		keptPath = map[string]bool{}
  1084  
  1085  		// rootPaths is a list of module paths that provide packages directly
  1086  		// imported from the main module. They should be included as roots.
  1087  		rootPaths   []string
  1088  		inRootPaths = map[string]bool{}
  1089  
  1090  		// altMods is a set of paths of modules that lexically could have provided
  1091  		// imported packages. It may be okay to remove these from the list of
  1092  		// explicit requirements if that removes them from the module graph. If they
  1093  		// are present in the module graph reachable from rootPaths, they must not
  1094  		// be at a lower version. That could cause a missing sum error or a new
  1095  		// import ambiguity.
  1096  		//
  1097  		// For example, suppose a developer rewrites imports from example.com/m to
  1098  		// example.com/m/v2, then runs 'go mod tidy'. Tidy may delete the
  1099  		// requirement on example.com/m if there is no other transitive requirement
  1100  		// on it. However, if example.com/m were downgraded to a version not in
  1101  		// go.sum, when package example.com/m/v2/p is loaded, we'd get an error
  1102  		// trying to disambiguate the import, since we can't check example.com/m
  1103  		// without its sum. See #47738.
  1104  		altMods = map[string]string{}
  1105  	)
  1106  	for _, pkg := range pkgs {
  1107  		if !pkg.fromExternalModule() {
  1108  			continue
  1109  		}
  1110  		if m := pkg.mod; !keptPath[m.Path] {
  1111  			keep = append(keep, m)
  1112  			keptPath[m.Path] = true
  1113  			if direct[m.Path] && !inRootPaths[m.Path] {
  1114  				rootPaths = append(rootPaths, m.Path)
  1115  				inRootPaths[m.Path] = true
  1116  			}
  1117  		}
  1118  		for _, m := range pkg.altMods {
  1119  			altMods[m.Path] = m.Version
  1120  		}
  1121  	}
  1122  
  1123  	// Construct a build list with a minimal set of roots.
  1124  	// This may remove or downgrade modules in altMods.
  1125  	reqs := &mvsReqs{roots: keep}
  1126  	min, err := mvs.Req(mainModule, rootPaths, reqs)
  1127  	if err != nil {
  1128  		return nil, err
  1129  	}
  1130  	buildList, err := mvs.BuildList([]module.Version{mainModule}, reqs)
  1131  	if err != nil {
  1132  		return nil, err
  1133  	}
  1134  
  1135  	// Check if modules in altMods were downgraded but not removed.
  1136  	// If so, add them to roots, which will retain an "// indirect" requirement
  1137  	// in go.mod. See comment on altMods above.
  1138  	keptAltMod := false
  1139  	for _, m := range buildList {
  1140  		if v, ok := altMods[m.Path]; ok && semver.Compare(m.Version, v) < 0 {
  1141  			keep = append(keep, module.Version{Path: m.Path, Version: v})
  1142  			keptAltMod = true
  1143  		}
  1144  	}
  1145  	if keptAltMod {
  1146  		// We must run mvs.Req again instead of simply adding altMods to min.
  1147  		// It's possible that a requirement in altMods makes some other
  1148  		// explicit indirect requirement unnecessary.
  1149  		reqs.roots = keep
  1150  		min, err = mvs.Req(mainModule, rootPaths, reqs)
  1151  		if err != nil {
  1152  			return nil, err
  1153  		}
  1154  	}
  1155  
  1156  	return newRequirements(unpruned, min, direct), nil
  1157  }
  1158  
  1159  // updateUnprunedRoots returns a set of root requirements that includes the selected
  1160  // version of every module path in direct as a root, and maintains the selected
  1161  // version of every module selected in the graph of rs.
  1162  //
  1163  // The roots are updated such that:
  1164  //
  1165  // 	1. The selected version of every module path in direct is included as a root
  1166  // 	   (if it is not "none").
  1167  // 	2. Each root is the selected version of its path. (We say that such a root
  1168  // 	   set is “consistent”.)
  1169  // 	3. Every version selected in the graph of rs remains selected unless upgraded
  1170  // 	   by a dependency in add.
  1171  // 	4. Every version in add is selected at its given version unless upgraded by
  1172  // 	   (the dependencies of) an existing root or another module in add.
  1173  func updateUnprunedRoots(ctx context.Context, direct map[string]bool, rs *Requirements, add []module.Version) (*Requirements, error) {
  1174  	mg, err := rs.Graph(ctx)
  1175  	if err != nil {
  1176  		// We can't ignore errors in the module graph even if the user passed the -e
  1177  		// flag to try to push past them. If we can't load the complete module
  1178  		// dependencies, then we can't reliably compute a minimal subset of them.
  1179  		return rs, err
  1180  	}
  1181  
  1182  	if mustHaveCompleteRequirements() {
  1183  		// Instead of actually updating the requirements, just check that no updates
  1184  		// are needed.
  1185  		if rs == nil {
  1186  			// We're being asked to reconstruct the requirements from scratch,
  1187  			// but we aren't even allowed to modify them.
  1188  			return rs, errGoModDirty
  1189  		}
  1190  		for _, m := range rs.rootModules {
  1191  			if m.Version != mg.Selected(m.Path) {
  1192  				// The root version v is misleading: the actual selected version is higher.
  1193  				return rs, errGoModDirty
  1194  			}
  1195  		}
  1196  		for _, m := range add {
  1197  			if m.Version != mg.Selected(m.Path) {
  1198  				return rs, errGoModDirty
  1199  			}
  1200  		}
  1201  		for mPath := range direct {
  1202  			if _, ok := rs.rootSelected(mPath); !ok {
  1203  				// Module m is supposed to be listed explicitly, but isn't.
  1204  				//
  1205  				// Note that this condition is also detected (and logged with more
  1206  				// detail) earlier during package loading, so it shouldn't actually be
  1207  				// possible at this point — this is just a defense in depth.
  1208  				return rs, errGoModDirty
  1209  			}
  1210  		}
  1211  
  1212  		// No explicit roots are missing and all roots are already at the versions
  1213  		// we want to keep. Any other changes we would make are purely cosmetic,
  1214  		// such as pruning redundant indirect dependencies. Per issue #34822, we
  1215  		// ignore cosmetic changes when we cannot update the go.mod file.
  1216  		return rs, nil
  1217  	}
  1218  
  1219  	var (
  1220  		rootPaths   []string // module paths that should be included as roots
  1221  		inRootPaths = map[string]bool{}
  1222  	)
  1223  	for _, root := range rs.rootModules {
  1224  		// If the selected version of the root is the same as what was already
  1225  		// listed in the go.mod file, retain it as a root (even if redundant) to
  1226  		// avoid unnecessary churn. (See https://golang.org/issue/34822.)
  1227  		//
  1228  		// We do this even for indirect requirements, since we don't know why they
  1229  		// were added and they could become direct at any time.
  1230  		if !inRootPaths[root.Path] && mg.Selected(root.Path) == root.Version {
  1231  			rootPaths = append(rootPaths, root.Path)
  1232  			inRootPaths[root.Path] = true
  1233  		}
  1234  	}
  1235  
  1236  	// “The selected version of every module path in direct is included as a root.”
  1237  	//
  1238  	// This is only for convenience and clarity for end users: in an unpruned module,
  1239  	// the choice of explicit vs. implicit dependency has no impact on MVS
  1240  	// selection (for itself or any other module).
  1241  	keep := append(mg.BuildList()[MainModules.Len():], add...)
  1242  	for _, m := range keep {
  1243  		if direct[m.Path] && !inRootPaths[m.Path] {
  1244  			rootPaths = append(rootPaths, m.Path)
  1245  			inRootPaths[m.Path] = true
  1246  		}
  1247  	}
  1248  
  1249  	var roots []module.Version
  1250  	for _, mainModule := range MainModules.Versions() {
  1251  		min, err := mvs.Req(mainModule, rootPaths, &mvsReqs{roots: keep})
  1252  		if err != nil {
  1253  			return rs, err
  1254  		}
  1255  		roots = append(roots, min...)
  1256  	}
  1257  	if MainModules.Len() > 1 {
  1258  		module.Sort(roots)
  1259  	}
  1260  	if rs.pruning == unpruned && reflect.DeepEqual(roots, rs.rootModules) && reflect.DeepEqual(direct, rs.direct) {
  1261  		// The root set is unchanged and rs was already unpruned, so keep rs to
  1262  		// preserve its cached ModuleGraph (if any).
  1263  		return rs, nil
  1264  	}
  1265  
  1266  	return newRequirements(unpruned, roots, direct), nil
  1267  }
  1268  
  1269  // convertPruning returns a version of rs with the given pruning behavior.
  1270  // If rs already has the given pruning, convertPruning returns rs unmodified.
  1271  func convertPruning(ctx context.Context, rs *Requirements, pruning modPruning) (*Requirements, error) {
  1272  	if rs.pruning == pruning {
  1273  		return rs, nil
  1274  	} else if rs.pruning == workspace || pruning == workspace {
  1275  		panic("attempthing to convert to/from workspace pruning and another pruning type")
  1276  	}
  1277  
  1278  	if pruning == unpruned {
  1279  		// We are converting a pruned module to an unpruned one. The roots of a
  1280  		// ppruned module graph are a superset of the roots of an unpruned one, so
  1281  		// we don't need to add any new roots — we just need to drop the ones that
  1282  		// are redundant, which is exactly what updateUnprunedRoots does.
  1283  		return updateUnprunedRoots(ctx, rs.direct, rs, nil)
  1284  	}
  1285  
  1286  	// We are converting an unpruned module to a pruned one.
  1287  	//
  1288  	// An unpruned module graph includes the transitive dependencies of every
  1289  	// module in the build list. As it turns out, we can express that as a pruned
  1290  	// root set! “Include the transitive dependencies of every module in the build
  1291  	// list” is exactly what happens in a pruned module if we promote every module
  1292  	// in the build list to a root.
  1293  	mg, err := rs.Graph(ctx)
  1294  	if err != nil {
  1295  		return rs, err
  1296  	}
  1297  	return newRequirements(pruned, mg.BuildList()[MainModules.Len():], rs.direct), nil
  1298  }
  1299  

View as plain text