Source file src/cmd/internal/obj/s390x/asmz.go

     1  // Based on cmd/internal/obj/ppc64/asm9.go.
     2  //
     3  //    Copyright © 1994-1999 Lucent Technologies Inc.  All rights reserved.
     4  //    Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net)
     5  //    Portions Copyright © 1997-1999 Vita Nuova Limited
     6  //    Portions Copyright © 2000-2008 Vita Nuova Holdings Limited (www.vitanuova.com)
     7  //    Portions Copyright © 2004,2006 Bruce Ellis
     8  //    Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net)
     9  //    Revisions Copyright © 2000-2008 Lucent Technologies Inc. and others
    10  //    Portions Copyright © 2009 The Go Authors. All rights reserved.
    11  //
    12  // Permission is hereby granted, free of charge, to any person obtaining a copy
    13  // of this software and associated documentation files (the "Software"), to deal
    14  // in the Software without restriction, including without limitation the rights
    15  // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
    16  // copies of the Software, and to permit persons to whom the Software is
    17  // furnished to do so, subject to the following conditions:
    18  //
    19  // The above copyright notice and this permission notice shall be included in
    20  // all copies or substantial portions of the Software.
    21  //
    22  // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
    23  // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    24  // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
    25  // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
    26  // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
    27  // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
    28  // THE SOFTWARE.
    29  
    30  package s390x
    31  
    32  import (
    33  	"cmd/internal/obj"
    34  	"cmd/internal/objabi"
    35  	"fmt"
    36  	"log"
    37  	"math"
    38  	"sort"
    39  )
    40  
    41  // ctxtz holds state while assembling a single function.
    42  // Each function gets a fresh ctxtz.
    43  // This allows for multiple functions to be safely concurrently assembled.
    44  type ctxtz struct {
    45  	ctxt       *obj.Link
    46  	newprog    obj.ProgAlloc
    47  	cursym     *obj.LSym
    48  	autosize   int32
    49  	instoffset int64
    50  	pc         int64
    51  }
    52  
    53  // instruction layout.
    54  const (
    55  	funcAlign = 16
    56  )
    57  
    58  type Optab struct {
    59  	as obj.As // opcode
    60  	i  uint8  // handler index
    61  	a1 uint8  // From
    62  	a2 uint8  // Reg
    63  	a3 uint8  // RestArgs[0]
    64  	a4 uint8  // RestArgs[1]
    65  	a5 uint8  // RestArgs[2]
    66  	a6 uint8  // To
    67  }
    68  
    69  var optab = []Optab{
    70  	// zero-length instructions
    71  	{i: 0, as: obj.ATEXT, a1: C_ADDR, a6: C_TEXTSIZE},
    72  	{i: 0, as: obj.ATEXT, a1: C_ADDR, a3: C_LCON, a6: C_TEXTSIZE},
    73  	{i: 0, as: obj.APCDATA, a1: C_LCON, a6: C_LCON},
    74  	{i: 0, as: obj.AFUNCDATA, a1: C_SCON, a6: C_ADDR},
    75  	{i: 0, as: obj.ANOP},
    76  	{i: 0, as: obj.ANOP, a1: C_SAUTO},
    77  
    78  	// move register
    79  	{i: 1, as: AMOVD, a1: C_REG, a6: C_REG},
    80  	{i: 1, as: AMOVB, a1: C_REG, a6: C_REG},
    81  	{i: 1, as: AMOVBZ, a1: C_REG, a6: C_REG},
    82  	{i: 1, as: AMOVW, a1: C_REG, a6: C_REG},
    83  	{i: 1, as: AMOVWZ, a1: C_REG, a6: C_REG},
    84  	{i: 1, as: AFMOVD, a1: C_FREG, a6: C_FREG},
    85  	{i: 1, as: AMOVDBR, a1: C_REG, a6: C_REG},
    86  
    87  	// load constant
    88  	{i: 26, as: AMOVD, a1: C_LACON, a6: C_REG},
    89  	{i: 26, as: AMOVW, a1: C_LACON, a6: C_REG},
    90  	{i: 26, as: AMOVWZ, a1: C_LACON, a6: C_REG},
    91  	{i: 3, as: AMOVD, a1: C_DCON, a6: C_REG},
    92  	{i: 3, as: AMOVW, a1: C_DCON, a6: C_REG},
    93  	{i: 3, as: AMOVWZ, a1: C_DCON, a6: C_REG},
    94  	{i: 3, as: AMOVB, a1: C_DCON, a6: C_REG},
    95  	{i: 3, as: AMOVBZ, a1: C_DCON, a6: C_REG},
    96  
    97  	// store constant
    98  	{i: 72, as: AMOVD, a1: C_SCON, a6: C_LAUTO},
    99  	{i: 72, as: AMOVD, a1: C_ADDCON, a6: C_LAUTO},
   100  	{i: 72, as: AMOVW, a1: C_SCON, a6: C_LAUTO},
   101  	{i: 72, as: AMOVW, a1: C_ADDCON, a6: C_LAUTO},
   102  	{i: 72, as: AMOVWZ, a1: C_SCON, a6: C_LAUTO},
   103  	{i: 72, as: AMOVWZ, a1: C_ADDCON, a6: C_LAUTO},
   104  	{i: 72, as: AMOVB, a1: C_SCON, a6: C_LAUTO},
   105  	{i: 72, as: AMOVB, a1: C_ADDCON, a6: C_LAUTO},
   106  	{i: 72, as: AMOVBZ, a1: C_SCON, a6: C_LAUTO},
   107  	{i: 72, as: AMOVBZ, a1: C_ADDCON, a6: C_LAUTO},
   108  	{i: 72, as: AMOVD, a1: C_SCON, a6: C_LOREG},
   109  	{i: 72, as: AMOVD, a1: C_ADDCON, a6: C_LOREG},
   110  	{i: 72, as: AMOVW, a1: C_SCON, a6: C_LOREG},
   111  	{i: 72, as: AMOVW, a1: C_ADDCON, a6: C_LOREG},
   112  	{i: 72, as: AMOVWZ, a1: C_SCON, a6: C_LOREG},
   113  	{i: 72, as: AMOVWZ, a1: C_ADDCON, a6: C_LOREG},
   114  	{i: 72, as: AMOVB, a1: C_SCON, a6: C_LOREG},
   115  	{i: 72, as: AMOVB, a1: C_ADDCON, a6: C_LOREG},
   116  	{i: 72, as: AMOVBZ, a1: C_SCON, a6: C_LOREG},
   117  	{i: 72, as: AMOVBZ, a1: C_ADDCON, a6: C_LOREG},
   118  
   119  	// store
   120  	{i: 35, as: AMOVD, a1: C_REG, a6: C_LAUTO},
   121  	{i: 35, as: AMOVW, a1: C_REG, a6: C_LAUTO},
   122  	{i: 35, as: AMOVWZ, a1: C_REG, a6: C_LAUTO},
   123  	{i: 35, as: AMOVBZ, a1: C_REG, a6: C_LAUTO},
   124  	{i: 35, as: AMOVB, a1: C_REG, a6: C_LAUTO},
   125  	{i: 35, as: AMOVDBR, a1: C_REG, a6: C_LAUTO},
   126  	{i: 35, as: AMOVHBR, a1: C_REG, a6: C_LAUTO},
   127  	{i: 35, as: AMOVD, a1: C_REG, a6: C_LOREG},
   128  	{i: 35, as: AMOVW, a1: C_REG, a6: C_LOREG},
   129  	{i: 35, as: AMOVWZ, a1: C_REG, a6: C_LOREG},
   130  	{i: 35, as: AMOVBZ, a1: C_REG, a6: C_LOREG},
   131  	{i: 35, as: AMOVB, a1: C_REG, a6: C_LOREG},
   132  	{i: 35, as: AMOVDBR, a1: C_REG, a6: C_LOREG},
   133  	{i: 35, as: AMOVHBR, a1: C_REG, a6: C_LOREG},
   134  	{i: 74, as: AMOVD, a1: C_REG, a6: C_ADDR},
   135  	{i: 74, as: AMOVW, a1: C_REG, a6: C_ADDR},
   136  	{i: 74, as: AMOVWZ, a1: C_REG, a6: C_ADDR},
   137  	{i: 74, as: AMOVBZ, a1: C_REG, a6: C_ADDR},
   138  	{i: 74, as: AMOVB, a1: C_REG, a6: C_ADDR},
   139  
   140  	// load
   141  	{i: 36, as: AMOVD, a1: C_LAUTO, a6: C_REG},
   142  	{i: 36, as: AMOVW, a1: C_LAUTO, a6: C_REG},
   143  	{i: 36, as: AMOVWZ, a1: C_LAUTO, a6: C_REG},
   144  	{i: 36, as: AMOVBZ, a1: C_LAUTO, a6: C_REG},
   145  	{i: 36, as: AMOVB, a1: C_LAUTO, a6: C_REG},
   146  	{i: 36, as: AMOVDBR, a1: C_LAUTO, a6: C_REG},
   147  	{i: 36, as: AMOVHBR, a1: C_LAUTO, a6: C_REG},
   148  	{i: 36, as: AMOVD, a1: C_LOREG, a6: C_REG},
   149  	{i: 36, as: AMOVW, a1: C_LOREG, a6: C_REG},
   150  	{i: 36, as: AMOVWZ, a1: C_LOREG, a6: C_REG},
   151  	{i: 36, as: AMOVBZ, a1: C_LOREG, a6: C_REG},
   152  	{i: 36, as: AMOVB, a1: C_LOREG, a6: C_REG},
   153  	{i: 36, as: AMOVDBR, a1: C_LOREG, a6: C_REG},
   154  	{i: 36, as: AMOVHBR, a1: C_LOREG, a6: C_REG},
   155  	{i: 75, as: AMOVD, a1: C_ADDR, a6: C_REG},
   156  	{i: 75, as: AMOVW, a1: C_ADDR, a6: C_REG},
   157  	{i: 75, as: AMOVWZ, a1: C_ADDR, a6: C_REG},
   158  	{i: 75, as: AMOVBZ, a1: C_ADDR, a6: C_REG},
   159  	{i: 75, as: AMOVB, a1: C_ADDR, a6: C_REG},
   160  
   161  	// interlocked load and op
   162  	{i: 99, as: ALAAG, a1: C_REG, a2: C_REG, a6: C_LOREG},
   163  
   164  	// integer arithmetic
   165  	{i: 2, as: AADD, a1: C_REG, a2: C_REG, a6: C_REG},
   166  	{i: 2, as: AADD, a1: C_REG, a6: C_REG},
   167  	{i: 22, as: AADD, a1: C_LCON, a2: C_REG, a6: C_REG},
   168  	{i: 22, as: AADD, a1: C_LCON, a6: C_REG},
   169  	{i: 12, as: AADD, a1: C_LOREG, a6: C_REG},
   170  	{i: 12, as: AADD, a1: C_LAUTO, a6: C_REG},
   171  	{i: 21, as: ASUB, a1: C_LCON, a2: C_REG, a6: C_REG},
   172  	{i: 21, as: ASUB, a1: C_LCON, a6: C_REG},
   173  	{i: 12, as: ASUB, a1: C_LOREG, a6: C_REG},
   174  	{i: 12, as: ASUB, a1: C_LAUTO, a6: C_REG},
   175  	{i: 4, as: AMULHD, a1: C_REG, a6: C_REG},
   176  	{i: 4, as: AMULHD, a1: C_REG, a2: C_REG, a6: C_REG},
   177  	{i: 62, as: AMLGR, a1: C_REG, a6: C_REG},
   178  	{i: 2, as: ADIVW, a1: C_REG, a2: C_REG, a6: C_REG},
   179  	{i: 2, as: ADIVW, a1: C_REG, a6: C_REG},
   180  	{i: 10, as: ASUB, a1: C_REG, a2: C_REG, a6: C_REG},
   181  	{i: 10, as: ASUB, a1: C_REG, a6: C_REG},
   182  	{i: 47, as: ANEG, a1: C_REG, a6: C_REG},
   183  	{i: 47, as: ANEG, a6: C_REG},
   184  
   185  	// integer logical
   186  	{i: 6, as: AAND, a1: C_REG, a2: C_REG, a6: C_REG},
   187  	{i: 6, as: AAND, a1: C_REG, a6: C_REG},
   188  	{i: 23, as: AAND, a1: C_LCON, a6: C_REG},
   189  	{i: 12, as: AAND, a1: C_LOREG, a6: C_REG},
   190  	{i: 12, as: AAND, a1: C_LAUTO, a6: C_REG},
   191  	{i: 6, as: AANDW, a1: C_REG, a2: C_REG, a6: C_REG},
   192  	{i: 6, as: AANDW, a1: C_REG, a6: C_REG},
   193  	{i: 24, as: AANDW, a1: C_LCON, a6: C_REG},
   194  	{i: 12, as: AANDW, a1: C_LOREG, a6: C_REG},
   195  	{i: 12, as: AANDW, a1: C_LAUTO, a6: C_REG},
   196  	{i: 7, as: ASLD, a1: C_REG, a6: C_REG},
   197  	{i: 7, as: ASLD, a1: C_REG, a2: C_REG, a6: C_REG},
   198  	{i: 7, as: ASLD, a1: C_SCON, a2: C_REG, a6: C_REG},
   199  	{i: 7, as: ASLD, a1: C_SCON, a6: C_REG},
   200  	{i: 13, as: ARNSBG, a1: C_SCON, a3: C_SCON, a4: C_SCON, a5: C_REG, a6: C_REG},
   201  
   202  	// compare and swap
   203  	{i: 79, as: ACSG, a1: C_REG, a2: C_REG, a6: C_SOREG},
   204  
   205  	// floating point
   206  	{i: 32, as: AFADD, a1: C_FREG, a6: C_FREG},
   207  	{i: 33, as: AFABS, a1: C_FREG, a6: C_FREG},
   208  	{i: 33, as: AFABS, a6: C_FREG},
   209  	{i: 34, as: AFMADD, a1: C_FREG, a2: C_FREG, a6: C_FREG},
   210  	{i: 32, as: AFMUL, a1: C_FREG, a6: C_FREG},
   211  	{i: 36, as: AFMOVD, a1: C_LAUTO, a6: C_FREG},
   212  	{i: 36, as: AFMOVD, a1: C_LOREG, a6: C_FREG},
   213  	{i: 75, as: AFMOVD, a1: C_ADDR, a6: C_FREG},
   214  	{i: 35, as: AFMOVD, a1: C_FREG, a6: C_LAUTO},
   215  	{i: 35, as: AFMOVD, a1: C_FREG, a6: C_LOREG},
   216  	{i: 74, as: AFMOVD, a1: C_FREG, a6: C_ADDR},
   217  	{i: 67, as: AFMOVD, a1: C_ZCON, a6: C_FREG},
   218  	{i: 81, as: ALDGR, a1: C_REG, a6: C_FREG},
   219  	{i: 81, as: ALGDR, a1: C_FREG, a6: C_REG},
   220  	{i: 82, as: ACEFBRA, a1: C_REG, a6: C_FREG},
   221  	{i: 83, as: ACFEBRA, a1: C_FREG, a6: C_REG},
   222  	{i: 48, as: AFIEBR, a1: C_SCON, a2: C_FREG, a6: C_FREG},
   223  	{i: 49, as: ACPSDR, a1: C_FREG, a2: C_FREG, a6: C_FREG},
   224  	{i: 50, as: ALTDBR, a1: C_FREG, a6: C_FREG},
   225  	{i: 51, as: ATCDB, a1: C_FREG, a6: C_SCON},
   226  
   227  	// load symbol address (plus offset)
   228  	{i: 19, as: AMOVD, a1: C_SYMADDR, a6: C_REG},
   229  	{i: 93, as: AMOVD, a1: C_GOTADDR, a6: C_REG},
   230  	{i: 94, as: AMOVD, a1: C_TLS_LE, a6: C_REG},
   231  	{i: 95, as: AMOVD, a1: C_TLS_IE, a6: C_REG},
   232  
   233  	// system call
   234  	{i: 5, as: ASYSCALL},
   235  	{i: 77, as: ASYSCALL, a1: C_SCON},
   236  
   237  	// branch
   238  	{i: 16, as: ABEQ, a6: C_SBRA},
   239  	{i: 16, as: ABRC, a1: C_SCON, a6: C_SBRA},
   240  	{i: 11, as: ABR, a6: C_LBRA},
   241  	{i: 16, as: ABC, a1: C_SCON, a2: C_REG, a6: C_LBRA},
   242  	{i: 18, as: ABR, a6: C_REG},
   243  	{i: 18, as: ABR, a1: C_REG, a6: C_REG},
   244  	{i: 15, as: ABR, a6: C_ZOREG},
   245  	{i: 15, as: ABC, a6: C_ZOREG},
   246  
   247  	// compare and branch
   248  	{i: 89, as: ACGRJ, a1: C_SCON, a2: C_REG, a3: C_REG, a6: C_SBRA},
   249  	{i: 89, as: ACMPBEQ, a1: C_REG, a2: C_REG, a6: C_SBRA},
   250  	{i: 89, as: ACLGRJ, a1: C_SCON, a2: C_REG, a3: C_REG, a6: C_SBRA},
   251  	{i: 89, as: ACMPUBEQ, a1: C_REG, a2: C_REG, a6: C_SBRA},
   252  	{i: 90, as: ACGIJ, a1: C_SCON, a2: C_REG, a3: C_ADDCON, a6: C_SBRA},
   253  	{i: 90, as: ACGIJ, a1: C_SCON, a2: C_REG, a3: C_SCON, a6: C_SBRA},
   254  	{i: 90, as: ACMPBEQ, a1: C_REG, a3: C_ADDCON, a6: C_SBRA},
   255  	{i: 90, as: ACMPBEQ, a1: C_REG, a3: C_SCON, a6: C_SBRA},
   256  	{i: 90, as: ACLGIJ, a1: C_SCON, a2: C_REG, a3: C_ADDCON, a6: C_SBRA},
   257  	{i: 90, as: ACMPUBEQ, a1: C_REG, a3: C_ANDCON, a6: C_SBRA},
   258  
   259  	// branch on count
   260  	{i: 41, as: ABRCT, a1: C_REG, a6: C_SBRA},
   261  	{i: 41, as: ABRCTG, a1: C_REG, a6: C_SBRA},
   262  
   263  	// move on condition
   264  	{i: 17, as: AMOVDEQ, a1: C_REG, a6: C_REG},
   265  
   266  	// load on condition
   267  	{i: 25, as: ALOCGR, a1: C_SCON, a2: C_REG, a6: C_REG},
   268  
   269  	// find leftmost one
   270  	{i: 8, as: AFLOGR, a1: C_REG, a6: C_REG},
   271  
   272  	// population count
   273  	{i: 9, as: APOPCNT, a1: C_REG, a6: C_REG},
   274  
   275  	// compare
   276  	{i: 70, as: ACMP, a1: C_REG, a6: C_REG},
   277  	{i: 71, as: ACMP, a1: C_REG, a6: C_LCON},
   278  	{i: 70, as: ACMPU, a1: C_REG, a6: C_REG},
   279  	{i: 71, as: ACMPU, a1: C_REG, a6: C_LCON},
   280  	{i: 70, as: AFCMPO, a1: C_FREG, a6: C_FREG},
   281  	{i: 70, as: AFCMPO, a1: C_FREG, a2: C_REG, a6: C_FREG},
   282  
   283  	// test under mask
   284  	{i: 91, as: ATMHH, a1: C_REG, a6: C_ANDCON},
   285  
   286  	// insert program mask
   287  	{i: 92, as: AIPM, a1: C_REG},
   288  
   289  	// set program mask
   290  	{i: 76, as: ASPM, a1: C_REG},
   291  
   292  	// 32-bit access registers
   293  	{i: 68, as: AMOVW, a1: C_AREG, a6: C_REG},
   294  	{i: 68, as: AMOVWZ, a1: C_AREG, a6: C_REG},
   295  	{i: 69, as: AMOVW, a1: C_REG, a6: C_AREG},
   296  	{i: 69, as: AMOVWZ, a1: C_REG, a6: C_AREG},
   297  
   298  	// macros
   299  	{i: 96, as: ACLEAR, a1: C_LCON, a6: C_LOREG},
   300  	{i: 96, as: ACLEAR, a1: C_LCON, a6: C_LAUTO},
   301  
   302  	// load/store multiple
   303  	{i: 97, as: ASTMG, a1: C_REG, a2: C_REG, a6: C_LOREG},
   304  	{i: 97, as: ASTMG, a1: C_REG, a2: C_REG, a6: C_LAUTO},
   305  	{i: 98, as: ALMG, a1: C_LOREG, a2: C_REG, a6: C_REG},
   306  	{i: 98, as: ALMG, a1: C_LAUTO, a2: C_REG, a6: C_REG},
   307  
   308  	// bytes
   309  	{i: 40, as: ABYTE, a1: C_SCON},
   310  	{i: 40, as: AWORD, a1: C_LCON},
   311  	{i: 31, as: ADWORD, a1: C_LCON},
   312  	{i: 31, as: ADWORD, a1: C_DCON},
   313  
   314  	// fast synchronization
   315  	{i: 80, as: ASYNC},
   316  
   317  	// store clock
   318  	{i: 88, as: ASTCK, a6: C_SAUTO},
   319  	{i: 88, as: ASTCK, a6: C_SOREG},
   320  
   321  	// storage and storage
   322  	{i: 84, as: AMVC, a1: C_SCON, a3: C_LOREG, a6: C_LOREG},
   323  	{i: 84, as: AMVC, a1: C_SCON, a3: C_LOREG, a6: C_LAUTO},
   324  	{i: 84, as: AMVC, a1: C_SCON, a3: C_LAUTO, a6: C_LAUTO},
   325  
   326  	// address
   327  	{i: 85, as: ALARL, a1: C_LCON, a6: C_REG},
   328  	{i: 85, as: ALARL, a1: C_SYMADDR, a6: C_REG},
   329  	{i: 86, as: ALA, a1: C_SOREG, a6: C_REG},
   330  	{i: 86, as: ALA, a1: C_SAUTO, a6: C_REG},
   331  	{i: 87, as: AEXRL, a1: C_SYMADDR, a6: C_REG},
   332  
   333  	// undefined (deliberate illegal instruction)
   334  	{i: 78, as: obj.AUNDEF},
   335  
   336  	// 2 byte no-operation
   337  	{i: 66, as: ANOPH},
   338  
   339  	// vector instructions
   340  
   341  	// VRX store
   342  	{i: 100, as: AVST, a1: C_VREG, a6: C_SOREG},
   343  	{i: 100, as: AVST, a1: C_VREG, a6: C_SAUTO},
   344  	{i: 100, as: AVSTEG, a1: C_SCON, a2: C_VREG, a6: C_SOREG},
   345  	{i: 100, as: AVSTEG, a1: C_SCON, a2: C_VREG, a6: C_SAUTO},
   346  
   347  	// VRX load
   348  	{i: 101, as: AVL, a1: C_SOREG, a6: C_VREG},
   349  	{i: 101, as: AVL, a1: C_SAUTO, a6: C_VREG},
   350  	{i: 101, as: AVLEG, a1: C_SCON, a3: C_SOREG, a6: C_VREG},
   351  	{i: 101, as: AVLEG, a1: C_SCON, a3: C_SAUTO, a6: C_VREG},
   352  
   353  	// VRV scatter
   354  	{i: 102, as: AVSCEG, a1: C_SCON, a2: C_VREG, a6: C_SOREG},
   355  	{i: 102, as: AVSCEG, a1: C_SCON, a2: C_VREG, a6: C_SAUTO},
   356  
   357  	// VRV gather
   358  	{i: 103, as: AVGEG, a1: C_SCON, a3: C_SOREG, a6: C_VREG},
   359  	{i: 103, as: AVGEG, a1: C_SCON, a3: C_SAUTO, a6: C_VREG},
   360  
   361  	// VRS element shift/rotate and load gr to/from vr element
   362  	{i: 104, as: AVESLG, a1: C_SCON, a2: C_VREG, a6: C_VREG},
   363  	{i: 104, as: AVESLG, a1: C_REG, a2: C_VREG, a6: C_VREG},
   364  	{i: 104, as: AVESLG, a1: C_SCON, a6: C_VREG},
   365  	{i: 104, as: AVESLG, a1: C_REG, a6: C_VREG},
   366  	{i: 104, as: AVLGVG, a1: C_SCON, a2: C_VREG, a6: C_REG},
   367  	{i: 104, as: AVLGVG, a1: C_REG, a2: C_VREG, a6: C_REG},
   368  	{i: 104, as: AVLVGG, a1: C_SCON, a2: C_REG, a6: C_VREG},
   369  	{i: 104, as: AVLVGG, a1: C_REG, a2: C_REG, a6: C_VREG},
   370  
   371  	// VRS store multiple
   372  	{i: 105, as: AVSTM, a1: C_VREG, a2: C_VREG, a6: C_SOREG},
   373  	{i: 105, as: AVSTM, a1: C_VREG, a2: C_VREG, a6: C_SAUTO},
   374  
   375  	// VRS load multiple
   376  	{i: 106, as: AVLM, a1: C_SOREG, a2: C_VREG, a6: C_VREG},
   377  	{i: 106, as: AVLM, a1: C_SAUTO, a2: C_VREG, a6: C_VREG},
   378  
   379  	// VRS store with length
   380  	{i: 107, as: AVSTL, a1: C_REG, a2: C_VREG, a6: C_SOREG},
   381  	{i: 107, as: AVSTL, a1: C_REG, a2: C_VREG, a6: C_SAUTO},
   382  
   383  	// VRS load with length
   384  	{i: 108, as: AVLL, a1: C_REG, a3: C_SOREG, a6: C_VREG},
   385  	{i: 108, as: AVLL, a1: C_REG, a3: C_SAUTO, a6: C_VREG},
   386  
   387  	// VRI-a
   388  	{i: 109, as: AVGBM, a1: C_ANDCON, a6: C_VREG},
   389  	{i: 109, as: AVZERO, a6: C_VREG},
   390  	{i: 109, as: AVREPIG, a1: C_ADDCON, a6: C_VREG},
   391  	{i: 109, as: AVREPIG, a1: C_SCON, a6: C_VREG},
   392  	{i: 109, as: AVLEIG, a1: C_SCON, a3: C_ADDCON, a6: C_VREG},
   393  	{i: 109, as: AVLEIG, a1: C_SCON, a3: C_SCON, a6: C_VREG},
   394  
   395  	// VRI-b generate mask
   396  	{i: 110, as: AVGMG, a1: C_SCON, a3: C_SCON, a6: C_VREG},
   397  
   398  	// VRI-c replicate
   399  	{i: 111, as: AVREPG, a1: C_UCON, a2: C_VREG, a6: C_VREG},
   400  
   401  	// VRI-d element rotate and insert under mask and
   402  	// shift left double by byte
   403  	{i: 112, as: AVERIMG, a1: C_SCON, a2: C_VREG, a3: C_VREG, a6: C_VREG},
   404  	{i: 112, as: AVSLDB, a1: C_SCON, a2: C_VREG, a3: C_VREG, a6: C_VREG},
   405  
   406  	// VRI-d fp test data class immediate
   407  	{i: 113, as: AVFTCIDB, a1: C_SCON, a2: C_VREG, a6: C_VREG},
   408  
   409  	// VRR-a load reg
   410  	{i: 114, as: AVLR, a1: C_VREG, a6: C_VREG},
   411  
   412  	// VRR-a compare
   413  	{i: 115, as: AVECG, a1: C_VREG, a6: C_VREG},
   414  
   415  	// VRR-b
   416  	{i: 117, as: AVCEQG, a1: C_VREG, a2: C_VREG, a6: C_VREG},
   417  	{i: 117, as: AVFAEF, a1: C_VREG, a2: C_VREG, a6: C_VREG},
   418  	{i: 117, as: AVPKSG, a1: C_VREG, a2: C_VREG, a6: C_VREG},
   419  
   420  	// VRR-c
   421  	{i: 118, as: AVAQ, a1: C_VREG, a2: C_VREG, a6: C_VREG},
   422  	{i: 118, as: AVAQ, a1: C_VREG, a6: C_VREG},
   423  	{i: 118, as: AVNOT, a1: C_VREG, a6: C_VREG},
   424  	{i: 123, as: AVPDI, a1: C_SCON, a2: C_VREG, a3: C_VREG, a6: C_VREG},
   425  
   426  	// VRR-c shifts
   427  	{i: 119, as: AVERLLVG, a1: C_VREG, a2: C_VREG, a6: C_VREG},
   428  	{i: 119, as: AVERLLVG, a1: C_VREG, a6: C_VREG},
   429  
   430  	// VRR-d
   431  	{i: 120, as: AVACQ, a1: C_VREG, a2: C_VREG, a3: C_VREG, a6: C_VREG},
   432  
   433  	// VRR-e
   434  	{i: 121, as: AVSEL, a1: C_VREG, a2: C_VREG, a3: C_VREG, a6: C_VREG},
   435  
   436  	// VRR-f
   437  	{i: 122, as: AVLVGP, a1: C_REG, a2: C_REG, a6: C_VREG},
   438  }
   439  
   440  var oprange [ALAST & obj.AMask][]Optab
   441  
   442  var xcmp [C_NCLASS][C_NCLASS]bool
   443  
   444  func spanz(ctxt *obj.Link, cursym *obj.LSym, newprog obj.ProgAlloc) {
   445  	if ctxt.Retpoline {
   446  		ctxt.Diag("-spectre=ret not supported on s390x")
   447  		ctxt.Retpoline = false // don't keep printing
   448  	}
   449  
   450  	p := cursym.Func().Text
   451  	if p == nil || p.Link == nil { // handle external functions and ELF section symbols
   452  		return
   453  	}
   454  
   455  	if oprange[AORW&obj.AMask] == nil {
   456  		ctxt.Diag("s390x ops not initialized, call s390x.buildop first")
   457  	}
   458  
   459  	c := ctxtz{ctxt: ctxt, newprog: newprog, cursym: cursym, autosize: int32(p.To.Offset)}
   460  
   461  	buffer := make([]byte, 0)
   462  	changed := true
   463  	loop := 0
   464  	nrelocs0 := len(c.cursym.R)
   465  	for changed {
   466  		if loop > 100 {
   467  			c.ctxt.Diag("stuck in spanz loop")
   468  			break
   469  		}
   470  		changed = false
   471  		buffer = buffer[:0]
   472  		for i := range c.cursym.R[nrelocs0:] {
   473  			c.cursym.R[nrelocs0+i] = obj.Reloc{}
   474  		}
   475  		c.cursym.R = c.cursym.R[:nrelocs0] // preserve marker relocations generated by the compiler
   476  		for p := c.cursym.Func().Text; p != nil; p = p.Link {
   477  			pc := int64(len(buffer))
   478  			if pc != p.Pc {
   479  				changed = true
   480  			}
   481  			p.Pc = pc
   482  			c.pc = p.Pc
   483  			c.asmout(p, &buffer)
   484  			if pc == int64(len(buffer)) {
   485  				switch p.As {
   486  				case obj.ANOP, obj.AFUNCDATA, obj.APCDATA, obj.ATEXT:
   487  					// ok
   488  				default:
   489  					c.ctxt.Diag("zero-width instruction\n%v", p)
   490  				}
   491  			}
   492  		}
   493  		loop++
   494  	}
   495  
   496  	c.cursym.Size = int64(len(buffer))
   497  	if c.cursym.Size%funcAlign != 0 {
   498  		c.cursym.Size += funcAlign - (c.cursym.Size % funcAlign)
   499  	}
   500  	c.cursym.Grow(c.cursym.Size)
   501  	copy(c.cursym.P, buffer)
   502  
   503  	// Mark nonpreemptible instruction sequences.
   504  	// We use REGTMP as a scratch register during call injection,
   505  	// so instruction sequences that use REGTMP are unsafe to
   506  	// preempt asynchronously.
   507  	obj.MarkUnsafePoints(c.ctxt, c.cursym.Func().Text, c.newprog, c.isUnsafePoint, nil)
   508  }
   509  
   510  // Return whether p is an unsafe point.
   511  func (c *ctxtz) isUnsafePoint(p *obj.Prog) bool {
   512  	if p.From.Reg == REGTMP || p.To.Reg == REGTMP || p.Reg == REGTMP {
   513  		return true
   514  	}
   515  	for _, a := range p.RestArgs {
   516  		if a.Reg == REGTMP {
   517  			return true
   518  		}
   519  	}
   520  	return p.Mark&USETMP != 0
   521  }
   522  
   523  func isint32(v int64) bool {
   524  	return int64(int32(v)) == v
   525  }
   526  
   527  func isuint32(v uint64) bool {
   528  	return uint64(uint32(v)) == v
   529  }
   530  
   531  func (c *ctxtz) aclass(a *obj.Addr) int {
   532  	switch a.Type {
   533  	case obj.TYPE_NONE:
   534  		return C_NONE
   535  
   536  	case obj.TYPE_REG:
   537  		if REG_R0 <= a.Reg && a.Reg <= REG_R15 {
   538  			return C_REG
   539  		}
   540  		if REG_F0 <= a.Reg && a.Reg <= REG_F15 {
   541  			return C_FREG
   542  		}
   543  		if REG_AR0 <= a.Reg && a.Reg <= REG_AR15 {
   544  			return C_AREG
   545  		}
   546  		if REG_V0 <= a.Reg && a.Reg <= REG_V31 {
   547  			return C_VREG
   548  		}
   549  		return C_GOK
   550  
   551  	case obj.TYPE_MEM:
   552  		switch a.Name {
   553  		case obj.NAME_EXTERN,
   554  			obj.NAME_STATIC:
   555  			if a.Sym == nil {
   556  				// must have a symbol
   557  				break
   558  			}
   559  			c.instoffset = a.Offset
   560  			if a.Sym.Type == objabi.STLSBSS {
   561  				if c.ctxt.Flag_shared {
   562  					return C_TLS_IE // initial exec model
   563  				}
   564  				return C_TLS_LE // local exec model
   565  			}
   566  			return C_ADDR
   567  
   568  		case obj.NAME_GOTREF:
   569  			return C_GOTADDR
   570  
   571  		case obj.NAME_AUTO:
   572  			if a.Reg == REGSP {
   573  				// unset base register for better printing, since
   574  				// a.Offset is still relative to pseudo-SP.
   575  				a.Reg = obj.REG_NONE
   576  			}
   577  			c.instoffset = int64(c.autosize) + a.Offset
   578  			if c.instoffset >= -BIG && c.instoffset < BIG {
   579  				return C_SAUTO
   580  			}
   581  			return C_LAUTO
   582  
   583  		case obj.NAME_PARAM:
   584  			if a.Reg == REGSP {
   585  				// unset base register for better printing, since
   586  				// a.Offset is still relative to pseudo-FP.
   587  				a.Reg = obj.REG_NONE
   588  			}
   589  			c.instoffset = int64(c.autosize) + a.Offset + c.ctxt.FixedFrameSize()
   590  			if c.instoffset >= -BIG && c.instoffset < BIG {
   591  				return C_SAUTO
   592  			}
   593  			return C_LAUTO
   594  
   595  		case obj.NAME_NONE:
   596  			c.instoffset = a.Offset
   597  			if c.instoffset == 0 {
   598  				return C_ZOREG
   599  			}
   600  			if c.instoffset >= -BIG && c.instoffset < BIG {
   601  				return C_SOREG
   602  			}
   603  			return C_LOREG
   604  		}
   605  
   606  		return C_GOK
   607  
   608  	case obj.TYPE_TEXTSIZE:
   609  		return C_TEXTSIZE
   610  
   611  	case obj.TYPE_FCONST:
   612  		if f64, ok := a.Val.(float64); ok && math.Float64bits(f64) == 0 {
   613  			return C_ZCON
   614  		}
   615  		c.ctxt.Diag("cannot handle the floating point constant %v", a.Val)
   616  
   617  	case obj.TYPE_CONST,
   618  		obj.TYPE_ADDR:
   619  		switch a.Name {
   620  		case obj.NAME_NONE:
   621  			c.instoffset = a.Offset
   622  			if a.Reg != 0 {
   623  				if -BIG <= c.instoffset && c.instoffset <= BIG {
   624  					return C_SACON
   625  				}
   626  				if isint32(c.instoffset) {
   627  					return C_LACON
   628  				}
   629  				return C_DACON
   630  			}
   631  
   632  		case obj.NAME_EXTERN,
   633  			obj.NAME_STATIC:
   634  			s := a.Sym
   635  			if s == nil {
   636  				return C_GOK
   637  			}
   638  			c.instoffset = a.Offset
   639  
   640  			return C_SYMADDR
   641  
   642  		case obj.NAME_AUTO:
   643  			if a.Reg == REGSP {
   644  				// unset base register for better printing, since
   645  				// a.Offset is still relative to pseudo-SP.
   646  				a.Reg = obj.REG_NONE
   647  			}
   648  			c.instoffset = int64(c.autosize) + a.Offset
   649  			if c.instoffset >= -BIG && c.instoffset < BIG {
   650  				return C_SACON
   651  			}
   652  			return C_LACON
   653  
   654  		case obj.NAME_PARAM:
   655  			if a.Reg == REGSP {
   656  				// unset base register for better printing, since
   657  				// a.Offset is still relative to pseudo-FP.
   658  				a.Reg = obj.REG_NONE
   659  			}
   660  			c.instoffset = int64(c.autosize) + a.Offset + c.ctxt.FixedFrameSize()
   661  			if c.instoffset >= -BIG && c.instoffset < BIG {
   662  				return C_SACON
   663  			}
   664  			return C_LACON
   665  
   666  		default:
   667  			return C_GOK
   668  		}
   669  
   670  		if c.instoffset == 0 {
   671  			return C_ZCON
   672  		}
   673  		if c.instoffset >= 0 {
   674  			if c.instoffset <= 0x7fff {
   675  				return C_SCON
   676  			}
   677  			if c.instoffset <= 0xffff {
   678  				return C_ANDCON
   679  			}
   680  			if c.instoffset&0xffff == 0 && isuint32(uint64(c.instoffset)) { /* && (instoffset & (1<<31)) == 0) */
   681  				return C_UCON
   682  			}
   683  			if isint32(c.instoffset) || isuint32(uint64(c.instoffset)) {
   684  				return C_LCON
   685  			}
   686  			return C_DCON
   687  		}
   688  
   689  		if c.instoffset >= -0x8000 {
   690  			return C_ADDCON
   691  		}
   692  		if c.instoffset&0xffff == 0 && isint32(c.instoffset) {
   693  			return C_UCON
   694  		}
   695  		if isint32(c.instoffset) {
   696  			return C_LCON
   697  		}
   698  		return C_DCON
   699  
   700  	case obj.TYPE_BRANCH:
   701  		return C_SBRA
   702  	}
   703  
   704  	return C_GOK
   705  }
   706  
   707  func (c *ctxtz) oplook(p *obj.Prog) *Optab {
   708  	// Return cached optab entry if available.
   709  	if p.Optab != 0 {
   710  		return &optab[p.Optab-1]
   711  	}
   712  	if len(p.RestArgs) > 3 {
   713  		c.ctxt.Diag("too many RestArgs: got %v, maximum is 3\n", len(p.RestArgs))
   714  		return nil
   715  	}
   716  
   717  	// Initialize classes for all arguments.
   718  	p.From.Class = int8(c.aclass(&p.From) + 1)
   719  	p.To.Class = int8(c.aclass(&p.To) + 1)
   720  	for i := range p.RestArgs {
   721  		p.RestArgs[i].Addr.Class = int8(c.aclass(&p.RestArgs[i].Addr) + 1)
   722  	}
   723  
   724  	// Mirrors the argument list in Optab.
   725  	args := [...]int8{
   726  		p.From.Class - 1,
   727  		C_NONE, // p.Reg
   728  		C_NONE, // p.RestArgs[0]
   729  		C_NONE, // p.RestArgs[1]
   730  		C_NONE, // p.RestArgs[2]
   731  		p.To.Class - 1,
   732  	}
   733  	// Fill in argument class for p.Reg.
   734  	switch {
   735  	case REG_R0 <= p.Reg && p.Reg <= REG_R15:
   736  		args[1] = C_REG
   737  	case REG_V0 <= p.Reg && p.Reg <= REG_V31:
   738  		args[1] = C_VREG
   739  	case REG_F0 <= p.Reg && p.Reg <= REG_F15:
   740  		args[1] = C_FREG
   741  	case REG_AR0 <= p.Reg && p.Reg <= REG_AR15:
   742  		args[1] = C_AREG
   743  	}
   744  	// Fill in argument classes for p.RestArgs.
   745  	for i, a := range p.RestArgs {
   746  		args[2+i] = a.Class - 1
   747  	}
   748  
   749  	// Lookup op in optab.
   750  	ops := oprange[p.As&obj.AMask]
   751  	cmp := [len(args)]*[C_NCLASS]bool{}
   752  	for i := range cmp {
   753  		cmp[i] = &xcmp[args[i]]
   754  	}
   755  	for i := range ops {
   756  		op := &ops[i]
   757  		if cmp[0][op.a1] && cmp[1][op.a2] &&
   758  			cmp[2][op.a3] && cmp[3][op.a4] &&
   759  			cmp[4][op.a5] && cmp[5][op.a6] {
   760  			p.Optab = uint16(cap(optab) - cap(ops) + i + 1)
   761  			return op
   762  		}
   763  	}
   764  
   765  	// Cannot find a case; abort.
   766  	s := ""
   767  	for _, a := range args {
   768  		s += fmt.Sprintf(" %v", DRconv(int(a)))
   769  	}
   770  	c.ctxt.Diag("illegal combination %v%v\n", p.As, s)
   771  	c.ctxt.Diag("prog: %v\n", p)
   772  	return nil
   773  }
   774  
   775  func cmp(a int, b int) bool {
   776  	if a == b {
   777  		return true
   778  	}
   779  	switch a {
   780  	case C_DCON:
   781  		if b == C_LCON {
   782  			return true
   783  		}
   784  		fallthrough
   785  	case C_LCON:
   786  		if b == C_ZCON || b == C_SCON || b == C_UCON || b == C_ADDCON || b == C_ANDCON {
   787  			return true
   788  		}
   789  
   790  	case C_ADDCON:
   791  		if b == C_ZCON || b == C_SCON {
   792  			return true
   793  		}
   794  
   795  	case C_ANDCON:
   796  		if b == C_ZCON || b == C_SCON {
   797  			return true
   798  		}
   799  
   800  	case C_UCON:
   801  		if b == C_ZCON || b == C_SCON {
   802  			return true
   803  		}
   804  
   805  	case C_SCON:
   806  		if b == C_ZCON {
   807  			return true
   808  		}
   809  
   810  	case C_LACON:
   811  		if b == C_SACON {
   812  			return true
   813  		}
   814  
   815  	case C_LBRA:
   816  		if b == C_SBRA {
   817  			return true
   818  		}
   819  
   820  	case C_LAUTO:
   821  		if b == C_SAUTO {
   822  			return true
   823  		}
   824  
   825  	case C_LOREG:
   826  		if b == C_ZOREG || b == C_SOREG {
   827  			return true
   828  		}
   829  
   830  	case C_SOREG:
   831  		if b == C_ZOREG {
   832  			return true
   833  		}
   834  
   835  	case C_ANY:
   836  		return true
   837  	}
   838  
   839  	return false
   840  }
   841  
   842  type ocmp []Optab
   843  
   844  func (x ocmp) Len() int {
   845  	return len(x)
   846  }
   847  
   848  func (x ocmp) Swap(i, j int) {
   849  	x[i], x[j] = x[j], x[i]
   850  }
   851  
   852  func (x ocmp) Less(i, j int) bool {
   853  	p1 := &x[i]
   854  	p2 := &x[j]
   855  	n := int(p1.as) - int(p2.as)
   856  	if n != 0 {
   857  		return n < 0
   858  	}
   859  	n = int(p1.a1) - int(p2.a1)
   860  	if n != 0 {
   861  		return n < 0
   862  	}
   863  	n = int(p1.a2) - int(p2.a2)
   864  	if n != 0 {
   865  		return n < 0
   866  	}
   867  	n = int(p1.a3) - int(p2.a3)
   868  	if n != 0 {
   869  		return n < 0
   870  	}
   871  	n = int(p1.a4) - int(p2.a4)
   872  	if n != 0 {
   873  		return n < 0
   874  	}
   875  	return false
   876  }
   877  func opset(a, b obj.As) {
   878  	oprange[a&obj.AMask] = oprange[b&obj.AMask]
   879  }
   880  
   881  func buildop(ctxt *obj.Link) {
   882  	if oprange[AORW&obj.AMask] != nil {
   883  		// Already initialized; stop now.
   884  		// This happens in the cmd/asm tests,
   885  		// each of which re-initializes the arch.
   886  		return
   887  	}
   888  
   889  	for i := 0; i < C_NCLASS; i++ {
   890  		for n := 0; n < C_NCLASS; n++ {
   891  			if cmp(n, i) {
   892  				xcmp[i][n] = true
   893  			}
   894  		}
   895  	}
   896  	sort.Sort(ocmp(optab))
   897  	for i := 0; i < len(optab); i++ {
   898  		r := optab[i].as
   899  		start := i
   900  		for ; i+1 < len(optab); i++ {
   901  			if optab[i+1].as != r {
   902  				break
   903  			}
   904  		}
   905  		oprange[r&obj.AMask] = optab[start : i+1]
   906  
   907  		// opset() aliases optab ranges for similar instructions, to reduce the number of optabs in the array.
   908  		// oprange[] is used by oplook() to find the Optab entry that applies to a given Prog.
   909  		switch r {
   910  		case AADD:
   911  			opset(AADDC, r)
   912  			opset(AADDW, r)
   913  			opset(AADDE, r)
   914  			opset(AMULLD, r)
   915  			opset(AMULLW, r)
   916  		case ADIVW:
   917  			opset(ADIVD, r)
   918  			opset(ADIVDU, r)
   919  			opset(ADIVWU, r)
   920  			opset(AMODD, r)
   921  			opset(AMODDU, r)
   922  			opset(AMODW, r)
   923  			opset(AMODWU, r)
   924  		case AMULHD:
   925  			opset(AMULHDU, r)
   926  		case AMOVBZ:
   927  			opset(AMOVH, r)
   928  			opset(AMOVHZ, r)
   929  		case ALA:
   930  			opset(ALAY, r)
   931  		case AMVC:
   932  			opset(AMVCIN, r)
   933  			opset(ACLC, r)
   934  			opset(AXC, r)
   935  			opset(AOC, r)
   936  			opset(ANC, r)
   937  		case ASTCK:
   938  			opset(ASTCKC, r)
   939  			opset(ASTCKE, r)
   940  			opset(ASTCKF, r)
   941  		case ALAAG:
   942  			opset(ALAA, r)
   943  			opset(ALAAL, r)
   944  			opset(ALAALG, r)
   945  			opset(ALAN, r)
   946  			opset(ALANG, r)
   947  			opset(ALAX, r)
   948  			opset(ALAXG, r)
   949  			opset(ALAO, r)
   950  			opset(ALAOG, r)
   951  		case ASTMG:
   952  			opset(ASTMY, r)
   953  		case ALMG:
   954  			opset(ALMY, r)
   955  		case ABEQ:
   956  			opset(ABGE, r)
   957  			opset(ABGT, r)
   958  			opset(ABLE, r)
   959  			opset(ABLT, r)
   960  			opset(ABNE, r)
   961  			opset(ABVC, r)
   962  			opset(ABVS, r)
   963  			opset(ABLEU, r)
   964  			opset(ABLTU, r)
   965  		case ABR:
   966  			opset(ABL, r)
   967  		case ABC:
   968  			opset(ABCL, r)
   969  		case AFABS:
   970  			opset(AFNABS, r)
   971  			opset(ALPDFR, r)
   972  			opset(ALNDFR, r)
   973  			opset(AFNEG, r)
   974  			opset(AFNEGS, r)
   975  			opset(ALEDBR, r)
   976  			opset(ALDEBR, r)
   977  			opset(AFSQRT, r)
   978  			opset(AFSQRTS, r)
   979  		case AFADD:
   980  			opset(AFADDS, r)
   981  			opset(AFDIV, r)
   982  			opset(AFDIVS, r)
   983  			opset(AFSUB, r)
   984  			opset(AFSUBS, r)
   985  		case AFMADD:
   986  			opset(AFMADDS, r)
   987  			opset(AFMSUB, r)
   988  			opset(AFMSUBS, r)
   989  		case AFMUL:
   990  			opset(AFMULS, r)
   991  		case AFCMPO:
   992  			opset(AFCMPU, r)
   993  			opset(ACEBR, r)
   994  		case AAND:
   995  			opset(AOR, r)
   996  			opset(AXOR, r)
   997  		case AANDW:
   998  			opset(AORW, r)
   999  			opset(AXORW, r)
  1000  		case ASLD:
  1001  			opset(ASRD, r)
  1002  			opset(ASLW, r)
  1003  			opset(ASRW, r)
  1004  			opset(ASRAD, r)
  1005  			opset(ASRAW, r)
  1006  			opset(ARLL, r)
  1007  			opset(ARLLG, r)
  1008  		case ARNSBG:
  1009  			opset(ARXSBG, r)
  1010  			opset(AROSBG, r)
  1011  			opset(ARNSBGT, r)
  1012  			opset(ARXSBGT, r)
  1013  			opset(AROSBGT, r)
  1014  			opset(ARISBG, r)
  1015  			opset(ARISBGN, r)
  1016  			opset(ARISBGZ, r)
  1017  			opset(ARISBGNZ, r)
  1018  			opset(ARISBHG, r)
  1019  			opset(ARISBLG, r)
  1020  			opset(ARISBHGZ, r)
  1021  			opset(ARISBLGZ, r)
  1022  		case ACSG:
  1023  			opset(ACS, r)
  1024  		case ASUB:
  1025  			opset(ASUBC, r)
  1026  			opset(ASUBE, r)
  1027  			opset(ASUBW, r)
  1028  		case ANEG:
  1029  			opset(ANEGW, r)
  1030  		case AFMOVD:
  1031  			opset(AFMOVS, r)
  1032  		case AMOVDBR:
  1033  			opset(AMOVWBR, r)
  1034  		case ACMP:
  1035  			opset(ACMPW, r)
  1036  		case ACMPU:
  1037  			opset(ACMPWU, r)
  1038  		case ATMHH:
  1039  			opset(ATMHL, r)
  1040  			opset(ATMLH, r)
  1041  			opset(ATMLL, r)
  1042  		case ACEFBRA:
  1043  			opset(ACDFBRA, r)
  1044  			opset(ACEGBRA, r)
  1045  			opset(ACDGBRA, r)
  1046  			opset(ACELFBR, r)
  1047  			opset(ACDLFBR, r)
  1048  			opset(ACELGBR, r)
  1049  			opset(ACDLGBR, r)
  1050  		case ACFEBRA:
  1051  			opset(ACFDBRA, r)
  1052  			opset(ACGEBRA, r)
  1053  			opset(ACGDBRA, r)
  1054  			opset(ACLFEBR, r)
  1055  			opset(ACLFDBR, r)
  1056  			opset(ACLGEBR, r)
  1057  			opset(ACLGDBR, r)
  1058  		case AFIEBR:
  1059  			opset(AFIDBR, r)
  1060  		case ACMPBEQ:
  1061  			opset(ACMPBGE, r)
  1062  			opset(ACMPBGT, r)
  1063  			opset(ACMPBLE, r)
  1064  			opset(ACMPBLT, r)
  1065  			opset(ACMPBNE, r)
  1066  		case ACMPUBEQ:
  1067  			opset(ACMPUBGE, r)
  1068  			opset(ACMPUBGT, r)
  1069  			opset(ACMPUBLE, r)
  1070  			opset(ACMPUBLT, r)
  1071  			opset(ACMPUBNE, r)
  1072  		case ACGRJ:
  1073  			opset(ACRJ, r)
  1074  		case ACLGRJ:
  1075  			opset(ACLRJ, r)
  1076  		case ACGIJ:
  1077  			opset(ACIJ, r)
  1078  		case ACLGIJ:
  1079  			opset(ACLIJ, r)
  1080  		case AMOVDEQ:
  1081  			opset(AMOVDGE, r)
  1082  			opset(AMOVDGT, r)
  1083  			opset(AMOVDLE, r)
  1084  			opset(AMOVDLT, r)
  1085  			opset(AMOVDNE, r)
  1086  		case ALOCGR:
  1087  			opset(ALOCR, r)
  1088  		case ALTDBR:
  1089  			opset(ALTEBR, r)
  1090  		case ATCDB:
  1091  			opset(ATCEB, r)
  1092  		case AVL:
  1093  			opset(AVLLEZB, r)
  1094  			opset(AVLLEZH, r)
  1095  			opset(AVLLEZF, r)
  1096  			opset(AVLLEZG, r)
  1097  			opset(AVLREPB, r)
  1098  			opset(AVLREPH, r)
  1099  			opset(AVLREPF, r)
  1100  			opset(AVLREPG, r)
  1101  		case AVLEG:
  1102  			opset(AVLBB, r)
  1103  			opset(AVLEB, r)
  1104  			opset(AVLEH, r)
  1105  			opset(AVLEF, r)
  1106  			opset(AVLEG, r)
  1107  			opset(AVLREP, r)
  1108  		case AVSTEG:
  1109  			opset(AVSTEB, r)
  1110  			opset(AVSTEH, r)
  1111  			opset(AVSTEF, r)
  1112  		case AVSCEG:
  1113  			opset(AVSCEF, r)
  1114  		case AVGEG:
  1115  			opset(AVGEF, r)
  1116  		case AVESLG:
  1117  			opset(AVESLB, r)
  1118  			opset(AVESLH, r)
  1119  			opset(AVESLF, r)
  1120  			opset(AVERLLB, r)
  1121  			opset(AVERLLH, r)
  1122  			opset(AVERLLF, r)
  1123  			opset(AVERLLG, r)
  1124  			opset(AVESRAB, r)
  1125  			opset(AVESRAH, r)
  1126  			opset(AVESRAF, r)
  1127  			opset(AVESRAG, r)
  1128  			opset(AVESRLB, r)
  1129  			opset(AVESRLH, r)
  1130  			opset(AVESRLF, r)
  1131  			opset(AVESRLG, r)
  1132  		case AVLGVG:
  1133  			opset(AVLGVB, r)
  1134  			opset(AVLGVH, r)
  1135  			opset(AVLGVF, r)
  1136  		case AVLVGG:
  1137  			opset(AVLVGB, r)
  1138  			opset(AVLVGH, r)
  1139  			opset(AVLVGF, r)
  1140  		case AVZERO:
  1141  			opset(AVONE, r)
  1142  		case AVREPIG:
  1143  			opset(AVREPIB, r)
  1144  			opset(AVREPIH, r)
  1145  			opset(AVREPIF, r)
  1146  		case AVLEIG:
  1147  			opset(AVLEIB, r)
  1148  			opset(AVLEIH, r)
  1149  			opset(AVLEIF, r)
  1150  		case AVGMG:
  1151  			opset(AVGMB, r)
  1152  			opset(AVGMH, r)
  1153  			opset(AVGMF, r)
  1154  		case AVREPG:
  1155  			opset(AVREPB, r)
  1156  			opset(AVREPH, r)
  1157  			opset(AVREPF, r)
  1158  		case AVERIMG:
  1159  			opset(AVERIMB, r)
  1160  			opset(AVERIMH, r)
  1161  			opset(AVERIMF, r)
  1162  		case AVFTCIDB:
  1163  			opset(AWFTCIDB, r)
  1164  		case AVLR:
  1165  			opset(AVUPHB, r)
  1166  			opset(AVUPHH, r)
  1167  			opset(AVUPHF, r)
  1168  			opset(AVUPLHB, r)
  1169  			opset(AVUPLHH, r)
  1170  			opset(AVUPLHF, r)
  1171  			opset(AVUPLB, r)
  1172  			opset(AVUPLHW, r)
  1173  			opset(AVUPLF, r)
  1174  			opset(AVUPLLB, r)
  1175  			opset(AVUPLLH, r)
  1176  			opset(AVUPLLF, r)
  1177  			opset(AVCLZB, r)
  1178  			opset(AVCLZH, r)
  1179  			opset(AVCLZF, r)
  1180  			opset(AVCLZG, r)
  1181  			opset(AVCTZB, r)
  1182  			opset(AVCTZH, r)
  1183  			opset(AVCTZF, r)
  1184  			opset(AVCTZG, r)
  1185  			opset(AVLDEB, r)
  1186  			opset(AWLDEB, r)
  1187  			opset(AVFLCDB, r)
  1188  			opset(AWFLCDB, r)
  1189  			opset(AVFLNDB, r)
  1190  			opset(AWFLNDB, r)
  1191  			opset(AVFLPDB, r)
  1192  			opset(AWFLPDB, r)
  1193  			opset(AVFSQDB, r)
  1194  			opset(AWFSQDB, r)
  1195  			opset(AVISTRB, r)
  1196  			opset(AVISTRH, r)
  1197  			opset(AVISTRF, r)
  1198  			opset(AVISTRBS, r)
  1199  			opset(AVISTRHS, r)
  1200  			opset(AVISTRFS, r)
  1201  			opset(AVLCB, r)
  1202  			opset(AVLCH, r)
  1203  			opset(AVLCF, r)
  1204  			opset(AVLCG, r)
  1205  			opset(AVLPB, r)
  1206  			opset(AVLPH, r)
  1207  			opset(AVLPF, r)
  1208  			opset(AVLPG, r)
  1209  			opset(AVPOPCT, r)
  1210  			opset(AVSEGB, r)
  1211  			opset(AVSEGH, r)
  1212  			opset(AVSEGF, r)
  1213  		case AVECG:
  1214  			opset(AVECB, r)
  1215  			opset(AVECH, r)
  1216  			opset(AVECF, r)
  1217  			opset(AVECLB, r)
  1218  			opset(AVECLH, r)
  1219  			opset(AVECLF, r)
  1220  			opset(AVECLG, r)
  1221  			opset(AWFCDB, r)
  1222  			opset(AWFKDB, r)
  1223  		case AVCEQG:
  1224  			opset(AVCEQB, r)
  1225  			opset(AVCEQH, r)
  1226  			opset(AVCEQF, r)
  1227  			opset(AVCEQBS, r)
  1228  			opset(AVCEQHS, r)
  1229  			opset(AVCEQFS, r)
  1230  			opset(AVCEQGS, r)
  1231  			opset(AVCHB, r)
  1232  			opset(AVCHH, r)
  1233  			opset(AVCHF, r)
  1234  			opset(AVCHG, r)
  1235  			opset(AVCHBS, r)
  1236  			opset(AVCHHS, r)
  1237  			opset(AVCHFS, r)
  1238  			opset(AVCHGS, r)
  1239  			opset(AVCHLB, r)
  1240  			opset(AVCHLH, r)
  1241  			opset(AVCHLF, r)
  1242  			opset(AVCHLG, r)
  1243  			opset(AVCHLBS, r)
  1244  			opset(AVCHLHS, r)
  1245  			opset(AVCHLFS, r)
  1246  			opset(AVCHLGS, r)
  1247  		case AVFAEF:
  1248  			opset(AVFAEB, r)
  1249  			opset(AVFAEH, r)
  1250  			opset(AVFAEBS, r)
  1251  			opset(AVFAEHS, r)
  1252  			opset(AVFAEFS, r)
  1253  			opset(AVFAEZB, r)
  1254  			opset(AVFAEZH, r)
  1255  			opset(AVFAEZF, r)
  1256  			opset(AVFAEZBS, r)
  1257  			opset(AVFAEZHS, r)
  1258  			opset(AVFAEZFS, r)
  1259  			opset(AVFEEB, r)
  1260  			opset(AVFEEH, r)
  1261  			opset(AVFEEF, r)
  1262  			opset(AVFEEBS, r)
  1263  			opset(AVFEEHS, r)
  1264  			opset(AVFEEFS, r)
  1265  			opset(AVFEEZB, r)
  1266  			opset(AVFEEZH, r)
  1267  			opset(AVFEEZF, r)
  1268  			opset(AVFEEZBS, r)
  1269  			opset(AVFEEZHS, r)
  1270  			opset(AVFEEZFS, r)
  1271  			opset(AVFENEB, r)
  1272  			opset(AVFENEH, r)
  1273  			opset(AVFENEF, r)
  1274  			opset(AVFENEBS, r)
  1275  			opset(AVFENEHS, r)
  1276  			opset(AVFENEFS, r)
  1277  			opset(AVFENEZB, r)
  1278  			opset(AVFENEZH, r)
  1279  			opset(AVFENEZF, r)
  1280  			opset(AVFENEZBS, r)
  1281  			opset(AVFENEZHS, r)
  1282  			opset(AVFENEZFS, r)
  1283  		case AVPKSG:
  1284  			opset(AVPKSH, r)
  1285  			opset(AVPKSF, r)
  1286  			opset(AVPKSHS, r)
  1287  			opset(AVPKSFS, r)
  1288  			opset(AVPKSGS, r)
  1289  			opset(AVPKLSH, r)
  1290  			opset(AVPKLSF, r)
  1291  			opset(AVPKLSG, r)
  1292  			opset(AVPKLSHS, r)
  1293  			opset(AVPKLSFS, r)
  1294  			opset(AVPKLSGS, r)
  1295  		case AVAQ:
  1296  			opset(AVAB, r)
  1297  			opset(AVAH, r)
  1298  			opset(AVAF, r)
  1299  			opset(AVAG, r)
  1300  			opset(AVACCB, r)
  1301  			opset(AVACCH, r)
  1302  			opset(AVACCF, r)
  1303  			opset(AVACCG, r)
  1304  			opset(AVACCQ, r)
  1305  			opset(AVN, r)
  1306  			opset(AVNC, r)
  1307  			opset(AVAVGB, r)
  1308  			opset(AVAVGH, r)
  1309  			opset(AVAVGF, r)
  1310  			opset(AVAVGG, r)
  1311  			opset(AVAVGLB, r)
  1312  			opset(AVAVGLH, r)
  1313  			opset(AVAVGLF, r)
  1314  			opset(AVAVGLG, r)
  1315  			opset(AVCKSM, r)
  1316  			opset(AVX, r)
  1317  			opset(AVFADB, r)
  1318  			opset(AWFADB, r)
  1319  			opset(AVFCEDB, r)
  1320  			opset(AVFCEDBS, r)
  1321  			opset(AWFCEDB, r)
  1322  			opset(AWFCEDBS, r)
  1323  			opset(AVFCHDB, r)
  1324  			opset(AVFCHDBS, r)
  1325  			opset(AWFCHDB, r)
  1326  			opset(AWFCHDBS, r)
  1327  			opset(AVFCHEDB, r)
  1328  			opset(AVFCHEDBS, r)
  1329  			opset(AWFCHEDB, r)
  1330  			opset(AWFCHEDBS, r)
  1331  			opset(AVFMDB, r)
  1332  			opset(AWFMDB, r)
  1333  			opset(AVGFMB, r)
  1334  			opset(AVGFMH, r)
  1335  			opset(AVGFMF, r)
  1336  			opset(AVGFMG, r)
  1337  			opset(AVMXB, r)
  1338  			opset(AVMXH, r)
  1339  			opset(AVMXF, r)
  1340  			opset(AVMXG, r)
  1341  			opset(AVMXLB, r)
  1342  			opset(AVMXLH, r)
  1343  			opset(AVMXLF, r)
  1344  			opset(AVMXLG, r)
  1345  			opset(AVMNB, r)
  1346  			opset(AVMNH, r)
  1347  			opset(AVMNF, r)
  1348  			opset(AVMNG, r)
  1349  			opset(AVMNLB, r)
  1350  			opset(AVMNLH, r)
  1351  			opset(AVMNLF, r)
  1352  			opset(AVMNLG, r)
  1353  			opset(AVMRHB, r)
  1354  			opset(AVMRHH, r)
  1355  			opset(AVMRHF, r)
  1356  			opset(AVMRHG, r)
  1357  			opset(AVMRLB, r)
  1358  			opset(AVMRLH, r)
  1359  			opset(AVMRLF, r)
  1360  			opset(AVMRLG, r)
  1361  			opset(AVMEB, r)
  1362  			opset(AVMEH, r)
  1363  			opset(AVMEF, r)
  1364  			opset(AVMLEB, r)
  1365  			opset(AVMLEH, r)
  1366  			opset(AVMLEF, r)
  1367  			opset(AVMOB, r)
  1368  			opset(AVMOH, r)
  1369  			opset(AVMOF, r)
  1370  			opset(AVMLOB, r)
  1371  			opset(AVMLOH, r)
  1372  			opset(AVMLOF, r)
  1373  			opset(AVMHB, r)
  1374  			opset(AVMHH, r)
  1375  			opset(AVMHF, r)
  1376  			opset(AVMLHB, r)
  1377  			opset(AVMLHH, r)
  1378  			opset(AVMLHF, r)
  1379  			opset(AVMLH, r)
  1380  			opset(AVMLHW, r)
  1381  			opset(AVMLF, r)
  1382  			opset(AVNO, r)
  1383  			opset(AVO, r)
  1384  			opset(AVPKH, r)
  1385  			opset(AVPKF, r)
  1386  			opset(AVPKG, r)
  1387  			opset(AVSUMGH, r)
  1388  			opset(AVSUMGF, r)
  1389  			opset(AVSUMQF, r)
  1390  			opset(AVSUMQG, r)
  1391  			opset(AVSUMB, r)
  1392  			opset(AVSUMH, r)
  1393  		case AVERLLVG:
  1394  			opset(AVERLLVB, r)
  1395  			opset(AVERLLVH, r)
  1396  			opset(AVERLLVF, r)
  1397  			opset(AVESLVB, r)
  1398  			opset(AVESLVH, r)
  1399  			opset(AVESLVF, r)
  1400  			opset(AVESLVG, r)
  1401  			opset(AVESRAVB, r)
  1402  			opset(AVESRAVH, r)
  1403  			opset(AVESRAVF, r)
  1404  			opset(AVESRAVG, r)
  1405  			opset(AVESRLVB, r)
  1406  			opset(AVESRLVH, r)
  1407  			opset(AVESRLVF, r)
  1408  			opset(AVESRLVG, r)
  1409  			opset(AVFDDB, r)
  1410  			opset(AWFDDB, r)
  1411  			opset(AVFSDB, r)
  1412  			opset(AWFSDB, r)
  1413  			opset(AVSL, r)
  1414  			opset(AVSLB, r)
  1415  			opset(AVSRA, r)
  1416  			opset(AVSRAB, r)
  1417  			opset(AVSRL, r)
  1418  			opset(AVSRLB, r)
  1419  			opset(AVSB, r)
  1420  			opset(AVSH, r)
  1421  			opset(AVSF, r)
  1422  			opset(AVSG, r)
  1423  			opset(AVSQ, r)
  1424  			opset(AVSCBIB, r)
  1425  			opset(AVSCBIH, r)
  1426  			opset(AVSCBIF, r)
  1427  			opset(AVSCBIG, r)
  1428  			opset(AVSCBIQ, r)
  1429  		case AVACQ:
  1430  			opset(AVACCCQ, r)
  1431  			opset(AVGFMAB, r)
  1432  			opset(AVGFMAH, r)
  1433  			opset(AVGFMAF, r)
  1434  			opset(AVGFMAG, r)
  1435  			opset(AVMALB, r)
  1436  			opset(AVMALHW, r)
  1437  			opset(AVMALF, r)
  1438  			opset(AVMAHB, r)
  1439  			opset(AVMAHH, r)
  1440  			opset(AVMAHF, r)
  1441  			opset(AVMALHB, r)
  1442  			opset(AVMALHH, r)
  1443  			opset(AVMALHF, r)
  1444  			opset(AVMAEB, r)
  1445  			opset(AVMAEH, r)
  1446  			opset(AVMAEF, r)
  1447  			opset(AVMALEB, r)
  1448  			opset(AVMALEH, r)
  1449  			opset(AVMALEF, r)
  1450  			opset(AVMAOB, r)
  1451  			opset(AVMAOH, r)
  1452  			opset(AVMAOF, r)
  1453  			opset(AVMALOB, r)
  1454  			opset(AVMALOH, r)
  1455  			opset(AVMALOF, r)
  1456  			opset(AVSTRCB, r)
  1457  			opset(AVSTRCH, r)
  1458  			opset(AVSTRCF, r)
  1459  			opset(AVSTRCBS, r)
  1460  			opset(AVSTRCHS, r)
  1461  			opset(AVSTRCFS, r)
  1462  			opset(AVSTRCZB, r)
  1463  			opset(AVSTRCZH, r)
  1464  			opset(AVSTRCZF, r)
  1465  			opset(AVSTRCZBS, r)
  1466  			opset(AVSTRCZHS, r)
  1467  			opset(AVSTRCZFS, r)
  1468  			opset(AVSBCBIQ, r)
  1469  			opset(AVSBIQ, r)
  1470  			opset(AVMSLG, r)
  1471  			opset(AVMSLEG, r)
  1472  			opset(AVMSLOG, r)
  1473  			opset(AVMSLEOG, r)
  1474  		case AVSEL:
  1475  			opset(AVFMADB, r)
  1476  			opset(AWFMADB, r)
  1477  			opset(AVFMSDB, r)
  1478  			opset(AWFMSDB, r)
  1479  			opset(AVPERM, r)
  1480  		}
  1481  	}
  1482  }
  1483  
  1484  const (
  1485  	op_A       uint32 = 0x5A00 // FORMAT_RX1        ADD (32)
  1486  	op_AD      uint32 = 0x6A00 // FORMAT_RX1        ADD NORMALIZED (long HFP)
  1487  	op_ADB     uint32 = 0xED1A // FORMAT_RXE        ADD (long BFP)
  1488  	op_ADBR    uint32 = 0xB31A // FORMAT_RRE        ADD (long BFP)
  1489  	op_ADR     uint32 = 0x2A00 // FORMAT_RR         ADD NORMALIZED (long HFP)
  1490  	op_ADTR    uint32 = 0xB3D2 // FORMAT_RRF1       ADD (long DFP)
  1491  	op_ADTRA   uint32 = 0xB3D2 // FORMAT_RRF1       ADD (long DFP)
  1492  	op_AE      uint32 = 0x7A00 // FORMAT_RX1        ADD NORMALIZED (short HFP)
  1493  	op_AEB     uint32 = 0xED0A // FORMAT_RXE        ADD (short BFP)
  1494  	op_AEBR    uint32 = 0xB30A // FORMAT_RRE        ADD (short BFP)
  1495  	op_AER     uint32 = 0x3A00 // FORMAT_RR         ADD NORMALIZED (short HFP)
  1496  	op_AFI     uint32 = 0xC209 // FORMAT_RIL1       ADD IMMEDIATE (32)
  1497  	op_AG      uint32 = 0xE308 // FORMAT_RXY1       ADD (64)
  1498  	op_AGF     uint32 = 0xE318 // FORMAT_RXY1       ADD (64<-32)
  1499  	op_AGFI    uint32 = 0xC208 // FORMAT_RIL1       ADD IMMEDIATE (64<-32)
  1500  	op_AGFR    uint32 = 0xB918 // FORMAT_RRE        ADD (64<-32)
  1501  	op_AGHI    uint32 = 0xA70B // FORMAT_RI1        ADD HALFWORD IMMEDIATE (64)
  1502  	op_AGHIK   uint32 = 0xECD9 // FORMAT_RIE4       ADD IMMEDIATE (64<-16)
  1503  	op_AGR     uint32 = 0xB908 // FORMAT_RRE        ADD (64)
  1504  	op_AGRK    uint32 = 0xB9E8 // FORMAT_RRF1       ADD (64)
  1505  	op_AGSI    uint32 = 0xEB7A // FORMAT_SIY        ADD IMMEDIATE (64<-8)
  1506  	op_AH      uint32 = 0x4A00 // FORMAT_RX1        ADD HALFWORD
  1507  	op_AHHHR   uint32 = 0xB9C8 // FORMAT_RRF1       ADD HIGH (32)
  1508  	op_AHHLR   uint32 = 0xB9D8 // FORMAT_RRF1       ADD HIGH (32)
  1509  	op_AHI     uint32 = 0xA70A // FORMAT_RI1        ADD HALFWORD IMMEDIATE (32)
  1510  	op_AHIK    uint32 = 0xECD8 // FORMAT_RIE4       ADD IMMEDIATE (32<-16)
  1511  	op_AHY     uint32 = 0xE37A // FORMAT_RXY1       ADD HALFWORD
  1512  	op_AIH     uint32 = 0xCC08 // FORMAT_RIL1       ADD IMMEDIATE HIGH (32)
  1513  	op_AL      uint32 = 0x5E00 // FORMAT_RX1        ADD LOGICAL (32)
  1514  	op_ALC     uint32 = 0xE398 // FORMAT_RXY1       ADD LOGICAL WITH CARRY (32)
  1515  	op_ALCG    uint32 = 0xE388 // FORMAT_RXY1       ADD LOGICAL WITH CARRY (64)
  1516  	op_ALCGR   uint32 = 0xB988 // FORMAT_RRE        ADD LOGICAL WITH CARRY (64)
  1517  	op_ALCR    uint32 = 0xB998 // FORMAT_RRE        ADD LOGICAL WITH CARRY (32)
  1518  	op_ALFI    uint32 = 0xC20B // FORMAT_RIL1       ADD LOGICAL IMMEDIATE (32)
  1519  	op_ALG     uint32 = 0xE30A // FORMAT_RXY1       ADD LOGICAL (64)
  1520  	op_ALGF    uint32 = 0xE31A // FORMAT_RXY1       ADD LOGICAL (64<-32)
  1521  	op_ALGFI   uint32 = 0xC20A // FORMAT_RIL1       ADD LOGICAL IMMEDIATE (64<-32)
  1522  	op_ALGFR   uint32 = 0xB91A // FORMAT_RRE        ADD LOGICAL (64<-32)
  1523  	op_ALGHSIK uint32 = 0xECDB // FORMAT_RIE4       ADD LOGICAL WITH SIGNED IMMEDIATE (64<-16)
  1524  	op_ALGR    uint32 = 0xB90A // FORMAT_RRE        ADD LOGICAL (64)
  1525  	op_ALGRK   uint32 = 0xB9EA // FORMAT_RRF1       ADD LOGICAL (64)
  1526  	op_ALGSI   uint32 = 0xEB7E // FORMAT_SIY        ADD LOGICAL WITH SIGNED IMMEDIATE (64<-8)
  1527  	op_ALHHHR  uint32 = 0xB9CA // FORMAT_RRF1       ADD LOGICAL HIGH (32)
  1528  	op_ALHHLR  uint32 = 0xB9DA // FORMAT_RRF1       ADD LOGICAL HIGH (32)
  1529  	op_ALHSIK  uint32 = 0xECDA // FORMAT_RIE4       ADD LOGICAL WITH SIGNED IMMEDIATE (32<-16)
  1530  	op_ALR     uint32 = 0x1E00 // FORMAT_RR         ADD LOGICAL (32)
  1531  	op_ALRK    uint32 = 0xB9FA // FORMAT_RRF1       ADD LOGICAL (32)
  1532  	op_ALSI    uint32 = 0xEB6E // FORMAT_SIY        ADD LOGICAL WITH SIGNED IMMEDIATE (32<-8)
  1533  	op_ALSIH   uint32 = 0xCC0A // FORMAT_RIL1       ADD LOGICAL WITH SIGNED IMMEDIATE HIGH (32)
  1534  	op_ALSIHN  uint32 = 0xCC0B // FORMAT_RIL1       ADD LOGICAL WITH SIGNED IMMEDIATE HIGH (32)
  1535  	op_ALY     uint32 = 0xE35E // FORMAT_RXY1       ADD LOGICAL (32)
  1536  	op_AP      uint32 = 0xFA00 // FORMAT_SS2        ADD DECIMAL
  1537  	op_AR      uint32 = 0x1A00 // FORMAT_RR         ADD (32)
  1538  	op_ARK     uint32 = 0xB9F8 // FORMAT_RRF1       ADD (32)
  1539  	op_ASI     uint32 = 0xEB6A // FORMAT_SIY        ADD IMMEDIATE (32<-8)
  1540  	op_AU      uint32 = 0x7E00 // FORMAT_RX1        ADD UNNORMALIZED (short HFP)
  1541  	op_AUR     uint32 = 0x3E00 // FORMAT_RR         ADD UNNORMALIZED (short HFP)
  1542  	op_AW      uint32 = 0x6E00 // FORMAT_RX1        ADD UNNORMALIZED (long HFP)
  1543  	op_AWR     uint32 = 0x2E00 // FORMAT_RR         ADD UNNORMALIZED (long HFP)
  1544  	op_AXBR    uint32 = 0xB34A // FORMAT_RRE        ADD (extended BFP)
  1545  	op_AXR     uint32 = 0x3600 // FORMAT_RR         ADD NORMALIZED (extended HFP)
  1546  	op_AXTR    uint32 = 0xB3DA // FORMAT_RRF1       ADD (extended DFP)
  1547  	op_AXTRA   uint32 = 0xB3DA // FORMAT_RRF1       ADD (extended DFP)
  1548  	op_AY      uint32 = 0xE35A // FORMAT_RXY1       ADD (32)
  1549  	op_BAKR    uint32 = 0xB240 // FORMAT_RRE        BRANCH AND STACK
  1550  	op_BAL     uint32 = 0x4500 // FORMAT_RX1        BRANCH AND LINK
  1551  	op_BALR    uint32 = 0x0500 // FORMAT_RR         BRANCH AND LINK
  1552  	op_BAS     uint32 = 0x4D00 // FORMAT_RX1        BRANCH AND SAVE
  1553  	op_BASR    uint32 = 0x0D00 // FORMAT_RR         BRANCH AND SAVE
  1554  	op_BASSM   uint32 = 0x0C00 // FORMAT_RR         BRANCH AND SAVE AND SET MODE
  1555  	op_BC      uint32 = 0x4700 // FORMAT_RX2        BRANCH ON CONDITION
  1556  	op_BCR     uint32 = 0x0700 // FORMAT_RR         BRANCH ON CONDITION
  1557  	op_BCT     uint32 = 0x4600 // FORMAT_RX1        BRANCH ON COUNT (32)
  1558  	op_BCTG    uint32 = 0xE346 // FORMAT_RXY1       BRANCH ON COUNT (64)
  1559  	op_BCTGR   uint32 = 0xB946 // FORMAT_RRE        BRANCH ON COUNT (64)
  1560  	op_BCTR    uint32 = 0x0600 // FORMAT_RR         BRANCH ON COUNT (32)
  1561  	op_BPP     uint32 = 0xC700 // FORMAT_SMI        BRANCH PREDICTION PRELOAD
  1562  	op_BPRP    uint32 = 0xC500 // FORMAT_MII        BRANCH PREDICTION RELATIVE PRELOAD
  1563  	op_BRAS    uint32 = 0xA705 // FORMAT_RI2        BRANCH RELATIVE AND SAVE
  1564  	op_BRASL   uint32 = 0xC005 // FORMAT_RIL2       BRANCH RELATIVE AND SAVE LONG
  1565  	op_BRC     uint32 = 0xA704 // FORMAT_RI3        BRANCH RELATIVE ON CONDITION
  1566  	op_BRCL    uint32 = 0xC004 // FORMAT_RIL3       BRANCH RELATIVE ON CONDITION LONG
  1567  	op_BRCT    uint32 = 0xA706 // FORMAT_RI2        BRANCH RELATIVE ON COUNT (32)
  1568  	op_BRCTG   uint32 = 0xA707 // FORMAT_RI2        BRANCH RELATIVE ON COUNT (64)
  1569  	op_BRCTH   uint32 = 0xCC06 // FORMAT_RIL2       BRANCH RELATIVE ON COUNT HIGH (32)
  1570  	op_BRXH    uint32 = 0x8400 // FORMAT_RSI        BRANCH RELATIVE ON INDEX HIGH (32)
  1571  	op_BRXHG   uint32 = 0xEC44 // FORMAT_RIE5       BRANCH RELATIVE ON INDEX HIGH (64)
  1572  	op_BRXLE   uint32 = 0x8500 // FORMAT_RSI        BRANCH RELATIVE ON INDEX LOW OR EQ. (32)
  1573  	op_BRXLG   uint32 = 0xEC45 // FORMAT_RIE5       BRANCH RELATIVE ON INDEX LOW OR EQ. (64)
  1574  	op_BSA     uint32 = 0xB25A // FORMAT_RRE        BRANCH AND SET AUTHORITY
  1575  	op_BSG     uint32 = 0xB258 // FORMAT_RRE        BRANCH IN SUBSPACE GROUP
  1576  	op_BSM     uint32 = 0x0B00 // FORMAT_RR         BRANCH AND SET MODE
  1577  	op_BXH     uint32 = 0x8600 // FORMAT_RS1        BRANCH ON INDEX HIGH (32)
  1578  	op_BXHG    uint32 = 0xEB44 // FORMAT_RSY1       BRANCH ON INDEX HIGH (64)
  1579  	op_BXLE    uint32 = 0x8700 // FORMAT_RS1        BRANCH ON INDEX LOW OR EQUAL (32)
  1580  	op_BXLEG   uint32 = 0xEB45 // FORMAT_RSY1       BRANCH ON INDEX LOW OR EQUAL (64)
  1581  	op_C       uint32 = 0x5900 // FORMAT_RX1        COMPARE (32)
  1582  	op_CD      uint32 = 0x6900 // FORMAT_RX1        COMPARE (long HFP)
  1583  	op_CDB     uint32 = 0xED19 // FORMAT_RXE        COMPARE (long BFP)
  1584  	op_CDBR    uint32 = 0xB319 // FORMAT_RRE        COMPARE (long BFP)
  1585  	op_CDFBR   uint32 = 0xB395 // FORMAT_RRE        CONVERT FROM FIXED (32 to long BFP)
  1586  	op_CDFBRA  uint32 = 0xB395 // FORMAT_RRF5       CONVERT FROM FIXED (32 to long BFP)
  1587  	op_CDFR    uint32 = 0xB3B5 // FORMAT_RRE        CONVERT FROM FIXED (32 to long HFP)
  1588  	op_CDFTR   uint32 = 0xB951 // FORMAT_RRE        CONVERT FROM FIXED (32 to long DFP)
  1589  	op_CDGBR   uint32 = 0xB3A5 // FORMAT_RRE        CONVERT FROM FIXED (64 to long BFP)
  1590  	op_CDGBRA  uint32 = 0xB3A5 // FORMAT_RRF5       CONVERT FROM FIXED (64 to long BFP)
  1591  	op_CDGR    uint32 = 0xB3C5 // FORMAT_RRE        CONVERT FROM FIXED (64 to long HFP)
  1592  	op_CDGTR   uint32 = 0xB3F1 // FORMAT_RRE        CONVERT FROM FIXED (64 to long DFP)
  1593  	op_CDGTRA  uint32 = 0xB3F1 // FORMAT_RRF5       CONVERT FROM FIXED (64 to long DFP)
  1594  	op_CDLFBR  uint32 = 0xB391 // FORMAT_RRF5       CONVERT FROM LOGICAL (32 to long BFP)
  1595  	op_CDLFTR  uint32 = 0xB953 // FORMAT_RRF5       CONVERT FROM LOGICAL (32 to long DFP)
  1596  	op_CDLGBR  uint32 = 0xB3A1 // FORMAT_RRF5       CONVERT FROM LOGICAL (64 to long BFP)
  1597  	op_CDLGTR  uint32 = 0xB952 // FORMAT_RRF5       CONVERT FROM LOGICAL (64 to long DFP)
  1598  	op_CDR     uint32 = 0x2900 // FORMAT_RR         COMPARE (long HFP)
  1599  	op_CDS     uint32 = 0xBB00 // FORMAT_RS1        COMPARE DOUBLE AND SWAP (32)
  1600  	op_CDSG    uint32 = 0xEB3E // FORMAT_RSY1       COMPARE DOUBLE AND SWAP (64)
  1601  	op_CDSTR   uint32 = 0xB3F3 // FORMAT_RRE        CONVERT FROM SIGNED PACKED (64 to long DFP)
  1602  	op_CDSY    uint32 = 0xEB31 // FORMAT_RSY1       COMPARE DOUBLE AND SWAP (32)
  1603  	op_CDTR    uint32 = 0xB3E4 // FORMAT_RRE        COMPARE (long DFP)
  1604  	op_CDUTR   uint32 = 0xB3F2 // FORMAT_RRE        CONVERT FROM UNSIGNED PACKED (64 to long DFP)
  1605  	op_CDZT    uint32 = 0xEDAA // FORMAT_RSL        CONVERT FROM ZONED (to long DFP)
  1606  	op_CE      uint32 = 0x7900 // FORMAT_RX1        COMPARE (short HFP)
  1607  	op_CEB     uint32 = 0xED09 // FORMAT_RXE        COMPARE (short BFP)
  1608  	op_CEBR    uint32 = 0xB309 // FORMAT_RRE        COMPARE (short BFP)
  1609  	op_CEDTR   uint32 = 0xB3F4 // FORMAT_RRE        COMPARE BIASED EXPONENT (long DFP)
  1610  	op_CEFBR   uint32 = 0xB394 // FORMAT_RRE        CONVERT FROM FIXED (32 to short BFP)
  1611  	op_CEFBRA  uint32 = 0xB394 // FORMAT_RRF5       CONVERT FROM FIXED (32 to short BFP)
  1612  	op_CEFR    uint32 = 0xB3B4 // FORMAT_RRE        CONVERT FROM FIXED (32 to short HFP)
  1613  	op_CEGBR   uint32 = 0xB3A4 // FORMAT_RRE        CONVERT FROM FIXED (64 to short BFP)
  1614  	op_CEGBRA  uint32 = 0xB3A4 // FORMAT_RRF5       CONVERT FROM FIXED (64 to short BFP)
  1615  	op_CEGR    uint32 = 0xB3C4 // FORMAT_RRE        CONVERT FROM FIXED (64 to short HFP)
  1616  	op_CELFBR  uint32 = 0xB390 // FORMAT_RRF5       CONVERT FROM LOGICAL (32 to short BFP)
  1617  	op_CELGBR  uint32 = 0xB3A0 // FORMAT_RRF5       CONVERT FROM LOGICAL (64 to short BFP)
  1618  	op_CER     uint32 = 0x3900 // FORMAT_RR         COMPARE (short HFP)
  1619  	op_CEXTR   uint32 = 0xB3FC // FORMAT_RRE        COMPARE BIASED EXPONENT (extended DFP)
  1620  	op_CFC     uint32 = 0xB21A // FORMAT_S          COMPARE AND FORM CODEWORD
  1621  	op_CFDBR   uint32 = 0xB399 // FORMAT_RRF5       CONVERT TO FIXED (long BFP to 32)
  1622  	op_CFDBRA  uint32 = 0xB399 // FORMAT_RRF5       CONVERT TO FIXED (long BFP to 32)
  1623  	op_CFDR    uint32 = 0xB3B9 // FORMAT_RRF5       CONVERT TO FIXED (long HFP to 32)
  1624  	op_CFDTR   uint32 = 0xB941 // FORMAT_RRF5       CONVERT TO FIXED (long DFP to 32)
  1625  	op_CFEBR   uint32 = 0xB398 // FORMAT_RRF5       CONVERT TO FIXED (short BFP to 32)
  1626  	op_CFEBRA  uint32 = 0xB398 // FORMAT_RRF5       CONVERT TO FIXED (short BFP to 32)
  1627  	op_CFER    uint32 = 0xB3B8 // FORMAT_RRF5       CONVERT TO FIXED (short HFP to 32)
  1628  	op_CFI     uint32 = 0xC20D // FORMAT_RIL1       COMPARE IMMEDIATE (32)
  1629  	op_CFXBR   uint32 = 0xB39A // FORMAT_RRF5       CONVERT TO FIXED (extended BFP to 32)
  1630  	op_CFXBRA  uint32 = 0xB39A // FORMAT_RRF5       CONVERT TO FIXED (extended BFP to 32)
  1631  	op_CFXR    uint32 = 0xB3BA // FORMAT_RRF5       CONVERT TO FIXED (extended HFP to 32)
  1632  	op_CFXTR   uint32 = 0xB949 // FORMAT_RRF5       CONVERT TO FIXED (extended DFP to 32)
  1633  	op_CG      uint32 = 0xE320 // FORMAT_RXY1       COMPARE (64)
  1634  	op_CGDBR   uint32 = 0xB3A9 // FORMAT_RRF5       CONVERT TO FIXED (long BFP to 64)
  1635  	op_CGDBRA  uint32 = 0xB3A9 // FORMAT_RRF5       CONVERT TO FIXED (long BFP to 64)
  1636  	op_CGDR    uint32 = 0xB3C9 // FORMAT_RRF5       CONVERT TO FIXED (long HFP to 64)
  1637  	op_CGDTR   uint32 = 0xB3E1 // FORMAT_RRF5       CONVERT TO FIXED (long DFP to 64)
  1638  	op_CGDTRA  uint32 = 0xB3E1 // FORMAT_RRF5       CONVERT TO FIXED (long DFP to 64)
  1639  	op_CGEBR   uint32 = 0xB3A8 // FORMAT_RRF5       CONVERT TO FIXED (short BFP to 64)
  1640  	op_CGEBRA  uint32 = 0xB3A8 // FORMAT_RRF5       CONVERT TO FIXED (short BFP to 64)
  1641  	op_CGER    uint32 = 0xB3C8 // FORMAT_RRF5       CONVERT TO FIXED (short HFP to 64)
  1642  	op_CGF     uint32 = 0xE330 // FORMAT_RXY1       COMPARE (64<-32)
  1643  	op_CGFI    uint32 = 0xC20C // FORMAT_RIL1       COMPARE IMMEDIATE (64<-32)
  1644  	op_CGFR    uint32 = 0xB930 // FORMAT_RRE        COMPARE (64<-32)
  1645  	op_CGFRL   uint32 = 0xC60C // FORMAT_RIL2       COMPARE RELATIVE LONG (64<-32)
  1646  	op_CGH     uint32 = 0xE334 // FORMAT_RXY1       COMPARE HALFWORD (64<-16)
  1647  	op_CGHI    uint32 = 0xA70F // FORMAT_RI1        COMPARE HALFWORD IMMEDIATE (64<-16)
  1648  	op_CGHRL   uint32 = 0xC604 // FORMAT_RIL2       COMPARE HALFWORD RELATIVE LONG (64<-16)
  1649  	op_CGHSI   uint32 = 0xE558 // FORMAT_SIL        COMPARE HALFWORD IMMEDIATE (64<-16)
  1650  	op_CGIB    uint32 = 0xECFC // FORMAT_RIS        COMPARE IMMEDIATE AND BRANCH (64<-8)
  1651  	op_CGIJ    uint32 = 0xEC7C // FORMAT_RIE3       COMPARE IMMEDIATE AND BRANCH RELATIVE (64<-8)
  1652  	op_CGIT    uint32 = 0xEC70 // FORMAT_RIE1       COMPARE IMMEDIATE AND TRAP (64<-16)
  1653  	op_CGR     uint32 = 0xB920 // FORMAT_RRE        COMPARE (64)
  1654  	op_CGRB    uint32 = 0xECE4 // FORMAT_RRS        COMPARE AND BRANCH (64)
  1655  	op_CGRJ    uint32 = 0xEC64 // FORMAT_RIE2       COMPARE AND BRANCH RELATIVE (64)
  1656  	op_CGRL    uint32 = 0xC608 // FORMAT_RIL2       COMPARE RELATIVE LONG (64)
  1657  	op_CGRT    uint32 = 0xB960 // FORMAT_RRF3       COMPARE AND TRAP (64)
  1658  	op_CGXBR   uint32 = 0xB3AA // FORMAT_RRF5       CONVERT TO FIXED (extended BFP to 64)
  1659  	op_CGXBRA  uint32 = 0xB3AA // FORMAT_RRF5       CONVERT TO FIXED (extended BFP to 64)
  1660  	op_CGXR    uint32 = 0xB3CA // FORMAT_RRF5       CONVERT TO FIXED (extended HFP to 64)
  1661  	op_CGXTR   uint32 = 0xB3E9 // FORMAT_RRF5       CONVERT TO FIXED (extended DFP to 64)
  1662  	op_CGXTRA  uint32 = 0xB3E9 // FORMAT_RRF5       CONVERT TO FIXED (extended DFP to 64)
  1663  	op_CH      uint32 = 0x4900 // FORMAT_RX1        COMPARE HALFWORD (32<-16)
  1664  	op_CHF     uint32 = 0xE3CD // FORMAT_RXY1       COMPARE HIGH (32)
  1665  	op_CHHR    uint32 = 0xB9CD // FORMAT_RRE        COMPARE HIGH (32)
  1666  	op_CHHSI   uint32 = 0xE554 // FORMAT_SIL        COMPARE HALFWORD IMMEDIATE (16)
  1667  	op_CHI     uint32 = 0xA70E // FORMAT_RI1        COMPARE HALFWORD IMMEDIATE (32<-16)
  1668  	op_CHLR    uint32 = 0xB9DD // FORMAT_RRE        COMPARE HIGH (32)
  1669  	op_CHRL    uint32 = 0xC605 // FORMAT_RIL2       COMPARE HALFWORD RELATIVE LONG (32<-16)
  1670  	op_CHSI    uint32 = 0xE55C // FORMAT_SIL        COMPARE HALFWORD IMMEDIATE (32<-16)
  1671  	op_CHY     uint32 = 0xE379 // FORMAT_RXY1       COMPARE HALFWORD (32<-16)
  1672  	op_CIB     uint32 = 0xECFE // FORMAT_RIS        COMPARE IMMEDIATE AND BRANCH (32<-8)
  1673  	op_CIH     uint32 = 0xCC0D // FORMAT_RIL1       COMPARE IMMEDIATE HIGH (32)
  1674  	op_CIJ     uint32 = 0xEC7E // FORMAT_RIE3       COMPARE IMMEDIATE AND BRANCH RELATIVE (32<-8)
  1675  	op_CIT     uint32 = 0xEC72 // FORMAT_RIE1       COMPARE IMMEDIATE AND TRAP (32<-16)
  1676  	op_CKSM    uint32 = 0xB241 // FORMAT_RRE        CHECKSUM
  1677  	op_CL      uint32 = 0x5500 // FORMAT_RX1        COMPARE LOGICAL (32)
  1678  	op_CLC     uint32 = 0xD500 // FORMAT_SS1        COMPARE LOGICAL (character)
  1679  	op_CLCL    uint32 = 0x0F00 // FORMAT_RR         COMPARE LOGICAL LONG
  1680  	op_CLCLE   uint32 = 0xA900 // FORMAT_RS1        COMPARE LOGICAL LONG EXTENDED
  1681  	op_CLCLU   uint32 = 0xEB8F // FORMAT_RSY1       COMPARE LOGICAL LONG UNICODE
  1682  	op_CLFDBR  uint32 = 0xB39D // FORMAT_RRF5       CONVERT TO LOGICAL (long BFP to 32)
  1683  	op_CLFDTR  uint32 = 0xB943 // FORMAT_RRF5       CONVERT TO LOGICAL (long DFP to 32)
  1684  	op_CLFEBR  uint32 = 0xB39C // FORMAT_RRF5       CONVERT TO LOGICAL (short BFP to 32)
  1685  	op_CLFHSI  uint32 = 0xE55D // FORMAT_SIL        COMPARE LOGICAL IMMEDIATE (32<-16)
  1686  	op_CLFI    uint32 = 0xC20F // FORMAT_RIL1       COMPARE LOGICAL IMMEDIATE (32)
  1687  	op_CLFIT   uint32 = 0xEC73 // FORMAT_RIE1       COMPARE LOGICAL IMMEDIATE AND TRAP (32<-16)
  1688  	op_CLFXBR  uint32 = 0xB39E // FORMAT_RRF5       CONVERT TO LOGICAL (extended BFP to 32)
  1689  	op_CLFXTR  uint32 = 0xB94B // FORMAT_RRF5       CONVERT TO LOGICAL (extended DFP to 32)
  1690  	op_CLG     uint32 = 0xE321 // FORMAT_RXY1       COMPARE LOGICAL (64)
  1691  	op_CLGDBR  uint32 = 0xB3AD // FORMAT_RRF5       CONVERT TO LOGICAL (long BFP to 64)
  1692  	op_CLGDTR  uint32 = 0xB942 // FORMAT_RRF5       CONVERT TO LOGICAL (long DFP to 64)
  1693  	op_CLGEBR  uint32 = 0xB3AC // FORMAT_RRF5       CONVERT TO LOGICAL (short BFP to 64)
  1694  	op_CLGF    uint32 = 0xE331 // FORMAT_RXY1       COMPARE LOGICAL (64<-32)
  1695  	op_CLGFI   uint32 = 0xC20E // FORMAT_RIL1       COMPARE LOGICAL IMMEDIATE (64<-32)
  1696  	op_CLGFR   uint32 = 0xB931 // FORMAT_RRE        COMPARE LOGICAL (64<-32)
  1697  	op_CLGFRL  uint32 = 0xC60E // FORMAT_RIL2       COMPARE LOGICAL RELATIVE LONG (64<-32)
  1698  	op_CLGHRL  uint32 = 0xC606 // FORMAT_RIL2       COMPARE LOGICAL RELATIVE LONG (64<-16)
  1699  	op_CLGHSI  uint32 = 0xE559 // FORMAT_SIL        COMPARE LOGICAL IMMEDIATE (64<-16)
  1700  	op_CLGIB   uint32 = 0xECFD // FORMAT_RIS        COMPARE LOGICAL IMMEDIATE AND BRANCH (64<-8)
  1701  	op_CLGIJ   uint32 = 0xEC7D // FORMAT_RIE3       COMPARE LOGICAL IMMEDIATE AND BRANCH RELATIVE (64<-8)
  1702  	op_CLGIT   uint32 = 0xEC71 // FORMAT_RIE1       COMPARE LOGICAL IMMEDIATE AND TRAP (64<-16)
  1703  	op_CLGR    uint32 = 0xB921 // FORMAT_RRE        COMPARE LOGICAL (64)
  1704  	op_CLGRB   uint32 = 0xECE5 // FORMAT_RRS        COMPARE LOGICAL AND BRANCH (64)
  1705  	op_CLGRJ   uint32 = 0xEC65 // FORMAT_RIE2       COMPARE LOGICAL AND BRANCH RELATIVE (64)
  1706  	op_CLGRL   uint32 = 0xC60A // FORMAT_RIL2       COMPARE LOGICAL RELATIVE LONG (64)
  1707  	op_CLGRT   uint32 = 0xB961 // FORMAT_RRF3       COMPARE LOGICAL AND TRAP (64)
  1708  	op_CLGT    uint32 = 0xEB2B // FORMAT_RSY2       COMPARE LOGICAL AND TRAP (64)
  1709  	op_CLGXBR  uint32 = 0xB3AE // FORMAT_RRF5       CONVERT TO LOGICAL (extended BFP to 64)
  1710  	op_CLGXTR  uint32 = 0xB94A // FORMAT_RRF5       CONVERT TO LOGICAL (extended DFP to 64)
  1711  	op_CLHF    uint32 = 0xE3CF // FORMAT_RXY1       COMPARE LOGICAL HIGH (32)
  1712  	op_CLHHR   uint32 = 0xB9CF // FORMAT_RRE        COMPARE LOGICAL HIGH (32)
  1713  	op_CLHHSI  uint32 = 0xE555 // FORMAT_SIL        COMPARE LOGICAL IMMEDIATE (16)
  1714  	op_CLHLR   uint32 = 0xB9DF // FORMAT_RRE        COMPARE LOGICAL HIGH (32)
  1715  	op_CLHRL   uint32 = 0xC607 // FORMAT_RIL2       COMPARE LOGICAL RELATIVE LONG (32<-16)
  1716  	op_CLI     uint32 = 0x9500 // FORMAT_SI         COMPARE LOGICAL (immediate)
  1717  	op_CLIB    uint32 = 0xECFF // FORMAT_RIS        COMPARE LOGICAL IMMEDIATE AND BRANCH (32<-8)
  1718  	op_CLIH    uint32 = 0xCC0F // FORMAT_RIL1       COMPARE LOGICAL IMMEDIATE HIGH (32)
  1719  	op_CLIJ    uint32 = 0xEC7F // FORMAT_RIE3       COMPARE LOGICAL IMMEDIATE AND BRANCH RELATIVE (32<-8)
  1720  	op_CLIY    uint32 = 0xEB55 // FORMAT_SIY        COMPARE LOGICAL (immediate)
  1721  	op_CLM     uint32 = 0xBD00 // FORMAT_RS2        COMPARE LOGICAL CHAR. UNDER MASK (low)
  1722  	op_CLMH    uint32 = 0xEB20 // FORMAT_RSY2       COMPARE LOGICAL CHAR. UNDER MASK (high)
  1723  	op_CLMY    uint32 = 0xEB21 // FORMAT_RSY2       COMPARE LOGICAL CHAR. UNDER MASK (low)
  1724  	op_CLR     uint32 = 0x1500 // FORMAT_RR         COMPARE LOGICAL (32)
  1725  	op_CLRB    uint32 = 0xECF7 // FORMAT_RRS        COMPARE LOGICAL AND BRANCH (32)
  1726  	op_CLRJ    uint32 = 0xEC77 // FORMAT_RIE2       COMPARE LOGICAL AND BRANCH RELATIVE (32)
  1727  	op_CLRL    uint32 = 0xC60F // FORMAT_RIL2       COMPARE LOGICAL RELATIVE LONG (32)
  1728  	op_CLRT    uint32 = 0xB973 // FORMAT_RRF3       COMPARE LOGICAL AND TRAP (32)
  1729  	op_CLST    uint32 = 0xB25D // FORMAT_RRE        COMPARE LOGICAL STRING
  1730  	op_CLT     uint32 = 0xEB23 // FORMAT_RSY2       COMPARE LOGICAL AND TRAP (32)
  1731  	op_CLY     uint32 = 0xE355 // FORMAT_RXY1       COMPARE LOGICAL (32)
  1732  	op_CMPSC   uint32 = 0xB263 // FORMAT_RRE        COMPRESSION CALL
  1733  	op_CP      uint32 = 0xF900 // FORMAT_SS2        COMPARE DECIMAL
  1734  	op_CPSDR   uint32 = 0xB372 // FORMAT_RRF2       COPY SIGN (long)
  1735  	op_CPYA    uint32 = 0xB24D // FORMAT_RRE        COPY ACCESS
  1736  	op_CR      uint32 = 0x1900 // FORMAT_RR         COMPARE (32)
  1737  	op_CRB     uint32 = 0xECF6 // FORMAT_RRS        COMPARE AND BRANCH (32)
  1738  	op_CRDTE   uint32 = 0xB98F // FORMAT_RRF2       COMPARE AND REPLACE DAT TABLE ENTRY
  1739  	op_CRJ     uint32 = 0xEC76 // FORMAT_RIE2       COMPARE AND BRANCH RELATIVE (32)
  1740  	op_CRL     uint32 = 0xC60D // FORMAT_RIL2       COMPARE RELATIVE LONG (32)
  1741  	op_CRT     uint32 = 0xB972 // FORMAT_RRF3       COMPARE AND TRAP (32)
  1742  	op_CS      uint32 = 0xBA00 // FORMAT_RS1        COMPARE AND SWAP (32)
  1743  	op_CSCH    uint32 = 0xB230 // FORMAT_S          CLEAR SUBCHANNEL
  1744  	op_CSDTR   uint32 = 0xB3E3 // FORMAT_RRF4       CONVERT TO SIGNED PACKED (long DFP to 64)
  1745  	op_CSG     uint32 = 0xEB30 // FORMAT_RSY1       COMPARE AND SWAP (64)
  1746  	op_CSP     uint32 = 0xB250 // FORMAT_RRE        COMPARE AND SWAP AND PURGE
  1747  	op_CSPG    uint32 = 0xB98A // FORMAT_RRE        COMPARE AND SWAP AND PURGE
  1748  	op_CSST    uint32 = 0xC802 // FORMAT_SSF        COMPARE AND SWAP AND STORE
  1749  	op_CSXTR   uint32 = 0xB3EB // FORMAT_RRF4       CONVERT TO SIGNED PACKED (extended DFP to 128)
  1750  	op_CSY     uint32 = 0xEB14 // FORMAT_RSY1       COMPARE AND SWAP (32)
  1751  	op_CU12    uint32 = 0xB2A7 // FORMAT_RRF3       CONVERT UTF-8 TO UTF-16
  1752  	op_CU14    uint32 = 0xB9B0 // FORMAT_RRF3       CONVERT UTF-8 TO UTF-32
  1753  	op_CU21    uint32 = 0xB2A6 // FORMAT_RRF3       CONVERT UTF-16 TO UTF-8
  1754  	op_CU24    uint32 = 0xB9B1 // FORMAT_RRF3       CONVERT UTF-16 TO UTF-32
  1755  	op_CU41    uint32 = 0xB9B2 // FORMAT_RRE        CONVERT UTF-32 TO UTF-8
  1756  	op_CU42    uint32 = 0xB9B3 // FORMAT_RRE        CONVERT UTF-32 TO UTF-16
  1757  	op_CUDTR   uint32 = 0xB3E2 // FORMAT_RRE        CONVERT TO UNSIGNED PACKED (long DFP to 64)
  1758  	op_CUSE    uint32 = 0xB257 // FORMAT_RRE        COMPARE UNTIL SUBSTRING EQUAL
  1759  	op_CUTFU   uint32 = 0xB2A7 // FORMAT_RRF3       CONVERT UTF-8 TO UNICODE
  1760  	op_CUUTF   uint32 = 0xB2A6 // FORMAT_RRF3       CONVERT UNICODE TO UTF-8
  1761  	op_CUXTR   uint32 = 0xB3EA // FORMAT_RRE        CONVERT TO UNSIGNED PACKED (extended DFP to 128)
  1762  	op_CVB     uint32 = 0x4F00 // FORMAT_RX1        CONVERT TO BINARY (32)
  1763  	op_CVBG    uint32 = 0xE30E // FORMAT_RXY1       CONVERT TO BINARY (64)
  1764  	op_CVBY    uint32 = 0xE306 // FORMAT_RXY1       CONVERT TO BINARY (32)
  1765  	op_CVD     uint32 = 0x4E00 // FORMAT_RX1        CONVERT TO DECIMAL (32)
  1766  	op_CVDG    uint32 = 0xE32E // FORMAT_RXY1       CONVERT TO DECIMAL (64)
  1767  	op_CVDY    uint32 = 0xE326 // FORMAT_RXY1       CONVERT TO DECIMAL (32)
  1768  	op_CXBR    uint32 = 0xB349 // FORMAT_RRE        COMPARE (extended BFP)
  1769  	op_CXFBR   uint32 = 0xB396 // FORMAT_RRE        CONVERT FROM FIXED (32 to extended BFP)
  1770  	op_CXFBRA  uint32 = 0xB396 // FORMAT_RRF5       CONVERT FROM FIXED (32 to extended BFP)
  1771  	op_CXFR    uint32 = 0xB3B6 // FORMAT_RRE        CONVERT FROM FIXED (32 to extended HFP)
  1772  	op_CXFTR   uint32 = 0xB959 // FORMAT_RRE        CONVERT FROM FIXED (32 to extended DFP)
  1773  	op_CXGBR   uint32 = 0xB3A6 // FORMAT_RRE        CONVERT FROM FIXED (64 to extended BFP)
  1774  	op_CXGBRA  uint32 = 0xB3A6 // FORMAT_RRF5       CONVERT FROM FIXED (64 to extended BFP)
  1775  	op_CXGR    uint32 = 0xB3C6 // FORMAT_RRE        CONVERT FROM FIXED (64 to extended HFP)
  1776  	op_CXGTR   uint32 = 0xB3F9 // FORMAT_RRE        CONVERT FROM FIXED (64 to extended DFP)
  1777  	op_CXGTRA  uint32 = 0xB3F9 // FORMAT_RRF5       CONVERT FROM FIXED (64 to extended DFP)
  1778  	op_CXLFBR  uint32 = 0xB392 // FORMAT_RRF5       CONVERT FROM LOGICAL (32 to extended BFP)
  1779  	op_CXLFTR  uint32 = 0xB95B // FORMAT_RRF5       CONVERT FROM LOGICAL (32 to extended DFP)
  1780  	op_CXLGBR  uint32 = 0xB3A2 // FORMAT_RRF5       CONVERT FROM LOGICAL (64 to extended BFP)
  1781  	op_CXLGTR  uint32 = 0xB95A // FORMAT_RRF5       CONVERT FROM LOGICAL (64 to extended DFP)
  1782  	op_CXR     uint32 = 0xB369 // FORMAT_RRE        COMPARE (extended HFP)
  1783  	op_CXSTR   uint32 = 0xB3FB // FORMAT_RRE        CONVERT FROM SIGNED PACKED (128 to extended DFP)
  1784  	op_CXTR    uint32 = 0xB3EC // FORMAT_RRE        COMPARE (extended DFP)
  1785  	op_CXUTR   uint32 = 0xB3FA // FORMAT_RRE        CONVERT FROM UNSIGNED PACKED (128 to ext. DFP)
  1786  	op_CXZT    uint32 = 0xEDAB // FORMAT_RSL        CONVERT FROM ZONED (to extended DFP)
  1787  	op_CY      uint32 = 0xE359 // FORMAT_RXY1       COMPARE (32)
  1788  	op_CZDT    uint32 = 0xEDA8 // FORMAT_RSL        CONVERT TO ZONED (from long DFP)
  1789  	op_CZXT    uint32 = 0xEDA9 // FORMAT_RSL        CONVERT TO ZONED (from extended DFP)
  1790  	op_D       uint32 = 0x5D00 // FORMAT_RX1        DIVIDE (32<-64)
  1791  	op_DD      uint32 = 0x6D00 // FORMAT_RX1        DIVIDE (long HFP)
  1792  	op_DDB     uint32 = 0xED1D // FORMAT_RXE        DIVIDE (long BFP)
  1793  	op_DDBR    uint32 = 0xB31D // FORMAT_RRE        DIVIDE (long BFP)
  1794  	op_DDR     uint32 = 0x2D00 // FORMAT_RR         DIVIDE (long HFP)
  1795  	op_DDTR    uint32 = 0xB3D1 // FORMAT_RRF1       DIVIDE (long DFP)
  1796  	op_DDTRA   uint32 = 0xB3D1 // FORMAT_RRF1       DIVIDE (long DFP)
  1797  	op_DE      uint32 = 0x7D00 // FORMAT_RX1        DIVIDE (short HFP)
  1798  	op_DEB     uint32 = 0xED0D // FORMAT_RXE        DIVIDE (short BFP)
  1799  	op_DEBR    uint32 = 0xB30D // FORMAT_RRE        DIVIDE (short BFP)
  1800  	op_DER     uint32 = 0x3D00 // FORMAT_RR         DIVIDE (short HFP)
  1801  	op_DIDBR   uint32 = 0xB35B // FORMAT_RRF2       DIVIDE TO INTEGER (long BFP)
  1802  	op_DIEBR   uint32 = 0xB353 // FORMAT_RRF2       DIVIDE TO INTEGER (short BFP)
  1803  	op_DL      uint32 = 0xE397 // FORMAT_RXY1       DIVIDE LOGICAL (32<-64)
  1804  	op_DLG     uint32 = 0xE387 // FORMAT_RXY1       DIVIDE LOGICAL (64<-128)
  1805  	op_DLGR    uint32 = 0xB987 // FORMAT_RRE        DIVIDE LOGICAL (64<-128)
  1806  	op_DLR     uint32 = 0xB997 // FORMAT_RRE        DIVIDE LOGICAL (32<-64)
  1807  	op_DP      uint32 = 0xFD00 // FORMAT_SS2        DIVIDE DECIMAL
  1808  	op_DR      uint32 = 0x1D00 // FORMAT_RR         DIVIDE (32<-64)
  1809  	op_DSG     uint32 = 0xE30D // FORMAT_RXY1       DIVIDE SINGLE (64)
  1810  	op_DSGF    uint32 = 0xE31D // FORMAT_RXY1       DIVIDE SINGLE (64<-32)
  1811  	op_DSGFR   uint32 = 0xB91D // FORMAT_RRE        DIVIDE SINGLE (64<-32)
  1812  	op_DSGR    uint32 = 0xB90D // FORMAT_RRE        DIVIDE SINGLE (64)
  1813  	op_DXBR    uint32 = 0xB34D // FORMAT_RRE        DIVIDE (extended BFP)
  1814  	op_DXR     uint32 = 0xB22D // FORMAT_RRE        DIVIDE (extended HFP)
  1815  	op_DXTR    uint32 = 0xB3D9 // FORMAT_RRF1       DIVIDE (extended DFP)
  1816  	op_DXTRA   uint32 = 0xB3D9 // FORMAT_RRF1       DIVIDE (extended DFP)
  1817  	op_EAR     uint32 = 0xB24F // FORMAT_RRE        EXTRACT ACCESS
  1818  	op_ECAG    uint32 = 0xEB4C // FORMAT_RSY1       EXTRACT CACHE ATTRIBUTE
  1819  	op_ECTG    uint32 = 0xC801 // FORMAT_SSF        EXTRACT CPU TIME
  1820  	op_ED      uint32 = 0xDE00 // FORMAT_SS1        EDIT
  1821  	op_EDMK    uint32 = 0xDF00 // FORMAT_SS1        EDIT AND MARK
  1822  	op_EEDTR   uint32 = 0xB3E5 // FORMAT_RRE        EXTRACT BIASED EXPONENT (long DFP to 64)
  1823  	op_EEXTR   uint32 = 0xB3ED // FORMAT_RRE        EXTRACT BIASED EXPONENT (extended DFP to 64)
  1824  	op_EFPC    uint32 = 0xB38C // FORMAT_RRE        EXTRACT FPC
  1825  	op_EPAIR   uint32 = 0xB99A // FORMAT_RRE        EXTRACT PRIMARY ASN AND INSTANCE
  1826  	op_EPAR    uint32 = 0xB226 // FORMAT_RRE        EXTRACT PRIMARY ASN
  1827  	op_EPSW    uint32 = 0xB98D // FORMAT_RRE        EXTRACT PSW
  1828  	op_EREG    uint32 = 0xB249 // FORMAT_RRE        EXTRACT STACKED REGISTERS (32)
  1829  	op_EREGG   uint32 = 0xB90E // FORMAT_RRE        EXTRACT STACKED REGISTERS (64)
  1830  	op_ESAIR   uint32 = 0xB99B // FORMAT_RRE        EXTRACT SECONDARY ASN AND INSTANCE
  1831  	op_ESAR    uint32 = 0xB227 // FORMAT_RRE        EXTRACT SECONDARY ASN
  1832  	op_ESDTR   uint32 = 0xB3E7 // FORMAT_RRE        EXTRACT SIGNIFICANCE (long DFP)
  1833  	op_ESEA    uint32 = 0xB99D // FORMAT_RRE        EXTRACT AND SET EXTENDED AUTHORITY
  1834  	op_ESTA    uint32 = 0xB24A // FORMAT_RRE        EXTRACT STACKED STATE
  1835  	op_ESXTR   uint32 = 0xB3EF // FORMAT_RRE        EXTRACT SIGNIFICANCE (extended DFP)
  1836  	op_ETND    uint32 = 0xB2EC // FORMAT_RRE        EXTRACT TRANSACTION NESTING DEPTH
  1837  	op_EX      uint32 = 0x4400 // FORMAT_RX1        EXECUTE
  1838  	op_EXRL    uint32 = 0xC600 // FORMAT_RIL2       EXECUTE RELATIVE LONG
  1839  	op_FIDBR   uint32 = 0xB35F // FORMAT_RRF5       LOAD FP INTEGER (long BFP)
  1840  	op_FIDBRA  uint32 = 0xB35F // FORMAT_RRF5       LOAD FP INTEGER (long BFP)
  1841  	op_FIDR    uint32 = 0xB37F // FORMAT_RRE        LOAD FP INTEGER (long HFP)
  1842  	op_FIDTR   uint32 = 0xB3D7 // FORMAT_RRF5       LOAD FP INTEGER (long DFP)
  1843  	op_FIEBR   uint32 = 0xB357 // FORMAT_RRF5       LOAD FP INTEGER (short BFP)
  1844  	op_FIEBRA  uint32 = 0xB357 // FORMAT_RRF5       LOAD FP INTEGER (short BFP)
  1845  	op_FIER    uint32 = 0xB377 // FORMAT_RRE        LOAD FP INTEGER (short HFP)
  1846  	op_FIXBR   uint32 = 0xB347 // FORMAT_RRF5       LOAD FP INTEGER (extended BFP)
  1847  	op_FIXBRA  uint32 = 0xB347 // FORMAT_RRF5       LOAD FP INTEGER (extended BFP)
  1848  	op_FIXR    uint32 = 0xB367 // FORMAT_RRE        LOAD FP INTEGER (extended HFP)
  1849  	op_FIXTR   uint32 = 0xB3DF // FORMAT_RRF5       LOAD FP INTEGER (extended DFP)
  1850  	op_FLOGR   uint32 = 0xB983 // FORMAT_RRE        FIND LEFTMOST ONE
  1851  	op_HDR     uint32 = 0x2400 // FORMAT_RR         HALVE (long HFP)
  1852  	op_HER     uint32 = 0x3400 // FORMAT_RR         HALVE (short HFP)
  1853  	op_HSCH    uint32 = 0xB231 // FORMAT_S          HALT SUBCHANNEL
  1854  	op_IAC     uint32 = 0xB224 // FORMAT_RRE        INSERT ADDRESS SPACE CONTROL
  1855  	op_IC      uint32 = 0x4300 // FORMAT_RX1        INSERT CHARACTER
  1856  	op_ICM     uint32 = 0xBF00 // FORMAT_RS2        INSERT CHARACTERS UNDER MASK (low)
  1857  	op_ICMH    uint32 = 0xEB80 // FORMAT_RSY2       INSERT CHARACTERS UNDER MASK (high)
  1858  	op_ICMY    uint32 = 0xEB81 // FORMAT_RSY2       INSERT CHARACTERS UNDER MASK (low)
  1859  	op_ICY     uint32 = 0xE373 // FORMAT_RXY1       INSERT CHARACTER
  1860  	op_IDTE    uint32 = 0xB98E // FORMAT_RRF2       INVALIDATE DAT TABLE ENTRY
  1861  	op_IEDTR   uint32 = 0xB3F6 // FORMAT_RRF2       INSERT BIASED EXPONENT (64 to long DFP)
  1862  	op_IEXTR   uint32 = 0xB3FE // FORMAT_RRF2       INSERT BIASED EXPONENT (64 to extended DFP)
  1863  	op_IIHF    uint32 = 0xC008 // FORMAT_RIL1       INSERT IMMEDIATE (high)
  1864  	op_IIHH    uint32 = 0xA500 // FORMAT_RI1        INSERT IMMEDIATE (high high)
  1865  	op_IIHL    uint32 = 0xA501 // FORMAT_RI1        INSERT IMMEDIATE (high low)
  1866  	op_IILF    uint32 = 0xC009 // FORMAT_RIL1       INSERT IMMEDIATE (low)
  1867  	op_IILH    uint32 = 0xA502 // FORMAT_RI1        INSERT IMMEDIATE (low high)
  1868  	op_IILL    uint32 = 0xA503 // FORMAT_RI1        INSERT IMMEDIATE (low low)
  1869  	op_IPK     uint32 = 0xB20B // FORMAT_S          INSERT PSW KEY
  1870  	op_IPM     uint32 = 0xB222 // FORMAT_RRE        INSERT PROGRAM MASK
  1871  	op_IPTE    uint32 = 0xB221 // FORMAT_RRF1       INVALIDATE PAGE TABLE ENTRY
  1872  	op_ISKE    uint32 = 0xB229 // FORMAT_RRE        INSERT STORAGE KEY EXTENDED
  1873  	op_IVSK    uint32 = 0xB223 // FORMAT_RRE        INSERT VIRTUAL STORAGE KEY
  1874  	op_KDB     uint32 = 0xED18 // FORMAT_RXE        COMPARE AND SIGNAL (long BFP)
  1875  	op_KDBR    uint32 = 0xB318 // FORMAT_RRE        COMPARE AND SIGNAL (long BFP)
  1876  	op_KDTR    uint32 = 0xB3E0 // FORMAT_RRE        COMPARE AND SIGNAL (long DFP)
  1877  	op_KEB     uint32 = 0xED08 // FORMAT_RXE        COMPARE AND SIGNAL (short BFP)
  1878  	op_KEBR    uint32 = 0xB308 // FORMAT_RRE        COMPARE AND SIGNAL (short BFP)
  1879  	op_KIMD    uint32 = 0xB93E // FORMAT_RRE        COMPUTE INTERMEDIATE MESSAGE DIGEST
  1880  	op_KLMD    uint32 = 0xB93F // FORMAT_RRE        COMPUTE LAST MESSAGE DIGEST
  1881  	op_KM      uint32 = 0xB92E // FORMAT_RRE        CIPHER MESSAGE
  1882  	op_KMAC    uint32 = 0xB91E // FORMAT_RRE        COMPUTE MESSAGE AUTHENTICATION CODE
  1883  	op_KMC     uint32 = 0xB92F // FORMAT_RRE        CIPHER MESSAGE WITH CHAINING
  1884  	op_KMCTR   uint32 = 0xB92D // FORMAT_RRF2       CIPHER MESSAGE WITH COUNTER
  1885  	op_KMF     uint32 = 0xB92A // FORMAT_RRE        CIPHER MESSAGE WITH CFB
  1886  	op_KMO     uint32 = 0xB92B // FORMAT_RRE        CIPHER MESSAGE WITH OFB
  1887  	op_KXBR    uint32 = 0xB348 // FORMAT_RRE        COMPARE AND SIGNAL (extended BFP)
  1888  	op_KXTR    uint32 = 0xB3E8 // FORMAT_RRE        COMPARE AND SIGNAL (extended DFP)
  1889  	op_L       uint32 = 0x5800 // FORMAT_RX1        LOAD (32)
  1890  	op_LA      uint32 = 0x4100 // FORMAT_RX1        LOAD ADDRESS
  1891  	op_LAA     uint32 = 0xEBF8 // FORMAT_RSY1       LOAD AND ADD (32)
  1892  	op_LAAG    uint32 = 0xEBE8 // FORMAT_RSY1       LOAD AND ADD (64)
  1893  	op_LAAL    uint32 = 0xEBFA // FORMAT_RSY1       LOAD AND ADD LOGICAL (32)
  1894  	op_LAALG   uint32 = 0xEBEA // FORMAT_RSY1       LOAD AND ADD LOGICAL (64)
  1895  	op_LAE     uint32 = 0x5100 // FORMAT_RX1        LOAD ADDRESS EXTENDED
  1896  	op_LAEY    uint32 = 0xE375 // FORMAT_RXY1       LOAD ADDRESS EXTENDED
  1897  	op_LAM     uint32 = 0x9A00 // FORMAT_RS1        LOAD ACCESS MULTIPLE
  1898  	op_LAMY    uint32 = 0xEB9A // FORMAT_RSY1       LOAD ACCESS MULTIPLE
  1899  	op_LAN     uint32 = 0xEBF4 // FORMAT_RSY1       LOAD AND AND (32)
  1900  	op_LANG    uint32 = 0xEBE4 // FORMAT_RSY1       LOAD AND AND (64)
  1901  	op_LAO     uint32 = 0xEBF6 // FORMAT_RSY1       LOAD AND OR (32)
  1902  	op_LAOG    uint32 = 0xEBE6 // FORMAT_RSY1       LOAD AND OR (64)
  1903  	op_LARL    uint32 = 0xC000 // FORMAT_RIL2       LOAD ADDRESS RELATIVE LONG
  1904  	op_LASP    uint32 = 0xE500 // FORMAT_SSE        LOAD ADDRESS SPACE PARAMETERS
  1905  	op_LAT     uint32 = 0xE39F // FORMAT_RXY1       LOAD AND TRAP (32L<-32)
  1906  	op_LAX     uint32 = 0xEBF7 // FORMAT_RSY1       LOAD AND EXCLUSIVE OR (32)
  1907  	op_LAXG    uint32 = 0xEBE7 // FORMAT_RSY1       LOAD AND EXCLUSIVE OR (64)
  1908  	op_LAY     uint32 = 0xE371 // FORMAT_RXY1       LOAD ADDRESS
  1909  	op_LB      uint32 = 0xE376 // FORMAT_RXY1       LOAD BYTE (32)
  1910  	op_LBH     uint32 = 0xE3C0 // FORMAT_RXY1       LOAD BYTE HIGH (32<-8)
  1911  	op_LBR     uint32 = 0xB926 // FORMAT_RRE        LOAD BYTE (32)
  1912  	op_LCDBR   uint32 = 0xB313 // FORMAT_RRE        LOAD COMPLEMENT (long BFP)
  1913  	op_LCDFR   uint32 = 0xB373 // FORMAT_RRE        LOAD COMPLEMENT (long)
  1914  	op_LCDR    uint32 = 0x2300 // FORMAT_RR         LOAD COMPLEMENT (long HFP)
  1915  	op_LCEBR   uint32 = 0xB303 // FORMAT_RRE        LOAD COMPLEMENT (short BFP)
  1916  	op_LCER    uint32 = 0x3300 // FORMAT_RR         LOAD COMPLEMENT (short HFP)
  1917  	op_LCGFR   uint32 = 0xB913 // FORMAT_RRE        LOAD COMPLEMENT (64<-32)
  1918  	op_LCGR    uint32 = 0xB903 // FORMAT_RRE        LOAD COMPLEMENT (64)
  1919  	op_LCR     uint32 = 0x1300 // FORMAT_RR         LOAD COMPLEMENT (32)
  1920  	op_LCTL    uint32 = 0xB700 // FORMAT_RS1        LOAD CONTROL (32)
  1921  	op_LCTLG   uint32 = 0xEB2F // FORMAT_RSY1       LOAD CONTROL (64)
  1922  	op_LCXBR   uint32 = 0xB343 // FORMAT_RRE        LOAD COMPLEMENT (extended BFP)
  1923  	op_LCXR    uint32 = 0xB363 // FORMAT_RRE        LOAD COMPLEMENT (extended HFP)
  1924  	op_LD      uint32 = 0x6800 // FORMAT_RX1        LOAD (long)
  1925  	op_LDE     uint32 = 0xED24 // FORMAT_RXE        LOAD LENGTHENED (short to long HFP)
  1926  	op_LDEB    uint32 = 0xED04 // FORMAT_RXE        LOAD LENGTHENED (short to long BFP)
  1927  	op_LDEBR   uint32 = 0xB304 // FORMAT_RRE        LOAD LENGTHENED (short to long BFP)
  1928  	op_LDER    uint32 = 0xB324 // FORMAT_RRE        LOAD LENGTHENED (short to long HFP)
  1929  	op_LDETR   uint32 = 0xB3D4 // FORMAT_RRF4       LOAD LENGTHENED (short to long DFP)
  1930  	op_LDGR    uint32 = 0xB3C1 // FORMAT_RRE        LOAD FPR FROM GR (64 to long)
  1931  	op_LDR     uint32 = 0x2800 // FORMAT_RR         LOAD (long)
  1932  	op_LDXBR   uint32 = 0xB345 // FORMAT_RRE        LOAD ROUNDED (extended to long BFP)
  1933  	op_LDXBRA  uint32 = 0xB345 // FORMAT_RRF5       LOAD ROUNDED (extended to long BFP)
  1934  	op_LDXR    uint32 = 0x2500 // FORMAT_RR         LOAD ROUNDED (extended to long HFP)
  1935  	op_LDXTR   uint32 = 0xB3DD // FORMAT_RRF5       LOAD ROUNDED (extended to long DFP)
  1936  	op_LDY     uint32 = 0xED65 // FORMAT_RXY1       LOAD (long)
  1937  	op_LE      uint32 = 0x7800 // FORMAT_RX1        LOAD (short)
  1938  	op_LEDBR   uint32 = 0xB344 // FORMAT_RRE        LOAD ROUNDED (long to short BFP)
  1939  	op_LEDBRA  uint32 = 0xB344 // FORMAT_RRF5       LOAD ROUNDED (long to short BFP)
  1940  	op_LEDR    uint32 = 0x3500 // FORMAT_RR         LOAD ROUNDED (long to short HFP)
  1941  	op_LEDTR   uint32 = 0xB3D5 // FORMAT_RRF5       LOAD ROUNDED (long to short DFP)
  1942  	op_LER     uint32 = 0x3800 // FORMAT_RR         LOAD (short)
  1943  	op_LEXBR   uint32 = 0xB346 // FORMAT_RRE        LOAD ROUNDED (extended to short BFP)
  1944  	op_LEXBRA  uint32 = 0xB346 // FORMAT_RRF5       LOAD ROUNDED (extended to short BFP)
  1945  	op_LEXR    uint32 = 0xB366 // FORMAT_RRE        LOAD ROUNDED (extended to short HFP)
  1946  	op_LEY     uint32 = 0xED64 // FORMAT_RXY1       LOAD (short)
  1947  	op_LFAS    uint32 = 0xB2BD // FORMAT_S          LOAD FPC AND SIGNAL
  1948  	op_LFH     uint32 = 0xE3CA // FORMAT_RXY1       LOAD HIGH (32)
  1949  	op_LFHAT   uint32 = 0xE3C8 // FORMAT_RXY1       LOAD HIGH AND TRAP (32H<-32)
  1950  	op_LFPC    uint32 = 0xB29D // FORMAT_S          LOAD FPC
  1951  	op_LG      uint32 = 0xE304 // FORMAT_RXY1       LOAD (64)
  1952  	op_LGAT    uint32 = 0xE385 // FORMAT_RXY1       LOAD AND TRAP (64)
  1953  	op_LGB     uint32 = 0xE377 // FORMAT_RXY1       LOAD BYTE (64)
  1954  	op_LGBR    uint32 = 0xB906 // FORMAT_RRE        LOAD BYTE (64)
  1955  	op_LGDR    uint32 = 0xB3CD // FORMAT_RRE        LOAD GR FROM FPR (long to 64)
  1956  	op_LGF     uint32 = 0xE314 // FORMAT_RXY1       LOAD (64<-32)
  1957  	op_LGFI    uint32 = 0xC001 // FORMAT_RIL1       LOAD IMMEDIATE (64<-32)
  1958  	op_LGFR    uint32 = 0xB914 // FORMAT_RRE        LOAD (64<-32)
  1959  	op_LGFRL   uint32 = 0xC40C // FORMAT_RIL2       LOAD RELATIVE LONG (64<-32)
  1960  	op_LGH     uint32 = 0xE315 // FORMAT_RXY1       LOAD HALFWORD (64)
  1961  	op_LGHI    uint32 = 0xA709 // FORMAT_RI1        LOAD HALFWORD IMMEDIATE (64)
  1962  	op_LGHR    uint32 = 0xB907 // FORMAT_RRE        LOAD HALFWORD (64)
  1963  	op_LGHRL   uint32 = 0xC404 // FORMAT_RIL2       LOAD HALFWORD RELATIVE LONG (64<-16)
  1964  	op_LGR     uint32 = 0xB904 // FORMAT_RRE        LOAD (64)
  1965  	op_LGRL    uint32 = 0xC408 // FORMAT_RIL2       LOAD RELATIVE LONG (64)
  1966  	op_LH      uint32 = 0x4800 // FORMAT_RX1        LOAD HALFWORD (32)
  1967  	op_LHH     uint32 = 0xE3C4 // FORMAT_RXY1       LOAD HALFWORD HIGH (32<-16)
  1968  	op_LHI     uint32 = 0xA708 // FORMAT_RI1        LOAD HALFWORD IMMEDIATE (32)
  1969  	op_LHR     uint32 = 0xB927 // FORMAT_RRE        LOAD HALFWORD (32)
  1970  	op_LHRL    uint32 = 0xC405 // FORMAT_RIL2       LOAD HALFWORD RELATIVE LONG (32<-16)
  1971  	op_LHY     uint32 = 0xE378 // FORMAT_RXY1       LOAD HALFWORD (32)
  1972  	op_LLC     uint32 = 0xE394 // FORMAT_RXY1       LOAD LOGICAL CHARACTER (32)
  1973  	op_LLCH    uint32 = 0xE3C2 // FORMAT_RXY1       LOAD LOGICAL CHARACTER HIGH (32<-8)
  1974  	op_LLCR    uint32 = 0xB994 // FORMAT_RRE        LOAD LOGICAL CHARACTER (32)
  1975  	op_LLGC    uint32 = 0xE390 // FORMAT_RXY1       LOAD LOGICAL CHARACTER (64)
  1976  	op_LLGCR   uint32 = 0xB984 // FORMAT_RRE        LOAD LOGICAL CHARACTER (64)
  1977  	op_LLGF    uint32 = 0xE316 // FORMAT_RXY1       LOAD LOGICAL (64<-32)
  1978  	op_LLGFAT  uint32 = 0xE39D // FORMAT_RXY1       LOAD LOGICAL AND TRAP (64<-32)
  1979  	op_LLGFR   uint32 = 0xB916 // FORMAT_RRE        LOAD LOGICAL (64<-32)
  1980  	op_LLGFRL  uint32 = 0xC40E // FORMAT_RIL2       LOAD LOGICAL RELATIVE LONG (64<-32)
  1981  	op_LLGH    uint32 = 0xE391 // FORMAT_RXY1       LOAD LOGICAL HALFWORD (64)
  1982  	op_LLGHR   uint32 = 0xB985 // FORMAT_RRE        LOAD LOGICAL HALFWORD (64)
  1983  	op_LLGHRL  uint32 = 0xC406 // FORMAT_RIL2       LOAD LOGICAL HALFWORD RELATIVE LONG (64<-16)
  1984  	op_LLGT    uint32 = 0xE317 // FORMAT_RXY1       LOAD LOGICAL THIRTY ONE BITS
  1985  	op_LLGTAT  uint32 = 0xE39C // FORMAT_RXY1       LOAD LOGICAL THIRTY ONE BITS AND TRAP (64<-31)
  1986  	op_LLGTR   uint32 = 0xB917 // FORMAT_RRE        LOAD LOGICAL THIRTY ONE BITS
  1987  	op_LLH     uint32 = 0xE395 // FORMAT_RXY1       LOAD LOGICAL HALFWORD (32)
  1988  	op_LLHH    uint32 = 0xE3C6 // FORMAT_RXY1       LOAD LOGICAL HALFWORD HIGH (32<-16)
  1989  	op_LLHR    uint32 = 0xB995 // FORMAT_RRE        LOAD LOGICAL HALFWORD (32)
  1990  	op_LLHRL   uint32 = 0xC402 // FORMAT_RIL2       LOAD LOGICAL HALFWORD RELATIVE LONG (32<-16)
  1991  	op_LLIHF   uint32 = 0xC00E // FORMAT_RIL1       LOAD LOGICAL IMMEDIATE (high)
  1992  	op_LLIHH   uint32 = 0xA50C // FORMAT_RI1        LOAD LOGICAL IMMEDIATE (high high)
  1993  	op_LLIHL   uint32 = 0xA50D // FORMAT_RI1        LOAD LOGICAL IMMEDIATE (high low)
  1994  	op_LLILF   uint32 = 0xC00F // FORMAT_RIL1       LOAD LOGICAL IMMEDIATE (low)
  1995  	op_LLILH   uint32 = 0xA50E // FORMAT_RI1        LOAD LOGICAL IMMEDIATE (low high)
  1996  	op_LLILL   uint32 = 0xA50F // FORMAT_RI1        LOAD LOGICAL IMMEDIATE (low low)
  1997  	op_LM      uint32 = 0x9800 // FORMAT_RS1        LOAD MULTIPLE (32)
  1998  	op_LMD     uint32 = 0xEF00 // FORMAT_SS5        LOAD MULTIPLE DISJOINT
  1999  	op_LMG     uint32 = 0xEB04 // FORMAT_RSY1       LOAD MULTIPLE (64)
  2000  	op_LMH     uint32 = 0xEB96 // FORMAT_RSY1       LOAD MULTIPLE HIGH
  2001  	op_LMY     uint32 = 0xEB98 // FORMAT_RSY1       LOAD MULTIPLE (32)
  2002  	op_LNDBR   uint32 = 0xB311 // FORMAT_RRE        LOAD NEGATIVE (long BFP)
  2003  	op_LNDFR   uint32 = 0xB371 // FORMAT_RRE        LOAD NEGATIVE (long)
  2004  	op_LNDR    uint32 = 0x2100 // FORMAT_RR         LOAD NEGATIVE (long HFP)
  2005  	op_LNEBR   uint32 = 0xB301 // FORMAT_RRE        LOAD NEGATIVE (short BFP)
  2006  	op_LNER    uint32 = 0x3100 // FORMAT_RR         LOAD NEGATIVE (short HFP)
  2007  	op_LNGFR   uint32 = 0xB911 // FORMAT_RRE        LOAD NEGATIVE (64<-32)
  2008  	op_LNGR    uint32 = 0xB901 // FORMAT_RRE        LOAD NEGATIVE (64)
  2009  	op_LNR     uint32 = 0x1100 // FORMAT_RR         LOAD NEGATIVE (32)
  2010  	op_LNXBR   uint32 = 0xB341 // FORMAT_RRE        LOAD NEGATIVE (extended BFP)
  2011  	op_LNXR    uint32 = 0xB361 // FORMAT_RRE        LOAD NEGATIVE (extended HFP)
  2012  	op_LOC     uint32 = 0xEBF2 // FORMAT_RSY2       LOAD ON CONDITION (32)
  2013  	op_LOCG    uint32 = 0xEBE2 // FORMAT_RSY2       LOAD ON CONDITION (64)
  2014  	op_LOCGR   uint32 = 0xB9E2 // FORMAT_RRF3       LOAD ON CONDITION (64)
  2015  	op_LOCR    uint32 = 0xB9F2 // FORMAT_RRF3       LOAD ON CONDITION (32)
  2016  	op_LPD     uint32 = 0xC804 // FORMAT_SSF        LOAD PAIR DISJOINT (32)
  2017  	op_LPDBR   uint32 = 0xB310 // FORMAT_RRE        LOAD POSITIVE (long BFP)
  2018  	op_LPDFR   uint32 = 0xB370 // FORMAT_RRE        LOAD POSITIVE (long)
  2019  	op_LPDG    uint32 = 0xC805 // FORMAT_SSF        LOAD PAIR DISJOINT (64)
  2020  	op_LPDR    uint32 = 0x2000 // FORMAT_RR         LOAD POSITIVE (long HFP)
  2021  	op_LPEBR   uint32 = 0xB300 // FORMAT_RRE        LOAD POSITIVE (short BFP)
  2022  	op_LPER    uint32 = 0x3000 // FORMAT_RR         LOAD POSITIVE (short HFP)
  2023  	op_LPGFR   uint32 = 0xB910 // FORMAT_RRE        LOAD POSITIVE (64<-32)
  2024  	op_LPGR    uint32 = 0xB900 // FORMAT_RRE        LOAD POSITIVE (64)
  2025  	op_LPQ     uint32 = 0xE38F // FORMAT_RXY1       LOAD PAIR FROM QUADWORD
  2026  	op_LPR     uint32 = 0x1000 // FORMAT_RR         LOAD POSITIVE (32)
  2027  	op_LPSW    uint32 = 0x8200 // FORMAT_S          LOAD PSW
  2028  	op_LPSWE   uint32 = 0xB2B2 // FORMAT_S          LOAD PSW EXTENDED
  2029  	op_LPTEA   uint32 = 0xB9AA // FORMAT_RRF2       LOAD PAGE TABLE ENTRY ADDRESS
  2030  	op_LPXBR   uint32 = 0xB340 // FORMAT_RRE        LOAD POSITIVE (extended BFP)
  2031  	op_LPXR    uint32 = 0xB360 // FORMAT_RRE        LOAD POSITIVE (extended HFP)
  2032  	op_LR      uint32 = 0x1800 // FORMAT_RR         LOAD (32)
  2033  	op_LRA     uint32 = 0xB100 // FORMAT_RX1        LOAD REAL ADDRESS (32)
  2034  	op_LRAG    uint32 = 0xE303 // FORMAT_RXY1       LOAD REAL ADDRESS (64)
  2035  	op_LRAY    uint32 = 0xE313 // FORMAT_RXY1       LOAD REAL ADDRESS (32)
  2036  	op_LRDR    uint32 = 0x2500 // FORMAT_RR         LOAD ROUNDED (extended to long HFP)
  2037  	op_LRER    uint32 = 0x3500 // FORMAT_RR         LOAD ROUNDED (long to short HFP)
  2038  	op_LRL     uint32 = 0xC40D // FORMAT_RIL2       LOAD RELATIVE LONG (32)
  2039  	op_LRV     uint32 = 0xE31E // FORMAT_RXY1       LOAD REVERSED (32)
  2040  	op_LRVG    uint32 = 0xE30F // FORMAT_RXY1       LOAD REVERSED (64)
  2041  	op_LRVGR   uint32 = 0xB90F // FORMAT_RRE        LOAD REVERSED (64)
  2042  	op_LRVH    uint32 = 0xE31F // FORMAT_RXY1       LOAD REVERSED (16)
  2043  	op_LRVR    uint32 = 0xB91F // FORMAT_RRE        LOAD REVERSED (32)
  2044  	op_LT      uint32 = 0xE312 // FORMAT_RXY1       LOAD AND TEST (32)
  2045  	op_LTDBR   uint32 = 0xB312 // FORMAT_RRE        LOAD AND TEST (long BFP)
  2046  	op_LTDR    uint32 = 0x2200 // FORMAT_RR         LOAD AND TEST (long HFP)
  2047  	op_LTDTR   uint32 = 0xB3D6 // FORMAT_RRE        LOAD AND TEST (long DFP)
  2048  	op_LTEBR   uint32 = 0xB302 // FORMAT_RRE        LOAD AND TEST (short BFP)
  2049  	op_LTER    uint32 = 0x3200 // FORMAT_RR         LOAD AND TEST (short HFP)
  2050  	op_LTG     uint32 = 0xE302 // FORMAT_RXY1       LOAD AND TEST (64)
  2051  	op_LTGF    uint32 = 0xE332 // FORMAT_RXY1       LOAD AND TEST (64<-32)
  2052  	op_LTGFR   uint32 = 0xB912 // FORMAT_RRE        LOAD AND TEST (64<-32)
  2053  	op_LTGR    uint32 = 0xB902 // FORMAT_RRE        LOAD AND TEST (64)
  2054  	op_LTR     uint32 = 0x1200 // FORMAT_RR         LOAD AND TEST (32)
  2055  	op_LTXBR   uint32 = 0xB342 // FORMAT_RRE        LOAD AND TEST (extended BFP)
  2056  	op_LTXR    uint32 = 0xB362 // FORMAT_RRE        LOAD AND TEST (extended HFP)
  2057  	op_LTXTR   uint32 = 0xB3DE // FORMAT_RRE        LOAD AND TEST (extended DFP)
  2058  	op_LURA    uint32 = 0xB24B // FORMAT_RRE        LOAD USING REAL ADDRESS (32)
  2059  	op_LURAG   uint32 = 0xB905 // FORMAT_RRE        LOAD USING REAL ADDRESS (64)
  2060  	op_LXD     uint32 = 0xED25 // FORMAT_RXE        LOAD LENGTHENED (long to extended HFP)
  2061  	op_LXDB    uint32 = 0xED05 // FORMAT_RXE        LOAD LENGTHENED (long to extended BFP)
  2062  	op_LXDBR   uint32 = 0xB305 // FORMAT_RRE        LOAD LENGTHENED (long to extended BFP)
  2063  	op_LXDR    uint32 = 0xB325 // FORMAT_RRE        LOAD LENGTHENED (long to extended HFP)
  2064  	op_LXDTR   uint32 = 0xB3DC // FORMAT_RRF4       LOAD LENGTHENED (long to extended DFP)
  2065  	op_LXE     uint32 = 0xED26 // FORMAT_RXE        LOAD LENGTHENED (short to extended HFP)
  2066  	op_LXEB    uint32 = 0xED06 // FORMAT_RXE        LOAD LENGTHENED (short to extended BFP)
  2067  	op_LXEBR   uint32 = 0xB306 // FORMAT_RRE        LOAD LENGTHENED (short to extended BFP)
  2068  	op_LXER    uint32 = 0xB326 // FORMAT_RRE        LOAD LENGTHENED (short to extended HFP)
  2069  	op_LXR     uint32 = 0xB365 // FORMAT_RRE        LOAD (extended)
  2070  	op_LY      uint32 = 0xE358 // FORMAT_RXY1       LOAD (32)
  2071  	op_LZDR    uint32 = 0xB375 // FORMAT_RRE        LOAD ZERO (long)
  2072  	op_LZER    uint32 = 0xB374 // FORMAT_RRE        LOAD ZERO (short)
  2073  	op_LZXR    uint32 = 0xB376 // FORMAT_RRE        LOAD ZERO (extended)
  2074  	op_M       uint32 = 0x5C00 // FORMAT_RX1        MULTIPLY (64<-32)
  2075  	op_MAD     uint32 = 0xED3E // FORMAT_RXF        MULTIPLY AND ADD (long HFP)
  2076  	op_MADB    uint32 = 0xED1E // FORMAT_RXF        MULTIPLY AND ADD (long BFP)
  2077  	op_MADBR   uint32 = 0xB31E // FORMAT_RRD        MULTIPLY AND ADD (long BFP)
  2078  	op_MADR    uint32 = 0xB33E // FORMAT_RRD        MULTIPLY AND ADD (long HFP)
  2079  	op_MAE     uint32 = 0xED2E // FORMAT_RXF        MULTIPLY AND ADD (short HFP)
  2080  	op_MAEB    uint32 = 0xED0E // FORMAT_RXF        MULTIPLY AND ADD (short BFP)
  2081  	op_MAEBR   uint32 = 0xB30E // FORMAT_RRD        MULTIPLY AND ADD (short BFP)
  2082  	op_MAER    uint32 = 0xB32E // FORMAT_RRD        MULTIPLY AND ADD (short HFP)
  2083  	op_MAY     uint32 = 0xED3A // FORMAT_RXF        MULTIPLY & ADD UNNORMALIZED (long to ext. HFP)
  2084  	op_MAYH    uint32 = 0xED3C // FORMAT_RXF        MULTIPLY AND ADD UNNRM. (long to ext. high HFP)
  2085  	op_MAYHR   uint32 = 0xB33C // FORMAT_RRD        MULTIPLY AND ADD UNNRM. (long to ext. high HFP)
  2086  	op_MAYL    uint32 = 0xED38 // FORMAT_RXF        MULTIPLY AND ADD UNNRM. (long to ext. low HFP)
  2087  	op_MAYLR   uint32 = 0xB338 // FORMAT_RRD        MULTIPLY AND ADD UNNRM. (long to ext. low HFP)
  2088  	op_MAYR    uint32 = 0xB33A // FORMAT_RRD        MULTIPLY & ADD UNNORMALIZED (long to ext. HFP)
  2089  	op_MC      uint32 = 0xAF00 // FORMAT_SI         MONITOR CALL
  2090  	op_MD      uint32 = 0x6C00 // FORMAT_RX1        MULTIPLY (long HFP)
  2091  	op_MDB     uint32 = 0xED1C // FORMAT_RXE        MULTIPLY (long BFP)
  2092  	op_MDBR    uint32 = 0xB31C // FORMAT_RRE        MULTIPLY (long BFP)
  2093  	op_MDE     uint32 = 0x7C00 // FORMAT_RX1        MULTIPLY (short to long HFP)
  2094  	op_MDEB    uint32 = 0xED0C // FORMAT_RXE        MULTIPLY (short to long BFP)
  2095  	op_MDEBR   uint32 = 0xB30C // FORMAT_RRE        MULTIPLY (short to long BFP)
  2096  	op_MDER    uint32 = 0x3C00 // FORMAT_RR         MULTIPLY (short to long HFP)
  2097  	op_MDR     uint32 = 0x2C00 // FORMAT_RR         MULTIPLY (long HFP)
  2098  	op_MDTR    uint32 = 0xB3D0 // FORMAT_RRF1       MULTIPLY (long DFP)
  2099  	op_MDTRA   uint32 = 0xB3D0 // FORMAT_RRF1       MULTIPLY (long DFP)
  2100  	op_ME      uint32 = 0x7C00 // FORMAT_RX1        MULTIPLY (short to long HFP)
  2101  	op_MEE     uint32 = 0xED37 // FORMAT_RXE        MULTIPLY (short HFP)
  2102  	op_MEEB    uint32 = 0xED17 // FORMAT_RXE        MULTIPLY (short BFP)
  2103  	op_MEEBR   uint32 = 0xB317 // FORMAT_RRE        MULTIPLY (short BFP)
  2104  	op_MEER    uint32 = 0xB337 // FORMAT_RRE        MULTIPLY (short HFP)
  2105  	op_MER     uint32 = 0x3C00 // FORMAT_RR         MULTIPLY (short to long HFP)
  2106  	op_MFY     uint32 = 0xE35C // FORMAT_RXY1       MULTIPLY (64<-32)
  2107  	op_MGHI    uint32 = 0xA70D // FORMAT_RI1        MULTIPLY HALFWORD IMMEDIATE (64)
  2108  	op_MH      uint32 = 0x4C00 // FORMAT_RX1        MULTIPLY HALFWORD (32)
  2109  	op_MHI     uint32 = 0xA70C // FORMAT_RI1        MULTIPLY HALFWORD IMMEDIATE (32)
  2110  	op_MHY     uint32 = 0xE37C // FORMAT_RXY1       MULTIPLY HALFWORD (32)
  2111  	op_ML      uint32 = 0xE396 // FORMAT_RXY1       MULTIPLY LOGICAL (64<-32)
  2112  	op_MLG     uint32 = 0xE386 // FORMAT_RXY1       MULTIPLY LOGICAL (128<-64)
  2113  	op_MLGR    uint32 = 0xB986 // FORMAT_RRE        MULTIPLY LOGICAL (128<-64)
  2114  	op_MLR     uint32 = 0xB996 // FORMAT_RRE        MULTIPLY LOGICAL (64<-32)
  2115  	op_MP      uint32 = 0xFC00 // FORMAT_SS2        MULTIPLY DECIMAL
  2116  	op_MR      uint32 = 0x1C00 // FORMAT_RR         MULTIPLY (64<-32)
  2117  	op_MS      uint32 = 0x7100 // FORMAT_RX1        MULTIPLY SINGLE (32)
  2118  	op_MSCH    uint32 = 0xB232 // FORMAT_S          MODIFY SUBCHANNEL
  2119  	op_MSD     uint32 = 0xED3F // FORMAT_RXF        MULTIPLY AND SUBTRACT (long HFP)
  2120  	op_MSDB    uint32 = 0xED1F // FORMAT_RXF        MULTIPLY AND SUBTRACT (long BFP)
  2121  	op_MSDBR   uint32 = 0xB31F // FORMAT_RRD        MULTIPLY AND SUBTRACT (long BFP)
  2122  	op_MSDR    uint32 = 0xB33F // FORMAT_RRD        MULTIPLY AND SUBTRACT (long HFP)
  2123  	op_MSE     uint32 = 0xED2F // FORMAT_RXF        MULTIPLY AND SUBTRACT (short HFP)
  2124  	op_MSEB    uint32 = 0xED0F // FORMAT_RXF        MULTIPLY AND SUBTRACT (short BFP)
  2125  	op_MSEBR   uint32 = 0xB30F // FORMAT_RRD        MULTIPLY AND SUBTRACT (short BFP)
  2126  	op_MSER    uint32 = 0xB32F // FORMAT_RRD        MULTIPLY AND SUBTRACT (short HFP)
  2127  	op_MSFI    uint32 = 0xC201 // FORMAT_RIL1       MULTIPLY SINGLE IMMEDIATE (32)
  2128  	op_MSG     uint32 = 0xE30C // FORMAT_RXY1       MULTIPLY SINGLE (64)
  2129  	op_MSGF    uint32 = 0xE31C // FORMAT_RXY1       MULTIPLY SINGLE (64<-32)
  2130  	op_MSGFI   uint32 = 0xC200 // FORMAT_RIL1       MULTIPLY SINGLE IMMEDIATE (64<-32)
  2131  	op_MSGFR   uint32 = 0xB91C // FORMAT_RRE        MULTIPLY SINGLE (64<-32)
  2132  	op_MSGR    uint32 = 0xB90C // FORMAT_RRE        MULTIPLY SINGLE (64)
  2133  	op_MSR     uint32 = 0xB252 // FORMAT_RRE        MULTIPLY SINGLE (32)
  2134  	op_MSTA    uint32 = 0xB247 // FORMAT_RRE        MODIFY STACKED STATE
  2135  	op_MSY     uint32 = 0xE351 // FORMAT_RXY1       MULTIPLY SINGLE (32)
  2136  	op_MVC     uint32 = 0xD200 // FORMAT_SS1        MOVE (character)
  2137  	op_MVCDK   uint32 = 0xE50F // FORMAT_SSE        MOVE WITH DESTINATION KEY
  2138  	op_MVCIN   uint32 = 0xE800 // FORMAT_SS1        MOVE INVERSE
  2139  	op_MVCK    uint32 = 0xD900 // FORMAT_SS4        MOVE WITH KEY
  2140  	op_MVCL    uint32 = 0x0E00 // FORMAT_RR         MOVE LONG
  2141  	op_MVCLE   uint32 = 0xA800 // FORMAT_RS1        MOVE LONG EXTENDED
  2142  	op_MVCLU   uint32 = 0xEB8E // FORMAT_RSY1       MOVE LONG UNICODE
  2143  	op_MVCOS   uint32 = 0xC800 // FORMAT_SSF        MOVE WITH OPTIONAL SPECIFICATIONS
  2144  	op_MVCP    uint32 = 0xDA00 // FORMAT_SS4        MOVE TO PRIMARY
  2145  	op_MVCS    uint32 = 0xDB00 // FORMAT_SS4        MOVE TO SECONDARY
  2146  	op_MVCSK   uint32 = 0xE50E // FORMAT_SSE        MOVE WITH SOURCE KEY
  2147  	op_MVGHI   uint32 = 0xE548 // FORMAT_SIL        MOVE (64<-16)
  2148  	op_MVHHI   uint32 = 0xE544 // FORMAT_SIL        MOVE (16<-16)
  2149  	op_MVHI    uint32 = 0xE54C // FORMAT_SIL        MOVE (32<-16)
  2150  	op_MVI     uint32 = 0x9200 // FORMAT_SI         MOVE (immediate)
  2151  	op_MVIY    uint32 = 0xEB52 // FORMAT_SIY        MOVE (immediate)
  2152  	op_MVN     uint32 = 0xD100 // FORMAT_SS1        MOVE NUMERICS
  2153  	op_MVO     uint32 = 0xF100 // FORMAT_SS2        MOVE WITH OFFSET
  2154  	op_MVPG    uint32 = 0xB254 // FORMAT_RRE        MOVE PAGE
  2155  	op_MVST    uint32 = 0xB255 // FORMAT_RRE        MOVE STRING
  2156  	op_MVZ     uint32 = 0xD300 // FORMAT_SS1        MOVE ZONES
  2157  	op_MXBR    uint32 = 0xB34C // FORMAT_RRE        MULTIPLY (extended BFP)
  2158  	op_MXD     uint32 = 0x6700 // FORMAT_RX1        MULTIPLY (long to extended HFP)
  2159  	op_MXDB    uint32 = 0xED07 // FORMAT_RXE        MULTIPLY (long to extended BFP)
  2160  	op_MXDBR   uint32 = 0xB307 // FORMAT_RRE        MULTIPLY (long to extended BFP)
  2161  	op_MXDR    uint32 = 0x2700 // FORMAT_RR         MULTIPLY (long to extended HFP)
  2162  	op_MXR     uint32 = 0x2600 // FORMAT_RR         MULTIPLY (extended HFP)
  2163  	op_MXTR    uint32 = 0xB3D8 // FORMAT_RRF1       MULTIPLY (extended DFP)
  2164  	op_MXTRA   uint32 = 0xB3D8 // FORMAT_RRF1       MULTIPLY (extended DFP)
  2165  	op_MY      uint32 = 0xED3B // FORMAT_RXF        MULTIPLY UNNORMALIZED (long to ext. HFP)
  2166  	op_MYH     uint32 = 0xED3D // FORMAT_RXF        MULTIPLY UNNORM. (long to ext. high HFP)
  2167  	op_MYHR    uint32 = 0xB33D // FORMAT_RRD        MULTIPLY UNNORM. (long to ext. high HFP)
  2168  	op_MYL     uint32 = 0xED39 // FORMAT_RXF        MULTIPLY UNNORM. (long to ext. low HFP)
  2169  	op_MYLR    uint32 = 0xB339 // FORMAT_RRD        MULTIPLY UNNORM. (long to ext. low HFP)
  2170  	op_MYR     uint32 = 0xB33B // FORMAT_RRD        MULTIPLY UNNORMALIZED (long to ext. HFP)
  2171  	op_N       uint32 = 0x5400 // FORMAT_RX1        AND (32)
  2172  	op_NC      uint32 = 0xD400 // FORMAT_SS1        AND (character)
  2173  	op_NG      uint32 = 0xE380 // FORMAT_RXY1       AND (64)
  2174  	op_NGR     uint32 = 0xB980 // FORMAT_RRE        AND (64)
  2175  	op_NGRK    uint32 = 0xB9E4 // FORMAT_RRF1       AND (64)
  2176  	op_NI      uint32 = 0x9400 // FORMAT_SI         AND (immediate)
  2177  	op_NIAI    uint32 = 0xB2FA // FORMAT_IE         NEXT INSTRUCTION ACCESS INTENT
  2178  	op_NIHF    uint32 = 0xC00A // FORMAT_RIL1       AND IMMEDIATE (high)
  2179  	op_NIHH    uint32 = 0xA504 // FORMAT_RI1        AND IMMEDIATE (high high)
  2180  	op_NIHL    uint32 = 0xA505 // FORMAT_RI1        AND IMMEDIATE (high low)
  2181  	op_NILF    uint32 = 0xC00B // FORMAT_RIL1       AND IMMEDIATE (low)
  2182  	op_NILH    uint32 = 0xA506 // FORMAT_RI1        AND IMMEDIATE (low high)
  2183  	op_NILL    uint32 = 0xA507 // FORMAT_RI1        AND IMMEDIATE (low low)
  2184  	op_NIY     uint32 = 0xEB54 // FORMAT_SIY        AND (immediate)
  2185  	op_NR      uint32 = 0x1400 // FORMAT_RR         AND (32)
  2186  	op_NRK     uint32 = 0xB9F4 // FORMAT_RRF1       AND (32)
  2187  	op_NTSTG   uint32 = 0xE325 // FORMAT_RXY1       NONTRANSACTIONAL STORE
  2188  	op_NY      uint32 = 0xE354 // FORMAT_RXY1       AND (32)
  2189  	op_O       uint32 = 0x5600 // FORMAT_RX1        OR (32)
  2190  	op_OC      uint32 = 0xD600 // FORMAT_SS1        OR (character)
  2191  	op_OG      uint32 = 0xE381 // FORMAT_RXY1       OR (64)
  2192  	op_OGR     uint32 = 0xB981 // FORMAT_RRE        OR (64)
  2193  	op_OGRK    uint32 = 0xB9E6 // FORMAT_RRF1       OR (64)
  2194  	op_OI      uint32 = 0x9600 // FORMAT_SI         OR (immediate)
  2195  	op_OIHF    uint32 = 0xC00C // FORMAT_RIL1       OR IMMEDIATE (high)
  2196  	op_OIHH    uint32 = 0xA508 // FORMAT_RI1        OR IMMEDIATE (high high)
  2197  	op_OIHL    uint32 = 0xA509 // FORMAT_RI1        OR IMMEDIATE (high low)
  2198  	op_OILF    uint32 = 0xC00D // FORMAT_RIL1       OR IMMEDIATE (low)
  2199  	op_OILH    uint32 = 0xA50A // FORMAT_RI1        OR IMMEDIATE (low high)
  2200  	op_OILL    uint32 = 0xA50B // FORMAT_RI1        OR IMMEDIATE (low low)
  2201  	op_OIY     uint32 = 0xEB56 // FORMAT_SIY        OR (immediate)
  2202  	op_OR      uint32 = 0x1600 // FORMAT_RR         OR (32)
  2203  	op_ORK     uint32 = 0xB9F6 // FORMAT_RRF1       OR (32)
  2204  	op_OY      uint32 = 0xE356 // FORMAT_RXY1       OR (32)
  2205  	op_PACK    uint32 = 0xF200 // FORMAT_SS2        PACK
  2206  	op_PALB    uint32 = 0xB248 // FORMAT_RRE        PURGE ALB
  2207  	op_PC      uint32 = 0xB218 // FORMAT_S          PROGRAM CALL
  2208  	op_PCC     uint32 = 0xB92C // FORMAT_RRE        PERFORM CRYPTOGRAPHIC COMPUTATION
  2209  	op_PCKMO   uint32 = 0xB928 // FORMAT_RRE        PERFORM CRYPTOGRAPHIC KEY MGMT. OPERATIONS
  2210  	op_PFD     uint32 = 0xE336 // FORMAT_RXY2       PREFETCH DATA
  2211  	op_PFDRL   uint32 = 0xC602 // FORMAT_RIL3       PREFETCH DATA RELATIVE LONG
  2212  	op_PFMF    uint32 = 0xB9AF // FORMAT_RRE        PERFORM FRAME MANAGEMENT FUNCTION
  2213  	op_PFPO    uint32 = 0x010A // FORMAT_E          PERFORM FLOATING-POINT OPERATION
  2214  	op_PGIN    uint32 = 0xB22E // FORMAT_RRE        PAGE IN
  2215  	op_PGOUT   uint32 = 0xB22F // FORMAT_RRE        PAGE OUT
  2216  	op_PKA     uint32 = 0xE900 // FORMAT_SS6        PACK ASCII
  2217  	op_PKU     uint32 = 0xE100 // FORMAT_SS6        PACK UNICODE
  2218  	op_PLO     uint32 = 0xEE00 // FORMAT_SS5        PERFORM LOCKED OPERATION
  2219  	op_POPCNT  uint32 = 0xB9E1 // FORMAT_RRE        POPULATION COUNT
  2220  	op_PPA     uint32 = 0xB2E8 // FORMAT_RRF3       PERFORM PROCESSOR ASSIST
  2221  	op_PR      uint32 = 0x0101 // FORMAT_E          PROGRAM RETURN
  2222  	op_PT      uint32 = 0xB228 // FORMAT_RRE        PROGRAM TRANSFER
  2223  	op_PTF     uint32 = 0xB9A2 // FORMAT_RRE        PERFORM TOPOLOGY FUNCTION
  2224  	op_PTFF    uint32 = 0x0104 // FORMAT_E          PERFORM TIMING FACILITY FUNCTION
  2225  	op_PTI     uint32 = 0xB99E // FORMAT_RRE        PROGRAM TRANSFER WITH INSTANCE
  2226  	op_PTLB    uint32 = 0xB20D // FORMAT_S          PURGE TLB
  2227  	op_QADTR   uint32 = 0xB3F5 // FORMAT_RRF2       QUANTIZE (long DFP)
  2228  	op_QAXTR   uint32 = 0xB3FD // FORMAT_RRF2       QUANTIZE (extended DFP)
  2229  	op_RCHP    uint32 = 0xB23B // FORMAT_S          RESET CHANNEL PATH
  2230  	op_RISBG   uint32 = 0xEC55 // FORMAT_RIE6       ROTATE THEN INSERT SELECTED BITS
  2231  	op_RISBGN  uint32 = 0xEC59 // FORMAT_RIE6       ROTATE THEN INSERT SELECTED BITS
  2232  	op_RISBHG  uint32 = 0xEC5D // FORMAT_RIE6       ROTATE THEN INSERT SELECTED BITS HIGH
  2233  	op_RISBLG  uint32 = 0xEC51 // FORMAT_RIE6       ROTATE THEN INSERT SELECTED BITS LOW
  2234  	op_RLL     uint32 = 0xEB1D // FORMAT_RSY1       ROTATE LEFT SINGLE LOGICAL (32)
  2235  	op_RLLG    uint32 = 0xEB1C // FORMAT_RSY1       ROTATE LEFT SINGLE LOGICAL (64)
  2236  	op_RNSBG   uint32 = 0xEC54 // FORMAT_RIE6       ROTATE THEN AND SELECTED BITS
  2237  	op_ROSBG   uint32 = 0xEC56 // FORMAT_RIE6       ROTATE THEN OR SELECTED BITS
  2238  	op_RP      uint32 = 0xB277 // FORMAT_S          RESUME PROGRAM
  2239  	op_RRBE    uint32 = 0xB22A // FORMAT_RRE        RESET REFERENCE BIT EXTENDED
  2240  	op_RRBM    uint32 = 0xB9AE // FORMAT_RRE        RESET REFERENCE BITS MULTIPLE
  2241  	op_RRDTR   uint32 = 0xB3F7 // FORMAT_RRF2       REROUND (long DFP)
  2242  	op_RRXTR   uint32 = 0xB3FF // FORMAT_RRF2       REROUND (extended DFP)
  2243  	op_RSCH    uint32 = 0xB238 // FORMAT_S          RESUME SUBCHANNEL
  2244  	op_RXSBG   uint32 = 0xEC57 // FORMAT_RIE6       ROTATE THEN EXCLUSIVE OR SELECTED BITS
  2245  	op_S       uint32 = 0x5B00 // FORMAT_RX1        SUBTRACT (32)
  2246  	op_SAC     uint32 = 0xB219 // FORMAT_S          SET ADDRESS SPACE CONTROL
  2247  	op_SACF    uint32 = 0xB279 // FORMAT_S          SET ADDRESS SPACE CONTROL FAST
  2248  	op_SAL     uint32 = 0xB237 // FORMAT_S          SET ADDRESS LIMIT
  2249  	op_SAM24   uint32 = 0x010C // FORMAT_E          SET ADDRESSING MODE (24)
  2250  	op_SAM31   uint32 = 0x010D // FORMAT_E          SET ADDRESSING MODE (31)
  2251  	op_SAM64   uint32 = 0x010E // FORMAT_E          SET ADDRESSING MODE (64)
  2252  	op_SAR     uint32 = 0xB24E // FORMAT_RRE        SET ACCESS
  2253  	op_SCHM    uint32 = 0xB23C // FORMAT_S          SET CHANNEL MONITOR
  2254  	op_SCK     uint32 = 0xB204 // FORMAT_S          SET CLOCK
  2255  	op_SCKC    uint32 = 0xB206 // FORMAT_S          SET CLOCK COMPARATOR
  2256  	op_SCKPF   uint32 = 0x0107 // FORMAT_E          SET CLOCK PROGRAMMABLE FIELD
  2257  	op_SD      uint32 = 0x6B00 // FORMAT_RX1        SUBTRACT NORMALIZED (long HFP)
  2258  	op_SDB     uint32 = 0xED1B // FORMAT_RXE        SUBTRACT (long BFP)
  2259  	op_SDBR    uint32 = 0xB31B // FORMAT_RRE        SUBTRACT (long BFP)
  2260  	op_SDR     uint32 = 0x2B00 // FORMAT_RR         SUBTRACT NORMALIZED (long HFP)
  2261  	op_SDTR    uint32 = 0xB3D3 // FORMAT_RRF1       SUBTRACT (long DFP)
  2262  	op_SDTRA   uint32 = 0xB3D3 // FORMAT_RRF1       SUBTRACT (long DFP)
  2263  	op_SE      uint32 = 0x7B00 // FORMAT_RX1        SUBTRACT NORMALIZED (short HFP)
  2264  	op_SEB     uint32 = 0xED0B // FORMAT_RXE        SUBTRACT (short BFP)
  2265  	op_SEBR    uint32 = 0xB30B // FORMAT_RRE        SUBTRACT (short BFP)
  2266  	op_SER     uint32 = 0x3B00 // FORMAT_RR         SUBTRACT NORMALIZED (short HFP)
  2267  	op_SFASR   uint32 = 0xB385 // FORMAT_RRE        SET FPC AND SIGNAL
  2268  	op_SFPC    uint32 = 0xB384 // FORMAT_RRE        SET FPC
  2269  	op_SG      uint32 = 0xE309 // FORMAT_RXY1       SUBTRACT (64)
  2270  	op_SGF     uint32 = 0xE319 // FORMAT_RXY1       SUBTRACT (64<-32)
  2271  	op_SGFR    uint32 = 0xB919 // FORMAT_RRE        SUBTRACT (64<-32)
  2272  	op_SGR     uint32 = 0xB909 // FORMAT_RRE        SUBTRACT (64)
  2273  	op_SGRK    uint32 = 0xB9E9 // FORMAT_RRF1       SUBTRACT (64)
  2274  	op_SH      uint32 = 0x4B00 // FORMAT_RX1        SUBTRACT HALFWORD
  2275  	op_SHHHR   uint32 = 0xB9C9 // FORMAT_RRF1       SUBTRACT HIGH (32)
  2276  	op_SHHLR   uint32 = 0xB9D9 // FORMAT_RRF1       SUBTRACT HIGH (32)
  2277  	op_SHY     uint32 = 0xE37B // FORMAT_RXY1       SUBTRACT HALFWORD
  2278  	op_SIGP    uint32 = 0xAE00 // FORMAT_RS1        SIGNAL PROCESSOR
  2279  	op_SL      uint32 = 0x5F00 // FORMAT_RX1        SUBTRACT LOGICAL (32)
  2280  	op_SLA     uint32 = 0x8B00 // FORMAT_RS1        SHIFT LEFT SINGLE (32)
  2281  	op_SLAG    uint32 = 0xEB0B // FORMAT_RSY1       SHIFT LEFT SINGLE (64)
  2282  	op_SLAK    uint32 = 0xEBDD // FORMAT_RSY1       SHIFT LEFT SINGLE (32)
  2283  	op_SLB     uint32 = 0xE399 // FORMAT_RXY1       SUBTRACT LOGICAL WITH BORROW (32)
  2284  	op_SLBG    uint32 = 0xE389 // FORMAT_RXY1       SUBTRACT LOGICAL WITH BORROW (64)
  2285  	op_SLBGR   uint32 = 0xB989 // FORMAT_RRE        SUBTRACT LOGICAL WITH BORROW (64)
  2286  	op_SLBR    uint32 = 0xB999 // FORMAT_RRE        SUBTRACT LOGICAL WITH BORROW (32)
  2287  	op_SLDA    uint32 = 0x8F00 // FORMAT_RS1        SHIFT LEFT DOUBLE
  2288  	op_SLDL    uint32 = 0x8D00 // FORMAT_RS1        SHIFT LEFT DOUBLE LOGICAL
  2289  	op_SLDT    uint32 = 0xED40 // FORMAT_RXF        SHIFT SIGNIFICAND LEFT (long DFP)
  2290  	op_SLFI    uint32 = 0xC205 // FORMAT_RIL1       SUBTRACT LOGICAL IMMEDIATE (32)
  2291  	op_SLG     uint32 = 0xE30B // FORMAT_RXY1       SUBTRACT LOGICAL (64)
  2292  	op_SLGF    uint32 = 0xE31B // FORMAT_RXY1       SUBTRACT LOGICAL (64<-32)
  2293  	op_SLGFI   uint32 = 0xC204 // FORMAT_RIL1       SUBTRACT LOGICAL IMMEDIATE (64<-32)
  2294  	op_SLGFR   uint32 = 0xB91B // FORMAT_RRE        SUBTRACT LOGICAL (64<-32)
  2295  	op_SLGR    uint32 = 0xB90B // FORMAT_RRE        SUBTRACT LOGICAL (64)
  2296  	op_SLGRK   uint32 = 0xB9EB // FORMAT_RRF1       SUBTRACT LOGICAL (64)
  2297  	op_SLHHHR  uint32 = 0xB9CB // FORMAT_RRF1       SUBTRACT LOGICAL HIGH (32)
  2298  	op_SLHHLR  uint32 = 0xB9DB // FORMAT_RRF1       SUBTRACT LOGICAL HIGH (32)
  2299  	op_SLL     uint32 = 0x8900 // FORMAT_RS1        SHIFT LEFT SINGLE LOGICAL (32)
  2300  	op_SLLG    uint32 = 0xEB0D // FORMAT_RSY1       SHIFT LEFT SINGLE LOGICAL (64)
  2301  	op_SLLK    uint32 = 0xEBDF // FORMAT_RSY1       SHIFT LEFT SINGLE LOGICAL (32)
  2302  	op_SLR     uint32 = 0x1F00 // FORMAT_RR         SUBTRACT LOGICAL (32)
  2303  	op_SLRK    uint32 = 0xB9FB // FORMAT_RRF1       SUBTRACT LOGICAL (32)
  2304  	op_SLXT    uint32 = 0xED48 // FORMAT_RXF        SHIFT SIGNIFICAND LEFT (extended DFP)
  2305  	op_SLY     uint32 = 0xE35F // FORMAT_RXY1       SUBTRACT LOGICAL (32)
  2306  	op_SP      uint32 = 0xFB00 // FORMAT_SS2        SUBTRACT DECIMAL
  2307  	op_SPKA    uint32 = 0xB20A // FORMAT_S          SET PSW KEY FROM ADDRESS
  2308  	op_SPM     uint32 = 0x0400 // FORMAT_RR         SET PROGRAM MASK
  2309  	op_SPT     uint32 = 0xB208 // FORMAT_S          SET CPU TIMER
  2310  	op_SPX     uint32 = 0xB210 // FORMAT_S          SET PREFIX
  2311  	op_SQD     uint32 = 0xED35 // FORMAT_RXE        SQUARE ROOT (long HFP)
  2312  	op_SQDB    uint32 = 0xED15 // FORMAT_RXE        SQUARE ROOT (long BFP)
  2313  	op_SQDBR   uint32 = 0xB315 // FORMAT_RRE        SQUARE ROOT (long BFP)
  2314  	op_SQDR    uint32 = 0xB244 // FORMAT_RRE        SQUARE ROOT (long HFP)
  2315  	op_SQE     uint32 = 0xED34 // FORMAT_RXE        SQUARE ROOT (short HFP)
  2316  	op_SQEB    uint32 = 0xED14 // FORMAT_RXE        SQUARE ROOT (short BFP)
  2317  	op_SQEBR   uint32 = 0xB314 // FORMAT_RRE        SQUARE ROOT (short BFP)
  2318  	op_SQER    uint32 = 0xB245 // FORMAT_RRE        SQUARE ROOT (short HFP)
  2319  	op_SQXBR   uint32 = 0xB316 // FORMAT_RRE        SQUARE ROOT (extended BFP)
  2320  	op_SQXR    uint32 = 0xB336 // FORMAT_RRE        SQUARE ROOT (extended HFP)
  2321  	op_SR      uint32 = 0x1B00 // FORMAT_RR         SUBTRACT (32)
  2322  	op_SRA     uint32 = 0x8A00 // FORMAT_RS1        SHIFT RIGHT SINGLE (32)
  2323  	op_SRAG    uint32 = 0xEB0A // FORMAT_RSY1       SHIFT RIGHT SINGLE (64)
  2324  	op_SRAK    uint32 = 0xEBDC // FORMAT_RSY1       SHIFT RIGHT SINGLE (32)
  2325  	op_SRDA    uint32 = 0x8E00 // FORMAT_RS1        SHIFT RIGHT DOUBLE
  2326  	op_SRDL    uint32 = 0x8C00 // FORMAT_RS1        SHIFT RIGHT DOUBLE LOGICAL
  2327  	op_SRDT    uint32 = 0xED41 // FORMAT_RXF        SHIFT SIGNIFICAND RIGHT (long DFP)
  2328  	op_SRK     uint32 = 0xB9F9 // FORMAT_RRF1       SUBTRACT (32)
  2329  	op_SRL     uint32 = 0x8800 // FORMAT_RS1        SHIFT RIGHT SINGLE LOGICAL (32)
  2330  	op_SRLG    uint32 = 0xEB0C // FORMAT_RSY1       SHIFT RIGHT SINGLE LOGICAL (64)
  2331  	op_SRLK    uint32 = 0xEBDE // FORMAT_RSY1       SHIFT RIGHT SINGLE LOGICAL (32)
  2332  	op_SRNM    uint32 = 0xB299 // FORMAT_S          SET BFP ROUNDING MODE (2 bit)
  2333  	op_SRNMB   uint32 = 0xB2B8 // FORMAT_S          SET BFP ROUNDING MODE (3 bit)
  2334  	op_SRNMT   uint32 = 0xB2B9 // FORMAT_S          SET DFP ROUNDING MODE
  2335  	op_SRP     uint32 = 0xF000 // FORMAT_SS3        SHIFT AND ROUND DECIMAL
  2336  	op_SRST    uint32 = 0xB25E // FORMAT_RRE        SEARCH STRING
  2337  	op_SRSTU   uint32 = 0xB9BE // FORMAT_RRE        SEARCH STRING UNICODE
  2338  	op_SRXT    uint32 = 0xED49 // FORMAT_RXF        SHIFT SIGNIFICAND RIGHT (extended DFP)
  2339  	op_SSAIR   uint32 = 0xB99F // FORMAT_RRE        SET SECONDARY ASN WITH INSTANCE
  2340  	op_SSAR    uint32 = 0xB225 // FORMAT_RRE        SET SECONDARY ASN
  2341  	op_SSCH    uint32 = 0xB233 // FORMAT_S          START SUBCHANNEL
  2342  	op_SSKE    uint32 = 0xB22B // FORMAT_RRF3       SET STORAGE KEY EXTENDED
  2343  	op_SSM     uint32 = 0x8000 // FORMAT_S          SET SYSTEM MASK
  2344  	op_ST      uint32 = 0x5000 // FORMAT_RX1        STORE (32)
  2345  	op_STAM    uint32 = 0x9B00 // FORMAT_RS1        STORE ACCESS MULTIPLE
  2346  	op_STAMY   uint32 = 0xEB9B // FORMAT_RSY1       STORE ACCESS MULTIPLE
  2347  	op_STAP    uint32 = 0xB212 // FORMAT_S          STORE CPU ADDRESS
  2348  	op_STC     uint32 = 0x4200 // FORMAT_RX1        STORE CHARACTER
  2349  	op_STCH    uint32 = 0xE3C3 // FORMAT_RXY1       STORE CHARACTER HIGH (8)
  2350  	op_STCK    uint32 = 0xB205 // FORMAT_S          STORE CLOCK
  2351  	op_STCKC   uint32 = 0xB207 // FORMAT_S          STORE CLOCK COMPARATOR
  2352  	op_STCKE   uint32 = 0xB278 // FORMAT_S          STORE CLOCK EXTENDED
  2353  	op_STCKF   uint32 = 0xB27C // FORMAT_S          STORE CLOCK FAST
  2354  	op_STCM    uint32 = 0xBE00 // FORMAT_RS2        STORE CHARACTERS UNDER MASK (low)
  2355  	op_STCMH   uint32 = 0xEB2C // FORMAT_RSY2       STORE CHARACTERS UNDER MASK (high)
  2356  	op_STCMY   uint32 = 0xEB2D // FORMAT_RSY2       STORE CHARACTERS UNDER MASK (low)
  2357  	op_STCPS   uint32 = 0xB23A // FORMAT_S          STORE CHANNEL PATH STATUS
  2358  	op_STCRW   uint32 = 0xB239 // FORMAT_S          STORE CHANNEL REPORT WORD
  2359  	op_STCTG   uint32 = 0xEB25 // FORMAT_RSY1       STORE CONTROL (64)
  2360  	op_STCTL   uint32 = 0xB600 // FORMAT_RS1        STORE CONTROL (32)
  2361  	op_STCY    uint32 = 0xE372 // FORMAT_RXY1       STORE CHARACTER
  2362  	op_STD     uint32 = 0x6000 // FORMAT_RX1        STORE (long)
  2363  	op_STDY    uint32 = 0xED67 // FORMAT_RXY1       STORE (long)
  2364  	op_STE     uint32 = 0x7000 // FORMAT_RX1        STORE (short)
  2365  	op_STEY    uint32 = 0xED66 // FORMAT_RXY1       STORE (short)
  2366  	op_STFH    uint32 = 0xE3CB // FORMAT_RXY1       STORE HIGH (32)
  2367  	op_STFL    uint32 = 0xB2B1 // FORMAT_S          STORE FACILITY LIST
  2368  	op_STFLE   uint32 = 0xB2B0 // FORMAT_S          STORE FACILITY LIST EXTENDED
  2369  	op_STFPC   uint32 = 0xB29C // FORMAT_S          STORE FPC
  2370  	op_STG     uint32 = 0xE324 // FORMAT_RXY1       STORE (64)
  2371  	op_STGRL   uint32 = 0xC40B // FORMAT_RIL2       STORE RELATIVE LONG (64)
  2372  	op_STH     uint32 = 0x4000 // FORMAT_RX1        STORE HALFWORD
  2373  	op_STHH    uint32 = 0xE3C7 // FORMAT_RXY1       STORE HALFWORD HIGH (16)
  2374  	op_STHRL   uint32 = 0xC407 // FORMAT_RIL2       STORE HALFWORD RELATIVE LONG
  2375  	op_STHY    uint32 = 0xE370 // FORMAT_RXY1       STORE HALFWORD
  2376  	op_STIDP   uint32 = 0xB202 // FORMAT_S          STORE CPU ID
  2377  	op_STM     uint32 = 0x9000 // FORMAT_RS1        STORE MULTIPLE (32)
  2378  	op_STMG    uint32 = 0xEB24 // FORMAT_RSY1       STORE MULTIPLE (64)
  2379  	op_STMH    uint32 = 0xEB26 // FORMAT_RSY1       STORE MULTIPLE HIGH
  2380  	op_STMY    uint32 = 0xEB90 // FORMAT_RSY1       STORE MULTIPLE (32)
  2381  	op_STNSM   uint32 = 0xAC00 // FORMAT_SI         STORE THEN AND SYSTEM MASK
  2382  	op_STOC    uint32 = 0xEBF3 // FORMAT_RSY2       STORE ON CONDITION (32)
  2383  	op_STOCG   uint32 = 0xEBE3 // FORMAT_RSY2       STORE ON CONDITION (64)
  2384  	op_STOSM   uint32 = 0xAD00 // FORMAT_SI         STORE THEN OR SYSTEM MASK
  2385  	op_STPQ    uint32 = 0xE38E // FORMAT_RXY1       STORE PAIR TO QUADWORD
  2386  	op_STPT    uint32 = 0xB209 // FORMAT_S          STORE CPU TIMER
  2387  	op_STPX    uint32 = 0xB211 // FORMAT_S          STORE PREFIX
  2388  	op_STRAG   uint32 = 0xE502 // FORMAT_SSE        STORE REAL ADDRESS
  2389  	op_STRL    uint32 = 0xC40F // FORMAT_RIL2       STORE RELATIVE LONG (32)
  2390  	op_STRV    uint32 = 0xE33E // FORMAT_RXY1       STORE REVERSED (32)
  2391  	op_STRVG   uint32 = 0xE32F // FORMAT_RXY1       STORE REVERSED (64)
  2392  	op_STRVH   uint32 = 0xE33F // FORMAT_RXY1       STORE REVERSED (16)
  2393  	op_STSCH   uint32 = 0xB234 // FORMAT_S          STORE SUBCHANNEL
  2394  	op_STSI    uint32 = 0xB27D // FORMAT_S          STORE SYSTEM INFORMATION
  2395  	op_STURA   uint32 = 0xB246 // FORMAT_RRE        STORE USING REAL ADDRESS (32)
  2396  	op_STURG   uint32 = 0xB925 // FORMAT_RRE        STORE USING REAL ADDRESS (64)
  2397  	op_STY     uint32 = 0xE350 // FORMAT_RXY1       STORE (32)
  2398  	op_SU      uint32 = 0x7F00 // FORMAT_RX1        SUBTRACT UNNORMALIZED (short HFP)
  2399  	op_SUR     uint32 = 0x3F00 // FORMAT_RR         SUBTRACT UNNORMALIZED (short HFP)
  2400  	op_SVC     uint32 = 0x0A00 // FORMAT_I          SUPERVISOR CALL
  2401  	op_SW      uint32 = 0x6F00 // FORMAT_RX1        SUBTRACT UNNORMALIZED (long HFP)
  2402  	op_SWR     uint32 = 0x2F00 // FORMAT_RR         SUBTRACT UNNORMALIZED (long HFP)
  2403  	op_SXBR    uint32 = 0xB34B // FORMAT_RRE        SUBTRACT (extended BFP)
  2404  	op_SXR     uint32 = 0x3700 // FORMAT_RR         SUBTRACT NORMALIZED (extended HFP)
  2405  	op_SXTR    uint32 = 0xB3DB // FORMAT_RRF1       SUBTRACT (extended DFP)
  2406  	op_SXTRA   uint32 = 0xB3DB // FORMAT_RRF1       SUBTRACT (extended DFP)
  2407  	op_SY      uint32 = 0xE35B // FORMAT_RXY1       SUBTRACT (32)
  2408  	op_TABORT  uint32 = 0xB2FC // FORMAT_S          TRANSACTION ABORT
  2409  	op_TAM     uint32 = 0x010B // FORMAT_E          TEST ADDRESSING MODE
  2410  	op_TAR     uint32 = 0xB24C // FORMAT_RRE        TEST ACCESS
  2411  	op_TB      uint32 = 0xB22C // FORMAT_RRE        TEST BLOCK
  2412  	op_TBDR    uint32 = 0xB351 // FORMAT_RRF5       CONVERT HFP TO BFP (long)
  2413  	op_TBEDR   uint32 = 0xB350 // FORMAT_RRF5       CONVERT HFP TO BFP (long to short)
  2414  	op_TBEGIN  uint32 = 0xE560 // FORMAT_SIL        TRANSACTION BEGIN
  2415  	op_TBEGINC uint32 = 0xE561 // FORMAT_SIL        TRANSACTION BEGIN
  2416  	op_TCDB    uint32 = 0xED11 // FORMAT_RXE        TEST DATA CLASS (long BFP)
  2417  	op_TCEB    uint32 = 0xED10 // FORMAT_RXE        TEST DATA CLASS (short BFP)
  2418  	op_TCXB    uint32 = 0xED12 // FORMAT_RXE        TEST DATA CLASS (extended BFP)
  2419  	op_TDCDT   uint32 = 0xED54 // FORMAT_RXE        TEST DATA CLASS (long DFP)
  2420  	op_TDCET   uint32 = 0xED50 // FORMAT_RXE        TEST DATA CLASS (short DFP)
  2421  	op_TDCXT   uint32 = 0xED58 // FORMAT_RXE        TEST DATA CLASS (extended DFP)
  2422  	op_TDGDT   uint32 = 0xED55 // FORMAT_RXE        TEST DATA GROUP (long DFP)
  2423  	op_TDGET   uint32 = 0xED51 // FORMAT_RXE        TEST DATA GROUP (short DFP)
  2424  	op_TDGXT   uint32 = 0xED59 // FORMAT_RXE        TEST DATA GROUP (extended DFP)
  2425  	op_TEND    uint32 = 0xB2F8 // FORMAT_S          TRANSACTION END
  2426  	op_THDER   uint32 = 0xB358 // FORMAT_RRE        CONVERT BFP TO HFP (short to long)
  2427  	op_THDR    uint32 = 0xB359 // FORMAT_RRE        CONVERT BFP TO HFP (long)
  2428  	op_TM      uint32 = 0x9100 // FORMAT_SI         TEST UNDER MASK
  2429  	op_TMH     uint32 = 0xA700 // FORMAT_RI1        TEST UNDER MASK HIGH
  2430  	op_TMHH    uint32 = 0xA702 // FORMAT_RI1        TEST UNDER MASK (high high)
  2431  	op_TMHL    uint32 = 0xA703 // FORMAT_RI1        TEST UNDER MASK (high low)
  2432  	op_TML     uint32 = 0xA701 // FORMAT_RI1        TEST UNDER MASK LOW
  2433  	op_TMLH    uint32 = 0xA700 // FORMAT_RI1        TEST UNDER MASK (low high)
  2434  	op_TMLL    uint32 = 0xA701 // FORMAT_RI1        TEST UNDER MASK (low low)
  2435  	op_TMY     uint32 = 0xEB51 // FORMAT_SIY        TEST UNDER MASK
  2436  	op_TP      uint32 = 0xEBC0 // FORMAT_RSL        TEST DECIMAL
  2437  	op_TPI     uint32 = 0xB236 // FORMAT_S          TEST PENDING INTERRUPTION
  2438  	op_TPROT   uint32 = 0xE501 // FORMAT_SSE        TEST PROTECTION
  2439  	op_TR      uint32 = 0xDC00 // FORMAT_SS1        TRANSLATE
  2440  	op_TRACE   uint32 = 0x9900 // FORMAT_RS1        TRACE (32)
  2441  	op_TRACG   uint32 = 0xEB0F // FORMAT_RSY1       TRACE (64)
  2442  	op_TRAP2   uint32 = 0x01FF // FORMAT_E          TRAP
  2443  	op_TRAP4   uint32 = 0xB2FF // FORMAT_S          TRAP
  2444  	op_TRE     uint32 = 0xB2A5 // FORMAT_RRE        TRANSLATE EXTENDED
  2445  	op_TROO    uint32 = 0xB993 // FORMAT_RRF3       TRANSLATE ONE TO ONE
  2446  	op_TROT    uint32 = 0xB992 // FORMAT_RRF3       TRANSLATE ONE TO TWO
  2447  	op_TRT     uint32 = 0xDD00 // FORMAT_SS1        TRANSLATE AND TEST
  2448  	op_TRTE    uint32 = 0xB9BF // FORMAT_RRF3       TRANSLATE AND TEST EXTENDED
  2449  	op_TRTO    uint32 = 0xB991 // FORMAT_RRF3       TRANSLATE TWO TO ONE
  2450  	op_TRTR    uint32 = 0xD000 // FORMAT_SS1        TRANSLATE AND TEST REVERSE
  2451  	op_TRTRE   uint32 = 0xB9BD // FORMAT_RRF3       TRANSLATE AND TEST REVERSE EXTENDED
  2452  	op_TRTT    uint32 = 0xB990 // FORMAT_RRF3       TRANSLATE TWO TO TWO
  2453  	op_TS      uint32 = 0x9300 // FORMAT_S          TEST AND SET
  2454  	op_TSCH    uint32 = 0xB235 // FORMAT_S          TEST SUBCHANNEL
  2455  	op_UNPK    uint32 = 0xF300 // FORMAT_SS2        UNPACK
  2456  	op_UNPKA   uint32 = 0xEA00 // FORMAT_SS1        UNPACK ASCII
  2457  	op_UNPKU   uint32 = 0xE200 // FORMAT_SS1        UNPACK UNICODE
  2458  	op_UPT     uint32 = 0x0102 // FORMAT_E          UPDATE TREE
  2459  	op_X       uint32 = 0x5700 // FORMAT_RX1        EXCLUSIVE OR (32)
  2460  	op_XC      uint32 = 0xD700 // FORMAT_SS1        EXCLUSIVE OR (character)
  2461  	op_XG      uint32 = 0xE382 // FORMAT_RXY1       EXCLUSIVE OR (64)
  2462  	op_XGR     uint32 = 0xB982 // FORMAT_RRE        EXCLUSIVE OR (64)
  2463  	op_XGRK    uint32 = 0xB9E7 // FORMAT_RRF1       EXCLUSIVE OR (64)
  2464  	op_XI      uint32 = 0x9700 // FORMAT_SI         EXCLUSIVE OR (immediate)
  2465  	op_XIHF    uint32 = 0xC006 // FORMAT_RIL1       EXCLUSIVE OR IMMEDIATE (high)
  2466  	op_XILF    uint32 = 0xC007 // FORMAT_RIL1       EXCLUSIVE OR IMMEDIATE (low)
  2467  	op_XIY     uint32 = 0xEB57 // FORMAT_SIY        EXCLUSIVE OR (immediate)
  2468  	op_XR      uint32 = 0x1700 // FORMAT_RR         EXCLUSIVE OR (32)
  2469  	op_XRK     uint32 = 0xB9F7 // FORMAT_RRF1       EXCLUSIVE OR (32)
  2470  	op_XSCH    uint32 = 0xB276 // FORMAT_S          CANCEL SUBCHANNEL
  2471  	op_XY      uint32 = 0xE357 // FORMAT_RXY1       EXCLUSIVE OR (32)
  2472  	op_ZAP     uint32 = 0xF800 // FORMAT_SS2        ZERO AND ADD
  2473  
  2474  	// added in z13
  2475  	op_CXPT   uint32 = 0xEDAF // 	RSL-b	CONVERT FROM PACKED (to extended DFP)
  2476  	op_CDPT   uint32 = 0xEDAE // 	RSL-b	CONVERT FROM PACKED (to long DFP)
  2477  	op_CPXT   uint32 = 0xEDAD // 	RSL-b	CONVERT TO PACKED (from extended DFP)
  2478  	op_CPDT   uint32 = 0xEDAC // 	RSL-b	CONVERT TO PACKED (from long DFP)
  2479  	op_LZRF   uint32 = 0xE33B // 	RXY-a	LOAD AND ZERO RIGHTMOST BYTE (32)
  2480  	op_LZRG   uint32 = 0xE32A // 	RXY-a	LOAD AND ZERO RIGHTMOST BYTE (64)
  2481  	op_LCCB   uint32 = 0xE727 // 	RXE	LOAD COUNT TO BLOCK BOUNDARY
  2482  	op_LOCHHI uint32 = 0xEC4E // 	RIE-g	LOAD HALFWORD HIGH IMMEDIATE ON CONDITION (32←16)
  2483  	op_LOCHI  uint32 = 0xEC42 // 	RIE-g	LOAD HALFWORD IMMEDIATE ON CONDITION (32←16)
  2484  	op_LOCGHI uint32 = 0xEC46 // 	RIE-g	LOAD HALFWORD IMMEDIATE ON CONDITION (64←16)
  2485  	op_LOCFH  uint32 = 0xEBE0 // 	RSY-b	LOAD HIGH ON CONDITION (32)
  2486  	op_LOCFHR uint32 = 0xB9E0 // 	RRF-c	LOAD HIGH ON CONDITION (32)
  2487  	op_LLZRGF uint32 = 0xE33A // 	RXY-a	LOAD LOGICAL AND ZERO RIGHTMOST BYTE (64←32)
  2488  	op_STOCFH uint32 = 0xEBE1 // 	RSY-b	STORE HIGH ON CONDITION
  2489  	op_VA     uint32 = 0xE7F3 // 	VRR-c	VECTOR ADD
  2490  	op_VACC   uint32 = 0xE7F1 // 	VRR-c	VECTOR ADD COMPUTE CARRY
  2491  	op_VAC    uint32 = 0xE7BB // 	VRR-d	VECTOR ADD WITH CARRY
  2492  	op_VACCC  uint32 = 0xE7B9 // 	VRR-d	VECTOR ADD WITH CARRY COMPUTE CARRY
  2493  	op_VN     uint32 = 0xE768 // 	VRR-c	VECTOR AND
  2494  	op_VNC    uint32 = 0xE769 // 	VRR-c	VECTOR AND WITH COMPLEMENT
  2495  	op_VAVG   uint32 = 0xE7F2 // 	VRR-c	VECTOR AVERAGE
  2496  	op_VAVGL  uint32 = 0xE7F0 // 	VRR-c	VECTOR AVERAGE LOGICAL
  2497  	op_VCKSM  uint32 = 0xE766 // 	VRR-c	VECTOR CHECKSUM
  2498  	op_VCEQ   uint32 = 0xE7F8 // 	VRR-b	VECTOR COMPARE EQUAL
  2499  	op_VCH    uint32 = 0xE7FB // 	VRR-b	VECTOR COMPARE HIGH
  2500  	op_VCHL   uint32 = 0xE7F9 // 	VRR-b	VECTOR COMPARE HIGH LOGICAL
  2501  	op_VCLZ   uint32 = 0xE753 // 	VRR-a	VECTOR COUNT LEADING ZEROS
  2502  	op_VCTZ   uint32 = 0xE752 // 	VRR-a	VECTOR COUNT TRAILING ZEROS
  2503  	op_VEC    uint32 = 0xE7DB // 	VRR-a	VECTOR ELEMENT COMPARE
  2504  	op_VECL   uint32 = 0xE7D9 // 	VRR-a	VECTOR ELEMENT COMPARE LOGICAL
  2505  	op_VERIM  uint32 = 0xE772 // 	VRI-d	VECTOR ELEMENT ROTATE AND INSERT UNDER MASK
  2506  	op_VERLL  uint32 = 0xE733 // 	VRS-a	VECTOR ELEMENT ROTATE LEFT LOGICAL
  2507  	op_VERLLV uint32 = 0xE773 // 	VRR-c	VECTOR ELEMENT ROTATE LEFT LOGICAL
  2508  	op_VESLV  uint32 = 0xE770 // 	VRR-c	VECTOR ELEMENT SHIFT LEFT
  2509  	op_VESL   uint32 = 0xE730 // 	VRS-a	VECTOR ELEMENT SHIFT LEFT
  2510  	op_VESRA  uint32 = 0xE73A // 	VRS-a	VECTOR ELEMENT SHIFT RIGHT ARITHMETIC
  2511  	op_VESRAV uint32 = 0xE77A // 	VRR-c	VECTOR ELEMENT SHIFT RIGHT ARITHMETIC
  2512  	op_VESRL  uint32 = 0xE738 // 	VRS-a	VECTOR ELEMENT SHIFT RIGHT LOGICAL
  2513  	op_VESRLV uint32 = 0xE778 // 	VRR-c	VECTOR ELEMENT SHIFT RIGHT LOGICAL
  2514  	op_VX     uint32 = 0xE76D // 	VRR-c	VECTOR EXCLUSIVE OR
  2515  	op_VFAE   uint32 = 0xE782 // 	VRR-b	VECTOR FIND ANY ELEMENT EQUAL
  2516  	op_VFEE   uint32 = 0xE780 // 	VRR-b	VECTOR FIND ELEMENT EQUAL
  2517  	op_VFENE  uint32 = 0xE781 // 	VRR-b	VECTOR FIND ELEMENT NOT EQUAL
  2518  	op_VFA    uint32 = 0xE7E3 // 	VRR-c	VECTOR FP ADD
  2519  	op_WFK    uint32 = 0xE7CA // 	VRR-a	VECTOR FP COMPARE AND SIGNAL SCALAR
  2520  	op_VFCE   uint32 = 0xE7E8 // 	VRR-c	VECTOR FP COMPARE EQUAL
  2521  	op_VFCH   uint32 = 0xE7EB // 	VRR-c	VECTOR FP COMPARE HIGH
  2522  	op_VFCHE  uint32 = 0xE7EA // 	VRR-c	VECTOR FP COMPARE HIGH OR EQUAL
  2523  	op_WFC    uint32 = 0xE7CB // 	VRR-a	VECTOR FP COMPARE SCALAR
  2524  	op_VCDG   uint32 = 0xE7C3 // 	VRR-a	VECTOR FP CONVERT FROM FIXED 64-BIT
  2525  	op_VCDLG  uint32 = 0xE7C1 // 	VRR-a	VECTOR FP CONVERT FROM LOGICAL 64-BIT
  2526  	op_VCGD   uint32 = 0xE7C2 // 	VRR-a	VECTOR FP CONVERT TO FIXED 64-BIT
  2527  	op_VCLGD  uint32 = 0xE7C0 // 	VRR-a	VECTOR FP CONVERT TO LOGICAL 64-BIT
  2528  	op_VFD    uint32 = 0xE7E5 // 	VRR-c	VECTOR FP DIVIDE
  2529  	op_VLDE   uint32 = 0xE7C4 // 	VRR-a	VECTOR FP LOAD LENGTHENED
  2530  	op_VLED   uint32 = 0xE7C5 // 	VRR-a	VECTOR FP LOAD ROUNDED
  2531  	op_VFM    uint32 = 0xE7E7 // 	VRR-c	VECTOR FP MULTIPLY
  2532  	op_VFMA   uint32 = 0xE78F // 	VRR-e	VECTOR FP MULTIPLY AND ADD
  2533  	op_VFMS   uint32 = 0xE78E // 	VRR-e	VECTOR FP MULTIPLY AND SUBTRACT
  2534  	op_VFPSO  uint32 = 0xE7CC // 	VRR-a	VECTOR FP PERFORM SIGN OPERATION
  2535  	op_VFSQ   uint32 = 0xE7CE // 	VRR-a	VECTOR FP SQUARE ROOT
  2536  	op_VFS    uint32 = 0xE7E2 // 	VRR-c	VECTOR FP SUBTRACT
  2537  	op_VFTCI  uint32 = 0xE74A // 	VRI-e	VECTOR FP TEST DATA CLASS IMMEDIATE
  2538  	op_VGFM   uint32 = 0xE7B4 // 	VRR-c	VECTOR GALOIS FIELD MULTIPLY SUM
  2539  	op_VGFMA  uint32 = 0xE7BC // 	VRR-d	VECTOR GALOIS FIELD MULTIPLY SUM AND ACCUMULATE
  2540  	op_VGEF   uint32 = 0xE713 // 	VRV	VECTOR GATHER ELEMENT (32)
  2541  	op_VGEG   uint32 = 0xE712 // 	VRV	VECTOR GATHER ELEMENT (64)
  2542  	op_VGBM   uint32 = 0xE744 // 	VRI-a	VECTOR GENERATE BYTE MASK
  2543  	op_VGM    uint32 = 0xE746 // 	VRI-b	VECTOR GENERATE MASK
  2544  	op_VISTR  uint32 = 0xE75C // 	VRR-a	VECTOR ISOLATE STRING
  2545  	op_VL     uint32 = 0xE706 // 	VRX	VECTOR LOAD
  2546  	op_VLR    uint32 = 0xE756 // 	VRR-a	VECTOR LOAD
  2547  	op_VLREP  uint32 = 0xE705 // 	VRX	VECTOR LOAD AND REPLICATE
  2548  	op_VLC    uint32 = 0xE7DE // 	VRR-a	VECTOR LOAD COMPLEMENT
  2549  	op_VLEH   uint32 = 0xE701 // 	VRX	VECTOR LOAD ELEMENT (16)
  2550  	op_VLEF   uint32 = 0xE703 // 	VRX	VECTOR LOAD ELEMENT (32)
  2551  	op_VLEG   uint32 = 0xE702 // 	VRX	VECTOR LOAD ELEMENT (64)
  2552  	op_VLEB   uint32 = 0xE700 // 	VRX	VECTOR LOAD ELEMENT (8)
  2553  	op_VLEIH  uint32 = 0xE741 // 	VRI-a	VECTOR LOAD ELEMENT IMMEDIATE (16)
  2554  	op_VLEIF  uint32 = 0xE743 // 	VRI-a	VECTOR LOAD ELEMENT IMMEDIATE (32)
  2555  	op_VLEIG  uint32 = 0xE742 // 	VRI-a	VECTOR LOAD ELEMENT IMMEDIATE (64)
  2556  	op_VLEIB  uint32 = 0xE740 // 	VRI-a	VECTOR LOAD ELEMENT IMMEDIATE (8)
  2557  	op_VFI    uint32 = 0xE7C7 // 	VRR-a	VECTOR LOAD FP INTEGER
  2558  	op_VLGV   uint32 = 0xE721 // 	VRS-c	VECTOR LOAD GR FROM VR ELEMENT
  2559  	op_VLLEZ  uint32 = 0xE704 // 	VRX	VECTOR LOAD LOGICAL ELEMENT AND ZERO
  2560  	op_VLM    uint32 = 0xE736 // 	VRS-a	VECTOR LOAD MULTIPLE
  2561  	op_VLP    uint32 = 0xE7DF // 	VRR-a	VECTOR LOAD POSITIVE
  2562  	op_VLBB   uint32 = 0xE707 // 	VRX	VECTOR LOAD TO BLOCK BOUNDARY
  2563  	op_VLVG   uint32 = 0xE722 // 	VRS-b	VECTOR LOAD VR ELEMENT FROM GR
  2564  	op_VLVGP  uint32 = 0xE762 // 	VRR-f	VECTOR LOAD VR FROM GRS DISJOINT
  2565  	op_VLL    uint32 = 0xE737 // 	VRS-b	VECTOR LOAD WITH LENGTH
  2566  	op_VMX    uint32 = 0xE7FF // 	VRR-c	VECTOR MAXIMUM
  2567  	op_VMXL   uint32 = 0xE7FD // 	VRR-c	VECTOR MAXIMUM LOGICAL
  2568  	op_VMRH   uint32 = 0xE761 // 	VRR-c	VECTOR MERGE HIGH
  2569  	op_VMRL   uint32 = 0xE760 // 	VRR-c	VECTOR MERGE LOW
  2570  	op_VMN    uint32 = 0xE7FE // 	VRR-c	VECTOR MINIMUM
  2571  	op_VMNL   uint32 = 0xE7FC // 	VRR-c	VECTOR MINIMUM LOGICAL
  2572  	op_VMAE   uint32 = 0xE7AE // 	VRR-d	VECTOR MULTIPLY AND ADD EVEN
  2573  	op_VMAH   uint32 = 0xE7AB // 	VRR-d	VECTOR MULTIPLY AND ADD HIGH
  2574  	op_VMALE  uint32 = 0xE7AC // 	VRR-d	VECTOR MULTIPLY AND ADD LOGICAL EVEN
  2575  	op_VMALH  uint32 = 0xE7A9 // 	VRR-d	VECTOR MULTIPLY AND ADD LOGICAL HIGH
  2576  	op_VMALO  uint32 = 0xE7AD // 	VRR-d	VECTOR MULTIPLY AND ADD LOGICAL ODD
  2577  	op_VMAL   uint32 = 0xE7AA // 	VRR-d	VECTOR MULTIPLY AND ADD LOW
  2578  	op_VMAO   uint32 = 0xE7AF // 	VRR-d	VECTOR MULTIPLY AND ADD ODD
  2579  	op_VME    uint32 = 0xE7A6 // 	VRR-c	VECTOR MULTIPLY EVEN
  2580  	op_VMH    uint32 = 0xE7A3 // 	VRR-c	VECTOR MULTIPLY HIGH
  2581  	op_VMLE   uint32 = 0xE7A4 // 	VRR-c	VECTOR MULTIPLY EVEN LOGICAL
  2582  	op_VMLH   uint32 = 0xE7A1 // 	VRR-c	VECTOR MULTIPLY HIGH LOGICAL
  2583  	op_VMLO   uint32 = 0xE7A5 // 	VRR-c	VECTOR MULTIPLY ODD LOGICAL
  2584  	op_VML    uint32 = 0xE7A2 // 	VRR-c	VECTOR MULTIPLY LOW
  2585  	op_VMO    uint32 = 0xE7A7 // 	VRR-c	VECTOR MULTIPLY ODD
  2586  	op_VNO    uint32 = 0xE76B // 	VRR-c	VECTOR NOR
  2587  	op_VO     uint32 = 0xE76A // 	VRR-c	VECTOR OR
  2588  	op_VPK    uint32 = 0xE794 // 	VRR-c	VECTOR PACK
  2589  	op_VPKLS  uint32 = 0xE795 // 	VRR-b	VECTOR PACK LOGICAL SATURATE
  2590  	op_VPKS   uint32 = 0xE797 // 	VRR-b	VECTOR PACK SATURATE
  2591  	op_VPERM  uint32 = 0xE78C // 	VRR-e	VECTOR PERMUTE
  2592  	op_VPDI   uint32 = 0xE784 // 	VRR-c	VECTOR PERMUTE DOUBLEWORD IMMEDIATE
  2593  	op_VPOPCT uint32 = 0xE750 // 	VRR-a	VECTOR POPULATION COUNT
  2594  	op_VREP   uint32 = 0xE74D // 	VRI-c	VECTOR REPLICATE
  2595  	op_VREPI  uint32 = 0xE745 // 	VRI-a	VECTOR REPLICATE IMMEDIATE
  2596  	op_VSCEF  uint32 = 0xE71B // 	VRV	VECTOR SCATTER ELEMENT (32)
  2597  	op_VSCEG  uint32 = 0xE71A // 	VRV	VECTOR SCATTER ELEMENT (64)
  2598  	op_VSEL   uint32 = 0xE78D // 	VRR-e	VECTOR SELECT
  2599  	op_VSL    uint32 = 0xE774 // 	VRR-c	VECTOR SHIFT LEFT
  2600  	op_VSLB   uint32 = 0xE775 // 	VRR-c	VECTOR SHIFT LEFT BY BYTE
  2601  	op_VSLDB  uint32 = 0xE777 // 	VRI-d	VECTOR SHIFT LEFT DOUBLE BY BYTE
  2602  	op_VSRA   uint32 = 0xE77E // 	VRR-c	VECTOR SHIFT RIGHT ARITHMETIC
  2603  	op_VSRAB  uint32 = 0xE77F // 	VRR-c	VECTOR SHIFT RIGHT ARITHMETIC BY BYTE
  2604  	op_VSRL   uint32 = 0xE77C // 	VRR-c	VECTOR SHIFT RIGHT LOGICAL
  2605  	op_VSRLB  uint32 = 0xE77D // 	VRR-c	VECTOR SHIFT RIGHT LOGICAL BY BYTE
  2606  	op_VSEG   uint32 = 0xE75F // 	VRR-a	VECTOR SIGN EXTEND TO DOUBLEWORD
  2607  	op_VST    uint32 = 0xE70E // 	VRX	VECTOR STORE
  2608  	op_VSTEH  uint32 = 0xE709 // 	VRX	VECTOR STORE ELEMENT (16)
  2609  	op_VSTEF  uint32 = 0xE70B // 	VRX	VECTOR STORE ELEMENT (32)
  2610  	op_VSTEG  uint32 = 0xE70A // 	VRX	VECTOR STORE ELEMENT (64)
  2611  	op_VSTEB  uint32 = 0xE708 // 	VRX	VECTOR STORE ELEMENT (8)
  2612  	op_VSTM   uint32 = 0xE73E // 	VRS-a	VECTOR STORE MULTIPLE
  2613  	op_VSTL   uint32 = 0xE73F // 	VRS-b	VECTOR STORE WITH LENGTH
  2614  	op_VSTRC  uint32 = 0xE78A // 	VRR-d	VECTOR STRING RANGE COMPARE
  2615  	op_VS     uint32 = 0xE7F7 // 	VRR-c	VECTOR SUBTRACT
  2616  	op_VSCBI  uint32 = 0xE7F5 // 	VRR-c	VECTOR SUBTRACT COMPUTE BORROW INDICATION
  2617  	op_VSBCBI uint32 = 0xE7BD // 	VRR-d	VECTOR SUBTRACT WITH BORROW COMPUTE BORROW INDICATION
  2618  	op_VSBI   uint32 = 0xE7BF // 	VRR-d	VECTOR SUBTRACT WITH BORROW INDICATION
  2619  	op_VSUMG  uint32 = 0xE765 // 	VRR-c	VECTOR SUM ACROSS DOUBLEWORD
  2620  	op_VSUMQ  uint32 = 0xE767 // 	VRR-c	VECTOR SUM ACROSS QUADWORD
  2621  	op_VSUM   uint32 = 0xE764 // 	VRR-c	VECTOR SUM ACROSS WORD
  2622  	op_VTM    uint32 = 0xE7D8 // 	VRR-a	VECTOR TEST UNDER MASK
  2623  	op_VUPH   uint32 = 0xE7D7 // 	VRR-a	VECTOR UNPACK HIGH
  2624  	op_VUPLH  uint32 = 0xE7D5 // 	VRR-a	VECTOR UNPACK LOGICAL HIGH
  2625  	op_VUPLL  uint32 = 0xE7D4 // 	VRR-a	VECTOR UNPACK LOGICAL LOW
  2626  	op_VUPL   uint32 = 0xE7D6 // 	VRR-a	VECTOR UNPACK LOW
  2627  	op_VMSL   uint32 = 0xE7B8 // 	VRR-d	VECTOR MULTIPLY SUM LOGICAL
  2628  )
  2629  
  2630  func oclass(a *obj.Addr) int {
  2631  	return int(a.Class) - 1
  2632  }
  2633  
  2634  // Add a relocation for the immediate in a RIL style instruction.
  2635  // The addend will be adjusted as required.
  2636  func (c *ctxtz) addrilreloc(sym *obj.LSym, add int64) *obj.Reloc {
  2637  	if sym == nil {
  2638  		c.ctxt.Diag("require symbol to apply relocation")
  2639  	}
  2640  	offset := int64(2) // relocation offset from start of instruction
  2641  	rel := obj.Addrel(c.cursym)
  2642  	rel.Off = int32(c.pc + offset)
  2643  	rel.Siz = 4
  2644  	rel.Sym = sym
  2645  	rel.Add = add + offset + int64(rel.Siz)
  2646  	rel.Type = objabi.R_PCRELDBL
  2647  	return rel
  2648  }
  2649  
  2650  func (c *ctxtz) addrilrelocoffset(sym *obj.LSym, add, offset int64) *obj.Reloc {
  2651  	if sym == nil {
  2652  		c.ctxt.Diag("require symbol to apply relocation")
  2653  	}
  2654  	offset += int64(2) // relocation offset from start of instruction
  2655  	rel := obj.Addrel(c.cursym)
  2656  	rel.Off = int32(c.pc + offset)
  2657  	rel.Siz = 4
  2658  	rel.Sym = sym
  2659  	rel.Add = add + offset + int64(rel.Siz)
  2660  	rel.Type = objabi.R_PCRELDBL
  2661  	return rel
  2662  }
  2663  
  2664  // Add a CALL relocation for the immediate in a RIL style instruction.
  2665  // The addend will be adjusted as required.
  2666  func (c *ctxtz) addcallreloc(sym *obj.LSym, add int64) *obj.Reloc {
  2667  	if sym == nil {
  2668  		c.ctxt.Diag("require symbol to apply relocation")
  2669  	}
  2670  	offset := int64(2) // relocation offset from start of instruction
  2671  	rel := obj.Addrel(c.cursym)
  2672  	rel.Off = int32(c.pc + offset)
  2673  	rel.Siz = 4
  2674  	rel.Sym = sym
  2675  	rel.Add = add + offset + int64(rel.Siz)
  2676  	rel.Type = objabi.R_CALL
  2677  	return rel
  2678  }
  2679  
  2680  func (c *ctxtz) branchMask(p *obj.Prog) CCMask {
  2681  	switch p.As {
  2682  	case ABRC, ALOCR, ALOCGR,
  2683  		ACRJ, ACGRJ, ACIJ, ACGIJ,
  2684  		ACLRJ, ACLGRJ, ACLIJ, ACLGIJ:
  2685  		return CCMask(p.From.Offset)
  2686  	case ABEQ, ACMPBEQ, ACMPUBEQ, AMOVDEQ:
  2687  		return Equal
  2688  	case ABGE, ACMPBGE, ACMPUBGE, AMOVDGE:
  2689  		return GreaterOrEqual
  2690  	case ABGT, ACMPBGT, ACMPUBGT, AMOVDGT:
  2691  		return Greater
  2692  	case ABLE, ACMPBLE, ACMPUBLE, AMOVDLE:
  2693  		return LessOrEqual
  2694  	case ABLT, ACMPBLT, ACMPUBLT, AMOVDLT:
  2695  		return Less
  2696  	case ABNE, ACMPBNE, ACMPUBNE, AMOVDNE:
  2697  		return NotEqual
  2698  	case ABLEU: // LE or unordered
  2699  		return NotGreater
  2700  	case ABLTU: // LT or unordered
  2701  		return LessOrUnordered
  2702  	case ABVC:
  2703  		return Never // needs extra instruction
  2704  	case ABVS:
  2705  		return Unordered
  2706  	}
  2707  	c.ctxt.Diag("unknown conditional branch %v", p.As)
  2708  	return Always
  2709  }
  2710  
  2711  func regtmp(p *obj.Prog) uint32 {
  2712  	p.Mark |= USETMP
  2713  	return REGTMP
  2714  }
  2715  
  2716  func (c *ctxtz) asmout(p *obj.Prog, asm *[]byte) {
  2717  	o := c.oplook(p)
  2718  
  2719  	if o == nil {
  2720  		return
  2721  	}
  2722  
  2723  	// If REGTMP is used in generated code, we need to set USETMP on p.Mark.
  2724  	// So we use regtmp(p) for REGTMP.
  2725  
  2726  	switch o.i {
  2727  	default:
  2728  		c.ctxt.Diag("unknown index %d", o.i)
  2729  
  2730  	case 0: // PSEUDO OPS
  2731  		break
  2732  
  2733  	case 1: // mov reg reg
  2734  		switch p.As {
  2735  		default:
  2736  			c.ctxt.Diag("unhandled operation: %v", p.As)
  2737  		case AMOVD:
  2738  			zRRE(op_LGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2739  		// sign extend
  2740  		case AMOVW:
  2741  			zRRE(op_LGFR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2742  		case AMOVH:
  2743  			zRRE(op_LGHR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2744  		case AMOVB:
  2745  			zRRE(op_LGBR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2746  		// zero extend
  2747  		case AMOVWZ:
  2748  			zRRE(op_LLGFR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2749  		case AMOVHZ:
  2750  			zRRE(op_LLGHR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2751  		case AMOVBZ:
  2752  			zRRE(op_LLGCR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2753  		// reverse bytes
  2754  		case AMOVDBR:
  2755  			zRRE(op_LRVGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2756  		case AMOVWBR:
  2757  			zRRE(op_LRVR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2758  		// floating point
  2759  		case AFMOVD, AFMOVS:
  2760  			zRR(op_LDR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2761  		}
  2762  
  2763  	case 2: // arithmetic op reg [reg] reg
  2764  		r := p.Reg
  2765  		if r == 0 {
  2766  			r = p.To.Reg
  2767  		}
  2768  
  2769  		var opcode uint32
  2770  
  2771  		switch p.As {
  2772  		default:
  2773  			c.ctxt.Diag("invalid opcode")
  2774  		case AADD:
  2775  			opcode = op_AGRK
  2776  		case AADDC:
  2777  			opcode = op_ALGRK
  2778  		case AADDE:
  2779  			opcode = op_ALCGR
  2780  		case AADDW:
  2781  			opcode = op_ARK
  2782  		case AMULLW:
  2783  			opcode = op_MSGFR
  2784  		case AMULLD:
  2785  			opcode = op_MSGR
  2786  		case ADIVW, AMODW:
  2787  			opcode = op_DSGFR
  2788  		case ADIVWU, AMODWU:
  2789  			opcode = op_DLR
  2790  		case ADIVD, AMODD:
  2791  			opcode = op_DSGR
  2792  		case ADIVDU, AMODDU:
  2793  			opcode = op_DLGR
  2794  		}
  2795  
  2796  		switch p.As {
  2797  		default:
  2798  
  2799  		case AADD, AADDC, AADDW:
  2800  			if p.As == AADDW && r == p.To.Reg {
  2801  				zRR(op_AR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2802  			} else {
  2803  				zRRF(opcode, uint32(p.From.Reg), 0, uint32(p.To.Reg), uint32(r), asm)
  2804  			}
  2805  
  2806  		case AADDE, AMULLW, AMULLD:
  2807  			if r == p.To.Reg {
  2808  				zRRE(opcode, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2809  			} else if p.From.Reg == p.To.Reg {
  2810  				zRRE(opcode, uint32(p.To.Reg), uint32(r), asm)
  2811  			} else {
  2812  				zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
  2813  				zRRE(opcode, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2814  			}
  2815  
  2816  		case ADIVW, ADIVWU, ADIVD, ADIVDU:
  2817  			if p.As == ADIVWU || p.As == ADIVDU {
  2818  				zRI(op_LGHI, regtmp(p), 0, asm)
  2819  			}
  2820  			zRRE(op_LGR, REGTMP2, uint32(r), asm)
  2821  			zRRE(opcode, regtmp(p), uint32(p.From.Reg), asm)
  2822  			zRRE(op_LGR, uint32(p.To.Reg), REGTMP2, asm)
  2823  
  2824  		case AMODW, AMODWU, AMODD, AMODDU:
  2825  			if p.As == AMODWU || p.As == AMODDU {
  2826  				zRI(op_LGHI, regtmp(p), 0, asm)
  2827  			}
  2828  			zRRE(op_LGR, REGTMP2, uint32(r), asm)
  2829  			zRRE(opcode, regtmp(p), uint32(p.From.Reg), asm)
  2830  			zRRE(op_LGR, uint32(p.To.Reg), regtmp(p), asm)
  2831  
  2832  		}
  2833  
  2834  	case 3: // mov $constant reg
  2835  		v := c.vregoff(&p.From)
  2836  		switch p.As {
  2837  		case AMOVBZ:
  2838  			v = int64(uint8(v))
  2839  		case AMOVHZ:
  2840  			v = int64(uint16(v))
  2841  		case AMOVWZ:
  2842  			v = int64(uint32(v))
  2843  		case AMOVB:
  2844  			v = int64(int8(v))
  2845  		case AMOVH:
  2846  			v = int64(int16(v))
  2847  		case AMOVW:
  2848  			v = int64(int32(v))
  2849  		}
  2850  		if int64(int16(v)) == v {
  2851  			zRI(op_LGHI, uint32(p.To.Reg), uint32(v), asm)
  2852  		} else if v&0xffff0000 == v {
  2853  			zRI(op_LLILH, uint32(p.To.Reg), uint32(v>>16), asm)
  2854  		} else if v&0xffff00000000 == v {
  2855  			zRI(op_LLIHL, uint32(p.To.Reg), uint32(v>>32), asm)
  2856  		} else if uint64(v)&0xffff000000000000 == uint64(v) {
  2857  			zRI(op_LLIHH, uint32(p.To.Reg), uint32(v>>48), asm)
  2858  		} else if int64(int32(v)) == v {
  2859  			zRIL(_a, op_LGFI, uint32(p.To.Reg), uint32(v), asm)
  2860  		} else if int64(uint32(v)) == v {
  2861  			zRIL(_a, op_LLILF, uint32(p.To.Reg), uint32(v), asm)
  2862  		} else if uint64(v)&0xffffffff00000000 == uint64(v) {
  2863  			zRIL(_a, op_LLIHF, uint32(p.To.Reg), uint32(v>>32), asm)
  2864  		} else {
  2865  			zRIL(_a, op_LLILF, uint32(p.To.Reg), uint32(v), asm)
  2866  			zRIL(_a, op_IIHF, uint32(p.To.Reg), uint32(v>>32), asm)
  2867  		}
  2868  
  2869  	case 4: // multiply high (a*b)>>64
  2870  		r := p.Reg
  2871  		if r == 0 {
  2872  			r = p.To.Reg
  2873  		}
  2874  		zRRE(op_LGR, REGTMP2, uint32(r), asm)
  2875  		zRRE(op_MLGR, regtmp(p), uint32(p.From.Reg), asm)
  2876  		switch p.As {
  2877  		case AMULHDU:
  2878  			// Unsigned: move result into correct register.
  2879  			zRRE(op_LGR, uint32(p.To.Reg), regtmp(p), asm)
  2880  		case AMULHD:
  2881  			// Signed: need to convert result.
  2882  			// See Hacker's Delight 8-3.
  2883  			zRSY(op_SRAG, REGTMP2, uint32(p.From.Reg), 0, 63, asm)
  2884  			zRRE(op_NGR, REGTMP2, uint32(r), asm)
  2885  			zRRE(op_SGR, regtmp(p), REGTMP2, asm)
  2886  			zRSY(op_SRAG, REGTMP2, uint32(r), 0, 63, asm)
  2887  			zRRE(op_NGR, REGTMP2, uint32(p.From.Reg), asm)
  2888  			zRRF(op_SGRK, REGTMP2, 0, uint32(p.To.Reg), regtmp(p), asm)
  2889  		}
  2890  
  2891  	case 5: // syscall
  2892  		zI(op_SVC, 0, asm)
  2893  
  2894  	case 6: // logical op reg [reg] reg
  2895  		var oprr, oprre, oprrf uint32
  2896  		switch p.As {
  2897  		case AAND:
  2898  			oprre = op_NGR
  2899  			oprrf = op_NGRK
  2900  		case AANDW:
  2901  			oprr = op_NR
  2902  			oprrf = op_NRK
  2903  		case AOR:
  2904  			oprre = op_OGR
  2905  			oprrf = op_OGRK
  2906  		case AORW:
  2907  			oprr = op_OR
  2908  			oprrf = op_ORK
  2909  		case AXOR:
  2910  			oprre = op_XGR
  2911  			oprrf = op_XGRK
  2912  		case AXORW:
  2913  			oprr = op_XR
  2914  			oprrf = op_XRK
  2915  		}
  2916  		if p.Reg == 0 {
  2917  			if oprr != 0 {
  2918  				zRR(oprr, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2919  			} else {
  2920  				zRRE(oprre, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2921  			}
  2922  		} else {
  2923  			zRRF(oprrf, uint32(p.Reg), 0, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2924  		}
  2925  
  2926  	case 7: // shift/rotate reg [reg] reg
  2927  		d2 := c.vregoff(&p.From)
  2928  		b2 := p.From.Reg
  2929  		r3 := p.Reg
  2930  		if r3 == 0 {
  2931  			r3 = p.To.Reg
  2932  		}
  2933  		r1 := p.To.Reg
  2934  		var opcode uint32
  2935  		switch p.As {
  2936  		default:
  2937  		case ASLD:
  2938  			opcode = op_SLLG
  2939  		case ASRD:
  2940  			opcode = op_SRLG
  2941  		case ASLW:
  2942  			opcode = op_SLLK
  2943  		case ASRW:
  2944  			opcode = op_SRLK
  2945  		case ARLL:
  2946  			opcode = op_RLL
  2947  		case ARLLG:
  2948  			opcode = op_RLLG
  2949  		case ASRAW:
  2950  			opcode = op_SRAK
  2951  		case ASRAD:
  2952  			opcode = op_SRAG
  2953  		}
  2954  		zRSY(opcode, uint32(r1), uint32(r3), uint32(b2), uint32(d2), asm)
  2955  
  2956  	case 8: // find leftmost one
  2957  		if p.To.Reg&1 != 0 {
  2958  			c.ctxt.Diag("target must be an even-numbered register")
  2959  		}
  2960  		// FLOGR also writes a mask to p.To.Reg+1.
  2961  		zRRE(op_FLOGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2962  
  2963  	case 9: // population count
  2964  		zRRE(op_POPCNT, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2965  
  2966  	case 10: // subtract reg [reg] reg
  2967  		r := int(p.Reg)
  2968  
  2969  		switch p.As {
  2970  		default:
  2971  		case ASUB:
  2972  			if r == 0 {
  2973  				zRRE(op_SGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2974  			} else {
  2975  				zRRF(op_SGRK, uint32(p.From.Reg), 0, uint32(p.To.Reg), uint32(r), asm)
  2976  			}
  2977  		case ASUBC:
  2978  			if r == 0 {
  2979  				zRRE(op_SLGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2980  			} else {
  2981  				zRRF(op_SLGRK, uint32(p.From.Reg), 0, uint32(p.To.Reg), uint32(r), asm)
  2982  			}
  2983  		case ASUBE:
  2984  			if r == 0 {
  2985  				r = int(p.To.Reg)
  2986  			}
  2987  			if r == int(p.To.Reg) {
  2988  				zRRE(op_SLBGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2989  			} else if p.From.Reg == p.To.Reg {
  2990  				zRRE(op_LGR, regtmp(p), uint32(p.From.Reg), asm)
  2991  				zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
  2992  				zRRE(op_SLBGR, uint32(p.To.Reg), regtmp(p), asm)
  2993  			} else {
  2994  				zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
  2995  				zRRE(op_SLBGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2996  			}
  2997  		case ASUBW:
  2998  			if r == 0 {
  2999  				zRR(op_SR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3000  			} else {
  3001  				zRRF(op_SRK, uint32(p.From.Reg), 0, uint32(p.To.Reg), uint32(r), asm)
  3002  			}
  3003  		}
  3004  
  3005  	case 11: // br/bl
  3006  		v := int32(0)
  3007  
  3008  		if p.To.Target() != nil {
  3009  			v = int32((p.To.Target().Pc - p.Pc) >> 1)
  3010  		}
  3011  
  3012  		if p.As == ABR && p.To.Sym == nil && int32(int16(v)) == v {
  3013  			zRI(op_BRC, 0xF, uint32(v), asm)
  3014  		} else {
  3015  			if p.As == ABL {
  3016  				zRIL(_b, op_BRASL, uint32(REG_LR), uint32(v), asm)
  3017  			} else {
  3018  				zRIL(_c, op_BRCL, 0xF, uint32(v), asm)
  3019  			}
  3020  			if p.To.Sym != nil {
  3021  				c.addcallreloc(p.To.Sym, p.To.Offset)
  3022  			}
  3023  		}
  3024  
  3025  	case 12:
  3026  		r1 := p.To.Reg
  3027  		d2 := c.vregoff(&p.From)
  3028  		b2 := p.From.Reg
  3029  		if b2 == 0 {
  3030  			b2 = REGSP
  3031  		}
  3032  		x2 := p.From.Index
  3033  		if -DISP20/2 > d2 || d2 >= DISP20/2 {
  3034  			zRIL(_a, op_LGFI, regtmp(p), uint32(d2), asm)
  3035  			if x2 != 0 {
  3036  				zRX(op_LA, regtmp(p), regtmp(p), uint32(x2), 0, asm)
  3037  			}
  3038  			x2 = int16(regtmp(p))
  3039  			d2 = 0
  3040  		}
  3041  		var opx, opxy uint32
  3042  		switch p.As {
  3043  		case AADD:
  3044  			opxy = op_AG
  3045  		case AADDC:
  3046  			opxy = op_ALG
  3047  		case AADDE:
  3048  			opxy = op_ALCG
  3049  		case AADDW:
  3050  			opx = op_A
  3051  			opxy = op_AY
  3052  		case AMULLW:
  3053  			opx = op_MS
  3054  			opxy = op_MSY
  3055  		case AMULLD:
  3056  			opxy = op_MSG
  3057  		case ASUB:
  3058  			opxy = op_SG
  3059  		case ASUBC:
  3060  			opxy = op_SLG
  3061  		case ASUBE:
  3062  			opxy = op_SLBG
  3063  		case ASUBW:
  3064  			opx = op_S
  3065  			opxy = op_SY
  3066  		case AAND:
  3067  			opxy = op_NG
  3068  		case AANDW:
  3069  			opx = op_N
  3070  			opxy = op_NY
  3071  		case AOR:
  3072  			opxy = op_OG
  3073  		case AORW:
  3074  			opx = op_O
  3075  			opxy = op_OY
  3076  		case AXOR:
  3077  			opxy = op_XG
  3078  		case AXORW:
  3079  			opx = op_X
  3080  			opxy = op_XY
  3081  		}
  3082  		if opx != 0 && 0 <= d2 && d2 < DISP12 {
  3083  			zRX(opx, uint32(r1), uint32(x2), uint32(b2), uint32(d2), asm)
  3084  		} else {
  3085  			zRXY(opxy, uint32(r1), uint32(x2), uint32(b2), uint32(d2), asm)
  3086  		}
  3087  
  3088  	case 13: // rotate, followed by operation
  3089  		r1 := p.To.Reg
  3090  		r2 := p.RestArgs[2].Reg
  3091  		i3 := uint8(p.From.Offset)        // start
  3092  		i4 := uint8(p.RestArgs[0].Offset) // end
  3093  		i5 := uint8(p.RestArgs[1].Offset) // rotate amount
  3094  		switch p.As {
  3095  		case ARNSBGT, ARXSBGT, AROSBGT:
  3096  			i3 |= 0x80 // test-results
  3097  		case ARISBGZ, ARISBGNZ, ARISBHGZ, ARISBLGZ:
  3098  			i4 |= 0x80 // zero-remaining-bits
  3099  		}
  3100  		var opcode uint32
  3101  		switch p.As {
  3102  		case ARNSBG, ARNSBGT:
  3103  			opcode = op_RNSBG
  3104  		case ARXSBG, ARXSBGT:
  3105  			opcode = op_RXSBG
  3106  		case AROSBG, AROSBGT:
  3107  			opcode = op_ROSBG
  3108  		case ARISBG, ARISBGZ:
  3109  			opcode = op_RISBG
  3110  		case ARISBGN, ARISBGNZ:
  3111  			opcode = op_RISBGN
  3112  		case ARISBHG, ARISBHGZ:
  3113  			opcode = op_RISBHG
  3114  		case ARISBLG, ARISBLGZ:
  3115  			opcode = op_RISBLG
  3116  		}
  3117  		zRIE(_f, uint32(opcode), uint32(r1), uint32(r2), 0, uint32(i3), uint32(i4), 0, uint32(i5), asm)
  3118  
  3119  	case 15: // br/bl (reg)
  3120  		r := p.To.Reg
  3121  		if p.As == ABCL || p.As == ABL {
  3122  			zRR(op_BASR, uint32(REG_LR), uint32(r), asm)
  3123  		} else {
  3124  			zRR(op_BCR, uint32(Always), uint32(r), asm)
  3125  		}
  3126  
  3127  	case 16: // conditional branch
  3128  		v := int32(0)
  3129  		if p.To.Target() != nil {
  3130  			v = int32((p.To.Target().Pc - p.Pc) >> 1)
  3131  		}
  3132  		mask := uint32(c.branchMask(p))
  3133  		if p.To.Sym == nil && int32(int16(v)) == v {
  3134  			zRI(op_BRC, mask, uint32(v), asm)
  3135  		} else {
  3136  			zRIL(_c, op_BRCL, mask, uint32(v), asm)
  3137  		}
  3138  		if p.To.Sym != nil {
  3139  			c.addrilreloc(p.To.Sym, p.To.Offset)
  3140  		}
  3141  
  3142  	case 17: // move on condition
  3143  		m3 := uint32(c.branchMask(p))
  3144  		zRRF(op_LOCGR, m3, 0, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3145  
  3146  	case 18: // br/bl reg
  3147  		if p.As == ABL {
  3148  			zRR(op_BASR, uint32(REG_LR), uint32(p.To.Reg), asm)
  3149  		} else {
  3150  			zRR(op_BCR, uint32(Always), uint32(p.To.Reg), asm)
  3151  		}
  3152  
  3153  	case 19: // mov $sym+n(SB) reg
  3154  		d := c.vregoff(&p.From)
  3155  		zRIL(_b, op_LARL, uint32(p.To.Reg), 0, asm)
  3156  		if d&1 != 0 {
  3157  			zRX(op_LA, uint32(p.To.Reg), uint32(p.To.Reg), 0, 1, asm)
  3158  			d -= 1
  3159  		}
  3160  		c.addrilreloc(p.From.Sym, d)
  3161  
  3162  	case 21: // subtract $constant [reg] reg
  3163  		v := c.vregoff(&p.From)
  3164  		r := p.Reg
  3165  		if r == 0 {
  3166  			r = p.To.Reg
  3167  		}
  3168  		switch p.As {
  3169  		case ASUB:
  3170  			zRIL(_a, op_LGFI, uint32(regtmp(p)), uint32(v), asm)
  3171  			zRRF(op_SLGRK, uint32(regtmp(p)), 0, uint32(p.To.Reg), uint32(r), asm)
  3172  		case ASUBC:
  3173  			if r != p.To.Reg {
  3174  				zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
  3175  			}
  3176  			zRIL(_a, op_SLGFI, uint32(p.To.Reg), uint32(v), asm)
  3177  		case ASUBW:
  3178  			if r != p.To.Reg {
  3179  				zRR(op_LR, uint32(p.To.Reg), uint32(r), asm)
  3180  			}
  3181  			zRIL(_a, op_SLFI, uint32(p.To.Reg), uint32(v), asm)
  3182  		}
  3183  
  3184  	case 22: // add/multiply $constant [reg] reg
  3185  		v := c.vregoff(&p.From)
  3186  		r := p.Reg
  3187  		if r == 0 {
  3188  			r = p.To.Reg
  3189  		}
  3190  		var opri, opril, oprie uint32
  3191  		switch p.As {
  3192  		case AADD:
  3193  			opri = op_AGHI
  3194  			opril = op_AGFI
  3195  			oprie = op_AGHIK
  3196  		case AADDC:
  3197  			opril = op_ALGFI
  3198  			oprie = op_ALGHSIK
  3199  		case AADDW:
  3200  			opri = op_AHI
  3201  			opril = op_AFI
  3202  			oprie = op_AHIK
  3203  		case AMULLW:
  3204  			opri = op_MHI
  3205  			opril = op_MSFI
  3206  		case AMULLD:
  3207  			opri = op_MGHI
  3208  			opril = op_MSGFI
  3209  		}
  3210  		if r != p.To.Reg && (oprie == 0 || int64(int16(v)) != v) {
  3211  			switch p.As {
  3212  			case AADD, AADDC, AMULLD:
  3213  				zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
  3214  			case AADDW, AMULLW:
  3215  				zRR(op_LR, uint32(p.To.Reg), uint32(r), asm)
  3216  			}
  3217  			r = p.To.Reg
  3218  		}
  3219  		if opri != 0 && r == p.To.Reg && int64(int16(v)) == v {
  3220  			zRI(opri, uint32(p.To.Reg), uint32(v), asm)
  3221  		} else if oprie != 0 && int64(int16(v)) == v {
  3222  			zRIE(_d, oprie, uint32(p.To.Reg), uint32(r), uint32(v), 0, 0, 0, 0, asm)
  3223  		} else {
  3224  			zRIL(_a, opril, uint32(p.To.Reg), uint32(v), asm)
  3225  		}
  3226  
  3227  	case 23: // 64-bit logical op $constant reg
  3228  		// TODO(mundaym): merge with case 24.
  3229  		v := c.vregoff(&p.From)
  3230  		switch p.As {
  3231  		default:
  3232  			c.ctxt.Diag("%v is not supported", p)
  3233  		case AAND:
  3234  			if v >= 0 { // needs zero extend
  3235  				zRIL(_a, op_LGFI, regtmp(p), uint32(v), asm)
  3236  				zRRE(op_NGR, uint32(p.To.Reg), regtmp(p), asm)
  3237  			} else if int64(int16(v)) == v {
  3238  				zRI(op_NILL, uint32(p.To.Reg), uint32(v), asm)
  3239  			} else { //  r.To.Reg & 0xffffffff00000000 & uint32(v)
  3240  				zRIL(_a, op_NILF, uint32(p.To.Reg), uint32(v), asm)
  3241  			}
  3242  		case AOR:
  3243  			if int64(uint32(v)) != v { // needs sign extend
  3244  				zRIL(_a, op_LGFI, regtmp(p), uint32(v), asm)
  3245  				zRRE(op_OGR, uint32(p.To.Reg), regtmp(p), asm)
  3246  			} else if int64(uint16(v)) == v {
  3247  				zRI(op_OILL, uint32(p.To.Reg), uint32(v), asm)
  3248  			} else {
  3249  				zRIL(_a, op_OILF, uint32(p.To.Reg), uint32(v), asm)
  3250  			}
  3251  		case AXOR:
  3252  			if int64(uint32(v)) != v { // needs sign extend
  3253  				zRIL(_a, op_LGFI, regtmp(p), uint32(v), asm)
  3254  				zRRE(op_XGR, uint32(p.To.Reg), regtmp(p), asm)
  3255  			} else {
  3256  				zRIL(_a, op_XILF, uint32(p.To.Reg), uint32(v), asm)
  3257  			}
  3258  		}
  3259  
  3260  	case 24: // 32-bit logical op $constant reg
  3261  		v := c.vregoff(&p.From)
  3262  		switch p.As {
  3263  		case AANDW:
  3264  			if uint32(v&0xffff0000) == 0xffff0000 {
  3265  				zRI(op_NILL, uint32(p.To.Reg), uint32(v), asm)
  3266  			} else if uint32(v&0x0000ffff) == 0x0000ffff {
  3267  				zRI(op_NILH, uint32(p.To.Reg), uint32(v)>>16, asm)
  3268  			} else {
  3269  				zRIL(_a, op_NILF, uint32(p.To.Reg), uint32(v), asm)
  3270  			}
  3271  		case AORW:
  3272  			if uint32(v&0xffff0000) == 0 {
  3273  				zRI(op_OILL, uint32(p.To.Reg), uint32(v), asm)
  3274  			} else if uint32(v&0x0000ffff) == 0 {
  3275  				zRI(op_OILH, uint32(p.To.Reg), uint32(v)>>16, asm)
  3276  			} else {
  3277  				zRIL(_a, op_OILF, uint32(p.To.Reg), uint32(v), asm)
  3278  			}
  3279  		case AXORW:
  3280  			zRIL(_a, op_XILF, uint32(p.To.Reg), uint32(v), asm)
  3281  		}
  3282  
  3283  	case 25: // load on condition (register)
  3284  		m3 := uint32(c.branchMask(p))
  3285  		var opcode uint32
  3286  		switch p.As {
  3287  		case ALOCR:
  3288  			opcode = op_LOCR
  3289  		case ALOCGR:
  3290  			opcode = op_LOCGR
  3291  		}
  3292  		zRRF(opcode, m3, 0, uint32(p.To.Reg), uint32(p.Reg), asm)
  3293  
  3294  	case 26: // MOVD $offset(base)(index), reg
  3295  		v := c.regoff(&p.From)
  3296  		r := p.From.Reg
  3297  		if r == 0 {
  3298  			r = REGSP
  3299  		}
  3300  		i := p.From.Index
  3301  		if v >= 0 && v < DISP12 {
  3302  			zRX(op_LA, uint32(p.To.Reg), uint32(r), uint32(i), uint32(v), asm)
  3303  		} else if v >= -DISP20/2 && v < DISP20/2 {
  3304  			zRXY(op_LAY, uint32(p.To.Reg), uint32(r), uint32(i), uint32(v), asm)
  3305  		} else {
  3306  			zRIL(_a, op_LGFI, regtmp(p), uint32(v), asm)
  3307  			zRX(op_LA, uint32(p.To.Reg), uint32(r), regtmp(p), uint32(i), asm)
  3308  		}
  3309  
  3310  	case 31: // dword
  3311  		wd := uint64(c.vregoff(&p.From))
  3312  		*asm = append(*asm,
  3313  			uint8(wd>>56),
  3314  			uint8(wd>>48),
  3315  			uint8(wd>>40),
  3316  			uint8(wd>>32),
  3317  			uint8(wd>>24),
  3318  			uint8(wd>>16),
  3319  			uint8(wd>>8),
  3320  			uint8(wd))
  3321  
  3322  	case 32: // float op freg freg
  3323  		var opcode uint32
  3324  		switch p.As {
  3325  		default:
  3326  			c.ctxt.Diag("invalid opcode")
  3327  		case AFADD:
  3328  			opcode = op_ADBR
  3329  		case AFADDS:
  3330  			opcode = op_AEBR
  3331  		case AFDIV:
  3332  			opcode = op_DDBR
  3333  		case AFDIVS:
  3334  			opcode = op_DEBR
  3335  		case AFMUL:
  3336  			opcode = op_MDBR
  3337  		case AFMULS:
  3338  			opcode = op_MEEBR
  3339  		case AFSUB:
  3340  			opcode = op_SDBR
  3341  		case AFSUBS:
  3342  			opcode = op_SEBR
  3343  		}
  3344  		zRRE(opcode, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3345  
  3346  	case 33: // float op [freg] freg
  3347  		r := p.From.Reg
  3348  		if oclass(&p.From) == C_NONE {
  3349  			r = p.To.Reg
  3350  		}
  3351  		var opcode uint32
  3352  		switch p.As {
  3353  		default:
  3354  		case AFABS:
  3355  			opcode = op_LPDBR
  3356  		case AFNABS:
  3357  			opcode = op_LNDBR
  3358  		case ALPDFR:
  3359  			opcode = op_LPDFR
  3360  		case ALNDFR:
  3361  			opcode = op_LNDFR
  3362  		case AFNEG:
  3363  			opcode = op_LCDFR
  3364  		case AFNEGS:
  3365  			opcode = op_LCEBR
  3366  		case ALEDBR:
  3367  			opcode = op_LEDBR
  3368  		case ALDEBR:
  3369  			opcode = op_LDEBR
  3370  		case AFSQRT:
  3371  			opcode = op_SQDBR
  3372  		case AFSQRTS:
  3373  			opcode = op_SQEBR
  3374  		}
  3375  		zRRE(opcode, uint32(p.To.Reg), uint32(r), asm)
  3376  
  3377  	case 34: // float multiply-add freg freg freg
  3378  		var opcode uint32
  3379  		switch p.As {
  3380  		default:
  3381  			c.ctxt.Diag("invalid opcode")
  3382  		case AFMADD:
  3383  			opcode = op_MADBR
  3384  		case AFMADDS:
  3385  			opcode = op_MAEBR
  3386  		case AFMSUB:
  3387  			opcode = op_MSDBR
  3388  		case AFMSUBS:
  3389  			opcode = op_MSEBR
  3390  		}
  3391  		zRRD(opcode, uint32(p.To.Reg), uint32(p.From.Reg), uint32(p.Reg), asm)
  3392  
  3393  	case 35: // mov reg mem (no relocation)
  3394  		d2 := c.regoff(&p.To)
  3395  		b2 := p.To.Reg
  3396  		if b2 == 0 {
  3397  			b2 = REGSP
  3398  		}
  3399  		x2 := p.To.Index
  3400  		if d2 < -DISP20/2 || d2 >= DISP20/2 {
  3401  			zRIL(_a, op_LGFI, regtmp(p), uint32(d2), asm)
  3402  			if x2 != 0 {
  3403  				zRX(op_LA, regtmp(p), regtmp(p), uint32(x2), 0, asm)
  3404  			}
  3405  			x2 = int16(regtmp(p))
  3406  			d2 = 0
  3407  		}
  3408  		// Emits an RX instruction if an appropriate one exists and the displacement fits in 12 bits. Otherwise use an RXY instruction.
  3409  		if op, ok := c.zopstore12(p.As); ok && isU12(d2) {
  3410  			zRX(op, uint32(p.From.Reg), uint32(x2), uint32(b2), uint32(d2), asm)
  3411  		} else {
  3412  			zRXY(c.zopstore(p.As), uint32(p.From.Reg), uint32(x2), uint32(b2), uint32(d2), asm)
  3413  		}
  3414  
  3415  	case 36: // mov mem reg (no relocation)
  3416  		d2 := c.regoff(&p.From)
  3417  		b2 := p.From.Reg
  3418  		if b2 == 0 {
  3419  			b2 = REGSP
  3420  		}
  3421  		x2 := p.From.Index
  3422  		if d2 < -DISP20/2 || d2 >= DISP20/2 {
  3423  			zRIL(_a, op_LGFI, regtmp(p), uint32(d2), asm)
  3424  			if x2 != 0 {
  3425  				zRX(op_LA, regtmp(p), regtmp(p), uint32(x2), 0, asm)
  3426  			}
  3427  			x2 = int16(regtmp(p))
  3428  			d2 = 0
  3429  		}
  3430  		// Emits an RX instruction if an appropriate one exists and the displacement fits in 12 bits. Otherwise use an RXY instruction.
  3431  		if op, ok := c.zopload12(p.As); ok && isU12(d2) {
  3432  			zRX(op, uint32(p.To.Reg), uint32(x2), uint32(b2), uint32(d2), asm)
  3433  		} else {
  3434  			zRXY(c.zopload(p.As), uint32(p.To.Reg), uint32(x2), uint32(b2), uint32(d2), asm)
  3435  		}
  3436  
  3437  	case 40: // word/byte
  3438  		wd := uint32(c.regoff(&p.From))
  3439  		if p.As == AWORD { //WORD
  3440  			*asm = append(*asm, uint8(wd>>24), uint8(wd>>16), uint8(wd>>8), uint8(wd))
  3441  		} else { //BYTE
  3442  			*asm = append(*asm, uint8(wd))
  3443  		}
  3444  
  3445  	case 41: // branch on count
  3446  		r1 := p.From.Reg
  3447  		ri2 := (p.To.Target().Pc - p.Pc) >> 1
  3448  		if int64(int16(ri2)) != ri2 {
  3449  			c.ctxt.Diag("branch target too far away")
  3450  		}
  3451  		var opcode uint32
  3452  		switch p.As {
  3453  		case ABRCT:
  3454  			opcode = op_BRCT
  3455  		case ABRCTG:
  3456  			opcode = op_BRCTG
  3457  		}
  3458  		zRI(opcode, uint32(r1), uint32(ri2), asm)
  3459  
  3460  	case 47: // negate [reg] reg
  3461  		r := p.From.Reg
  3462  		if r == 0 {
  3463  			r = p.To.Reg
  3464  		}
  3465  		switch p.As {
  3466  		case ANEG:
  3467  			zRRE(op_LCGR, uint32(p.To.Reg), uint32(r), asm)
  3468  		case ANEGW:
  3469  			zRRE(op_LCGFR, uint32(p.To.Reg), uint32(r), asm)
  3470  		}
  3471  
  3472  	case 48: // floating-point round to integer
  3473  		m3 := c.vregoff(&p.From)
  3474  		if 0 > m3 || m3 > 7 {
  3475  			c.ctxt.Diag("mask (%v) must be in the range [0, 7]", m3)
  3476  		}
  3477  		var opcode uint32
  3478  		switch p.As {
  3479  		case AFIEBR:
  3480  			opcode = op_FIEBR
  3481  		case AFIDBR:
  3482  			opcode = op_FIDBR
  3483  		}
  3484  		zRRF(opcode, uint32(m3), 0, uint32(p.To.Reg), uint32(p.Reg), asm)
  3485  
  3486  	case 49: // copysign
  3487  		zRRF(op_CPSDR, uint32(p.From.Reg), 0, uint32(p.To.Reg), uint32(p.Reg), asm)
  3488  
  3489  	case 50: // load and test
  3490  		var opcode uint32
  3491  		switch p.As {
  3492  		case ALTEBR:
  3493  			opcode = op_LTEBR
  3494  		case ALTDBR:
  3495  			opcode = op_LTDBR
  3496  		}
  3497  		zRRE(opcode, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3498  
  3499  	case 51: // test data class (immediate only)
  3500  		var opcode uint32
  3501  		switch p.As {
  3502  		case ATCEB:
  3503  			opcode = op_TCEB
  3504  		case ATCDB:
  3505  			opcode = op_TCDB
  3506  		}
  3507  		d2 := c.regoff(&p.To)
  3508  		zRXE(opcode, uint32(p.From.Reg), 0, 0, uint32(d2), 0, asm)
  3509  
  3510  	case 62: // equivalent of Mul64 in math/bits
  3511  		zRRE(op_MLGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3512  
  3513  	case 66:
  3514  		zRR(op_BCR, uint32(Never), 0, asm)
  3515  
  3516  	case 67: // fmov $0 freg
  3517  		var opcode uint32
  3518  		switch p.As {
  3519  		case AFMOVS:
  3520  			opcode = op_LZER
  3521  		case AFMOVD:
  3522  			opcode = op_LZDR
  3523  		}
  3524  		zRRE(opcode, uint32(p.To.Reg), 0, asm)
  3525  
  3526  	case 68: // movw areg reg
  3527  		zRRE(op_EAR, uint32(p.To.Reg), uint32(p.From.Reg-REG_AR0), asm)
  3528  
  3529  	case 69: // movw reg areg
  3530  		zRRE(op_SAR, uint32(p.To.Reg-REG_AR0), uint32(p.From.Reg), asm)
  3531  
  3532  	case 70: // cmp reg reg
  3533  		if p.As == ACMPW || p.As == ACMPWU {
  3534  			zRR(c.zoprr(p.As), uint32(p.From.Reg), uint32(p.To.Reg), asm)
  3535  		} else {
  3536  			zRRE(c.zoprre(p.As), uint32(p.From.Reg), uint32(p.To.Reg), asm)
  3537  		}
  3538  
  3539  	case 71: // cmp reg $constant
  3540  		v := c.vregoff(&p.To)
  3541  		switch p.As {
  3542  		case ACMP, ACMPW:
  3543  			if int64(int32(v)) != v {
  3544  				c.ctxt.Diag("%v overflows an int32", v)
  3545  			}
  3546  		case ACMPU, ACMPWU:
  3547  			if int64(uint32(v)) != v {
  3548  				c.ctxt.Diag("%v overflows a uint32", v)
  3549  			}
  3550  		}
  3551  		if p.As == ACMP && int64(int16(v)) == v {
  3552  			zRI(op_CGHI, uint32(p.From.Reg), uint32(v), asm)
  3553  		} else if p.As == ACMPW && int64(int16(v)) == v {
  3554  			zRI(op_CHI, uint32(p.From.Reg), uint32(v), asm)
  3555  		} else {
  3556  			zRIL(_a, c.zopril(p.As), uint32(p.From.Reg), uint32(v), asm)
  3557  		}
  3558  
  3559  	case 72: // mov $constant mem
  3560  		v := c.regoff(&p.From)
  3561  		d := c.regoff(&p.To)
  3562  		r := p.To.Reg
  3563  		if p.To.Index != 0 {
  3564  			c.ctxt.Diag("cannot use index register")
  3565  		}
  3566  		if r == 0 {
  3567  			r = REGSP
  3568  		}
  3569  		var opcode uint32
  3570  		switch p.As {
  3571  		case AMOVD:
  3572  			opcode = op_MVGHI
  3573  		case AMOVW, AMOVWZ:
  3574  			opcode = op_MVHI
  3575  		case AMOVH, AMOVHZ:
  3576  			opcode = op_MVHHI
  3577  		case AMOVB, AMOVBZ:
  3578  			opcode = op_MVI
  3579  		}
  3580  		if d < 0 || d >= DISP12 {
  3581  			if r == int16(regtmp(p)) {
  3582  				c.ctxt.Diag("displacement must be in range [0, 4096) to use %v", r)
  3583  			}
  3584  			if d >= -DISP20/2 && d < DISP20/2 {
  3585  				if opcode == op_MVI {
  3586  					opcode = op_MVIY
  3587  				} else {
  3588  					zRXY(op_LAY, uint32(regtmp(p)), 0, uint32(r), uint32(d), asm)
  3589  					r = int16(regtmp(p))
  3590  					d = 0
  3591  				}
  3592  			} else {
  3593  				zRIL(_a, op_LGFI, regtmp(p), uint32(d), asm)
  3594  				zRX(op_LA, regtmp(p), regtmp(p), uint32(r), 0, asm)
  3595  				r = int16(regtmp(p))
  3596  				d = 0
  3597  			}
  3598  		}
  3599  		switch opcode {
  3600  		case op_MVI:
  3601  			zSI(opcode, uint32(v), uint32(r), uint32(d), asm)
  3602  		case op_MVIY:
  3603  			zSIY(opcode, uint32(v), uint32(r), uint32(d), asm)
  3604  		default:
  3605  			zSIL(opcode, uint32(r), uint32(d), uint32(v), asm)
  3606  		}
  3607  
  3608  	case 74: // mov reg addr (including relocation)
  3609  		i2 := c.regoff(&p.To)
  3610  		switch p.As {
  3611  		case AMOVD:
  3612  			zRIL(_b, op_STGRL, uint32(p.From.Reg), 0, asm)
  3613  		case AMOVW, AMOVWZ: // The zero extension doesn't affect store instructions
  3614  			zRIL(_b, op_STRL, uint32(p.From.Reg), 0, asm)
  3615  		case AMOVH, AMOVHZ: // The zero extension doesn't affect store instructions
  3616  			zRIL(_b, op_STHRL, uint32(p.From.Reg), 0, asm)
  3617  		case AMOVB, AMOVBZ: // The zero extension doesn't affect store instructions
  3618  			zRIL(_b, op_LARL, regtmp(p), 0, asm)
  3619  			adj := uint32(0) // adjustment needed for odd addresses
  3620  			if i2&1 != 0 {
  3621  				i2 -= 1
  3622  				adj = 1
  3623  			}
  3624  			zRX(op_STC, uint32(p.From.Reg), 0, regtmp(p), adj, asm)
  3625  		case AFMOVD:
  3626  			zRIL(_b, op_LARL, regtmp(p), 0, asm)
  3627  			zRX(op_STD, uint32(p.From.Reg), 0, regtmp(p), 0, asm)
  3628  		case AFMOVS:
  3629  			zRIL(_b, op_LARL, regtmp(p), 0, asm)
  3630  			zRX(op_STE, uint32(p.From.Reg), 0, regtmp(p), 0, asm)
  3631  		}
  3632  		c.addrilreloc(p.To.Sym, int64(i2))
  3633  
  3634  	case 75: // mov addr reg (including relocation)
  3635  		i2 := c.regoff(&p.From)
  3636  		switch p.As {
  3637  		case AMOVD:
  3638  			if i2&1 != 0 {
  3639  				zRIL(_b, op_LARL, regtmp(p), 0, asm)
  3640  				zRXY(op_LG, uint32(p.To.Reg), regtmp(p), 0, 1, asm)
  3641  				i2 -= 1
  3642  			} else {
  3643  				zRIL(_b, op_LGRL, uint32(p.To.Reg), 0, asm)
  3644  			}
  3645  		case AMOVW:
  3646  			zRIL(_b, op_LGFRL, uint32(p.To.Reg), 0, asm)
  3647  		case AMOVWZ:
  3648  			zRIL(_b, op_LLGFRL, uint32(p.To.Reg), 0, asm)
  3649  		case AMOVH:
  3650  			zRIL(_b, op_LGHRL, uint32(p.To.Reg), 0, asm)
  3651  		case AMOVHZ:
  3652  			zRIL(_b, op_LLGHRL, uint32(p.To.Reg), 0, asm)
  3653  		case AMOVB, AMOVBZ:
  3654  			zRIL(_b, op_LARL, regtmp(p), 0, asm)
  3655  			adj := uint32(0) // adjustment needed for odd addresses
  3656  			if i2&1 != 0 {
  3657  				i2 -= 1
  3658  				adj = 1
  3659  			}
  3660  			switch p.As {
  3661  			case AMOVB:
  3662  				zRXY(op_LGB, uint32(p.To.Reg), 0, regtmp(p), adj, asm)
  3663  			case AMOVBZ:
  3664  				zRXY(op_LLGC, uint32(p.To.Reg), 0, regtmp(p), adj, asm)
  3665  			}
  3666  		case AFMOVD:
  3667  			zRIL(_a, op_LARL, regtmp(p), 0, asm)
  3668  			zRX(op_LD, uint32(p.To.Reg), 0, regtmp(p), 0, asm)
  3669  		case AFMOVS:
  3670  			zRIL(_a, op_LARL, regtmp(p), 0, asm)
  3671  			zRX(op_LE, uint32(p.To.Reg), 0, regtmp(p), 0, asm)
  3672  		}
  3673  		c.addrilreloc(p.From.Sym, int64(i2))
  3674  
  3675  	case 76: // set program mask
  3676  		zRR(op_SPM, uint32(p.From.Reg), 0, asm)
  3677  
  3678  	case 77: // syscall $constant
  3679  		if p.From.Offset > 255 || p.From.Offset < 1 {
  3680  			c.ctxt.Diag("illegal system call; system call number out of range: %v", p)
  3681  			zE(op_TRAP2, asm) // trap always
  3682  		} else {
  3683  			zI(op_SVC, uint32(p.From.Offset), asm)
  3684  		}
  3685  
  3686  	case 78: // undef
  3687  		// "An instruction consisting entirely of binary 0s is guaranteed
  3688  		// always to be an illegal instruction."
  3689  		*asm = append(*asm, 0, 0, 0, 0)
  3690  
  3691  	case 79: // compare and swap reg reg reg
  3692  		v := c.regoff(&p.To)
  3693  		if v < 0 {
  3694  			v = 0
  3695  		}
  3696  		if p.As == ACS {
  3697  			zRS(op_CS, uint32(p.From.Reg), uint32(p.Reg), uint32(p.To.Reg), uint32(v), asm)
  3698  		} else if p.As == ACSG {
  3699  			zRSY(op_CSG, uint32(p.From.Reg), uint32(p.Reg), uint32(p.To.Reg), uint32(v), asm)
  3700  		}
  3701  
  3702  	case 80: // sync
  3703  		zRR(op_BCR, 14, 0, asm) // fast-BCR-serialization
  3704  
  3705  	case 81: // float to fixed and fixed to float moves (no conversion)
  3706  		switch p.As {
  3707  		case ALDGR:
  3708  			zRRE(op_LDGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3709  		case ALGDR:
  3710  			zRRE(op_LGDR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3711  		}
  3712  
  3713  	case 82: // fixed to float conversion
  3714  		var opcode uint32
  3715  		switch p.As {
  3716  		default:
  3717  			log.Fatalf("unexpected opcode %v", p.As)
  3718  		case ACEFBRA:
  3719  			opcode = op_CEFBRA
  3720  		case ACDFBRA:
  3721  			opcode = op_CDFBRA
  3722  		case ACEGBRA:
  3723  			opcode = op_CEGBRA
  3724  		case ACDGBRA:
  3725  			opcode = op_CDGBRA
  3726  		case ACELFBR:
  3727  			opcode = op_CELFBR
  3728  		case ACDLFBR:
  3729  			opcode = op_CDLFBR
  3730  		case ACELGBR:
  3731  			opcode = op_CELGBR
  3732  		case ACDLGBR:
  3733  			opcode = op_CDLGBR
  3734  		}
  3735  		// set immediate operand M3 to 0 to use the default BFP rounding mode
  3736  		// (usually round to nearest, ties to even)
  3737  		// TODO(mundaym): should this be fixed at round to nearest, ties to even?
  3738  		// M4 is reserved and must be 0
  3739  		zRRF(opcode, 0, 0, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3740  
  3741  	case 83: // float to fixed conversion
  3742  		var opcode uint32
  3743  		switch p.As {
  3744  		default:
  3745  			log.Fatalf("unexpected opcode %v", p.As)
  3746  		case ACFEBRA:
  3747  			opcode = op_CFEBRA
  3748  		case ACFDBRA:
  3749  			opcode = op_CFDBRA
  3750  		case ACGEBRA:
  3751  			opcode = op_CGEBRA
  3752  		case ACGDBRA:
  3753  			opcode = op_CGDBRA
  3754  		case ACLFEBR:
  3755  			opcode = op_CLFEBR
  3756  		case ACLFDBR:
  3757  			opcode = op_CLFDBR
  3758  		case ACLGEBR:
  3759  			opcode = op_CLGEBR
  3760  		case ACLGDBR:
  3761  			opcode = op_CLGDBR
  3762  		}
  3763  		// set immediate operand M3 to 5 for rounding toward zero (required by Go spec)
  3764  		// M4 is reserved and must be 0
  3765  		zRRF(opcode, 5, 0, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3766  
  3767  	case 84: // storage-and-storage operations $length mem mem
  3768  		l := c.regoff(&p.From)
  3769  		if l < 1 || l > 256 {
  3770  			c.ctxt.Diag("number of bytes (%v) not in range [1,256]", l)
  3771  		}
  3772  		if p.GetFrom3().Index != 0 || p.To.Index != 0 {
  3773  			c.ctxt.Diag("cannot use index reg")
  3774  		}
  3775  		b1 := p.To.Reg
  3776  		b2 := p.GetFrom3().Reg
  3777  		if b1 == 0 {
  3778  			b1 = REGSP
  3779  		}
  3780  		if b2 == 0 {
  3781  			b2 = REGSP
  3782  		}
  3783  		d1 := c.regoff(&p.To)
  3784  		d2 := c.regoff(p.GetFrom3())
  3785  		if d1 < 0 || d1 >= DISP12 {
  3786  			if b2 == int16(regtmp(p)) {
  3787  				c.ctxt.Diag("regtmp(p) conflict")
  3788  			}
  3789  			if b1 != int16(regtmp(p)) {
  3790  				zRRE(op_LGR, regtmp(p), uint32(b1), asm)
  3791  			}
  3792  			zRIL(_a, op_AGFI, regtmp(p), uint32(d1), asm)
  3793  			if d1 == d2 && b1 == b2 {
  3794  				d2 = 0
  3795  				b2 = int16(regtmp(p))
  3796  			}
  3797  			d1 = 0
  3798  			b1 = int16(regtmp(p))
  3799  		}
  3800  		if d2 < 0 || d2 >= DISP12 {
  3801  			if b1 == REGTMP2 {
  3802  				c.ctxt.Diag("REGTMP2 conflict")
  3803  			}
  3804  			if b2 != REGTMP2 {
  3805  				zRRE(op_LGR, REGTMP2, uint32(b2), asm)
  3806  			}
  3807  			zRIL(_a, op_AGFI, REGTMP2, uint32(d2), asm)
  3808  			d2 = 0
  3809  			b2 = REGTMP2
  3810  		}
  3811  		var opcode uint32
  3812  		switch p.As {
  3813  		default:
  3814  			c.ctxt.Diag("unexpected opcode %v", p.As)
  3815  		case AMVC:
  3816  			opcode = op_MVC
  3817  		case AMVCIN:
  3818  			opcode = op_MVCIN
  3819  		case ACLC:
  3820  			opcode = op_CLC
  3821  			// swap operand order for CLC so that it matches CMP
  3822  			b1, b2 = b2, b1
  3823  			d1, d2 = d2, d1
  3824  		case AXC:
  3825  			opcode = op_XC
  3826  		case AOC:
  3827  			opcode = op_OC
  3828  		case ANC:
  3829  			opcode = op_NC
  3830  		}
  3831  		zSS(_a, opcode, uint32(l-1), 0, uint32(b1), uint32(d1), uint32(b2), uint32(d2), asm)
  3832  
  3833  	case 85: // load address relative long
  3834  		v := c.regoff(&p.From)
  3835  		if p.From.Sym == nil {
  3836  			if (v & 1) != 0 {
  3837  				c.ctxt.Diag("cannot use LARL with odd offset: %v", v)
  3838  			}
  3839  		} else {
  3840  			c.addrilreloc(p.From.Sym, int64(v))
  3841  			v = 0
  3842  		}
  3843  		zRIL(_b, op_LARL, uint32(p.To.Reg), uint32(v>>1), asm)
  3844  
  3845  	case 86: // load address
  3846  		d := c.vregoff(&p.From)
  3847  		x := p.From.Index
  3848  		b := p.From.Reg
  3849  		if b == 0 {
  3850  			b = REGSP
  3851  		}
  3852  		switch p.As {
  3853  		case ALA:
  3854  			zRX(op_LA, uint32(p.To.Reg), uint32(x), uint32(b), uint32(d), asm)
  3855  		case ALAY:
  3856  			zRXY(op_LAY, uint32(p.To.Reg), uint32(x), uint32(b), uint32(d), asm)
  3857  		}
  3858  
  3859  	case 87: // execute relative long
  3860  		v := c.vregoff(&p.From)
  3861  		if p.From.Sym == nil {
  3862  			if v&1 != 0 {
  3863  				c.ctxt.Diag("cannot use EXRL with odd offset: %v", v)
  3864  			}
  3865  		} else {
  3866  			c.addrilreloc(p.From.Sym, v)
  3867  			v = 0
  3868  		}
  3869  		zRIL(_b, op_EXRL, uint32(p.To.Reg), uint32(v>>1), asm)
  3870  
  3871  	case 88: // store clock
  3872  		var opcode uint32
  3873  		switch p.As {
  3874  		case ASTCK:
  3875  			opcode = op_STCK
  3876  		case ASTCKC:
  3877  			opcode = op_STCKC
  3878  		case ASTCKE:
  3879  			opcode = op_STCKE
  3880  		case ASTCKF:
  3881  			opcode = op_STCKF
  3882  		}
  3883  		v := c.vregoff(&p.To)
  3884  		r := p.To.Reg
  3885  		if r == 0 {
  3886  			r = REGSP
  3887  		}
  3888  		zS(opcode, uint32(r), uint32(v), asm)
  3889  
  3890  	case 89: // compare and branch reg reg
  3891  		var v int32
  3892  		if p.To.Target() != nil {
  3893  			v = int32((p.To.Target().Pc - p.Pc) >> 1)
  3894  		}
  3895  
  3896  		// Some instructions take a mask as the first argument.
  3897  		r1, r2 := p.From.Reg, p.Reg
  3898  		if p.From.Type == obj.TYPE_CONST {
  3899  			r1, r2 = p.Reg, p.RestArgs[0].Reg
  3900  		}
  3901  		m3 := uint32(c.branchMask(p))
  3902  
  3903  		var opcode uint32
  3904  		switch p.As {
  3905  		case ACRJ:
  3906  			// COMPARE AND BRANCH RELATIVE (32)
  3907  			opcode = op_CRJ
  3908  		case ACGRJ, ACMPBEQ, ACMPBGE, ACMPBGT, ACMPBLE, ACMPBLT, ACMPBNE:
  3909  			// COMPARE AND BRANCH RELATIVE (64)
  3910  			opcode = op_CGRJ
  3911  		case ACLRJ:
  3912  			// COMPARE LOGICAL AND BRANCH RELATIVE (32)
  3913  			opcode = op_CLRJ
  3914  		case ACLGRJ, ACMPUBEQ, ACMPUBGE, ACMPUBGT, ACMPUBLE, ACMPUBLT, ACMPUBNE:
  3915  			// COMPARE LOGICAL AND BRANCH RELATIVE (64)
  3916  			opcode = op_CLGRJ
  3917  		}
  3918  
  3919  		if int32(int16(v)) != v {
  3920  			// The branch is too far for one instruction so crack
  3921  			// `CMPBEQ x, y, target` into:
  3922  			//
  3923  			//     CMPBNE x, y, 2(PC)
  3924  			//     BR     target
  3925  			//
  3926  			// Note that the instruction sequence MUST NOT clobber
  3927  			// the condition code.
  3928  			m3 ^= 0xe // invert 3-bit mask
  3929  			zRIE(_b, opcode, uint32(r1), uint32(r2), uint32(sizeRIE+sizeRIL)/2, 0, 0, m3, 0, asm)
  3930  			zRIL(_c, op_BRCL, uint32(Always), uint32(v-sizeRIE/2), asm)
  3931  		} else {
  3932  			zRIE(_b, opcode, uint32(r1), uint32(r2), uint32(v), 0, 0, m3, 0, asm)
  3933  		}
  3934  
  3935  	case 90: // compare and branch reg $constant
  3936  		var v int32
  3937  		if p.To.Target() != nil {
  3938  			v = int32((p.To.Target().Pc - p.Pc) >> 1)
  3939  		}
  3940  
  3941  		// Some instructions take a mask as the first argument.
  3942  		r1, i2 := p.From.Reg, p.RestArgs[0].Offset
  3943  		if p.From.Type == obj.TYPE_CONST {
  3944  			r1 = p.Reg
  3945  		}
  3946  		m3 := uint32(c.branchMask(p))
  3947  
  3948  		var opcode uint32
  3949  		switch p.As {
  3950  		case ACIJ:
  3951  			opcode = op_CIJ
  3952  		case ACGIJ, ACMPBEQ, ACMPBGE, ACMPBGT, ACMPBLE, ACMPBLT, ACMPBNE:
  3953  			opcode = op_CGIJ
  3954  		case ACLIJ:
  3955  			opcode = op_CLIJ
  3956  		case ACLGIJ, ACMPUBEQ, ACMPUBGE, ACMPUBGT, ACMPUBLE, ACMPUBLT, ACMPUBNE:
  3957  			opcode = op_CLGIJ
  3958  		}
  3959  		if int32(int16(v)) != v {
  3960  			// The branch is too far for one instruction so crack
  3961  			// `CMPBEQ x, $0, target` into:
  3962  			//
  3963  			//     CMPBNE x, $0, 2(PC)
  3964  			//     BR     target
  3965  			//
  3966  			// Note that the instruction sequence MUST NOT clobber
  3967  			// the condition code.
  3968  			m3 ^= 0xe // invert 3-bit mask
  3969  			zRIE(_c, opcode, uint32(r1), m3, uint32(sizeRIE+sizeRIL)/2, 0, 0, 0, uint32(i2), asm)
  3970  			zRIL(_c, op_BRCL, uint32(Always), uint32(v-sizeRIE/2), asm)
  3971  		} else {
  3972  			zRIE(_c, opcode, uint32(r1), m3, uint32(v), 0, 0, 0, uint32(i2), asm)
  3973  		}
  3974  
  3975  	case 91: // test under mask (immediate)
  3976  		var opcode uint32
  3977  		switch p.As {
  3978  		case ATMHH:
  3979  			opcode = op_TMHH
  3980  		case ATMHL:
  3981  			opcode = op_TMHL
  3982  		case ATMLH:
  3983  			opcode = op_TMLH
  3984  		case ATMLL:
  3985  			opcode = op_TMLL
  3986  		}
  3987  		zRI(opcode, uint32(p.From.Reg), uint32(c.vregoff(&p.To)), asm)
  3988  
  3989  	case 92: // insert program mask
  3990  		zRRE(op_IPM, uint32(p.From.Reg), 0, asm)
  3991  
  3992  	case 93: // GOT lookup
  3993  		v := c.vregoff(&p.To)
  3994  		if v != 0 {
  3995  			c.ctxt.Diag("invalid offset against GOT slot %v", p)
  3996  		}
  3997  		zRIL(_b, op_LGRL, uint32(p.To.Reg), 0, asm)
  3998  		rel := obj.Addrel(c.cursym)
  3999  		rel.Off = int32(c.pc + 2)
  4000  		rel.Siz = 4
  4001  		rel.Sym = p.From.Sym
  4002  		rel.Type = objabi.R_GOTPCREL
  4003  		rel.Add = 2 + int64(rel.Siz)
  4004  
  4005  	case 94: // TLS local exec model
  4006  		zRIL(_b, op_LARL, regtmp(p), (sizeRIL+sizeRXY+sizeRI)>>1, asm)
  4007  		zRXY(op_LG, uint32(p.To.Reg), regtmp(p), 0, 0, asm)
  4008  		zRI(op_BRC, 0xF, (sizeRI+8)>>1, asm)
  4009  		*asm = append(*asm, 0, 0, 0, 0, 0, 0, 0, 0)
  4010  		rel := obj.Addrel(c.cursym)
  4011  		rel.Off = int32(c.pc + sizeRIL + sizeRXY + sizeRI)
  4012  		rel.Siz = 8
  4013  		rel.Sym = p.From.Sym
  4014  		rel.Type = objabi.R_TLS_LE
  4015  		rel.Add = 0
  4016  
  4017  	case 95: // TLS initial exec model
  4018  		// Assembly                   | Relocation symbol    | Done Here?
  4019  		// --------------------------------------------------------------
  4020  		// ear  %r11, %a0             |                      |
  4021  		// sllg %r11, %r11, 32        |                      |
  4022  		// ear  %r11, %a1             |                      |
  4023  		// larl %r10, <var>@indntpoff | R_390_TLS_IEENT      | Y
  4024  		// lg   %r10, 0(%r10)         | R_390_TLS_LOAD (tag) | Y
  4025  		// la   %r10, 0(%r10, %r11)   |                      |
  4026  		// --------------------------------------------------------------
  4027  
  4028  		// R_390_TLS_IEENT
  4029  		zRIL(_b, op_LARL, regtmp(p), 0, asm)
  4030  		ieent := obj.Addrel(c.cursym)
  4031  		ieent.Off = int32(c.pc + 2)
  4032  		ieent.Siz = 4
  4033  		ieent.Sym = p.From.Sym
  4034  		ieent.Type = objabi.R_TLS_IE
  4035  		ieent.Add = 2 + int64(ieent.Siz)
  4036  
  4037  		// R_390_TLS_LOAD
  4038  		zRXY(op_LGF, uint32(p.To.Reg), regtmp(p), 0, 0, asm)
  4039  		// TODO(mundaym): add R_390_TLS_LOAD relocation here
  4040  		// not strictly required but might allow the linker to optimize
  4041  
  4042  	case 96: // clear macro
  4043  		length := c.vregoff(&p.From)
  4044  		offset := c.vregoff(&p.To)
  4045  		reg := p.To.Reg
  4046  		if reg == 0 {
  4047  			reg = REGSP
  4048  		}
  4049  		if length <= 0 {
  4050  			c.ctxt.Diag("cannot CLEAR %d bytes, must be greater than 0", length)
  4051  		}
  4052  		for length > 0 {
  4053  			if offset < 0 || offset >= DISP12 {
  4054  				if offset >= -DISP20/2 && offset < DISP20/2 {
  4055  					zRXY(op_LAY, regtmp(p), uint32(reg), 0, uint32(offset), asm)
  4056  				} else {
  4057  					if reg != int16(regtmp(p)) {
  4058  						zRRE(op_LGR, regtmp(p), uint32(reg), asm)
  4059  					}
  4060  					zRIL(_a, op_AGFI, regtmp(p), uint32(offset), asm)
  4061  				}
  4062  				reg = int16(regtmp(p))
  4063  				offset = 0
  4064  			}
  4065  			size := length
  4066  			if size > 256 {
  4067  				size = 256
  4068  			}
  4069  
  4070  			switch size {
  4071  			case 1:
  4072  				zSI(op_MVI, 0, uint32(reg), uint32(offset), asm)
  4073  			case 2:
  4074  				zSIL(op_MVHHI, uint32(reg), uint32(offset), 0, asm)
  4075  			case 4:
  4076  				zSIL(op_MVHI, uint32(reg), uint32(offset), 0, asm)
  4077  			case 8:
  4078  				zSIL(op_MVGHI, uint32(reg), uint32(offset), 0, asm)
  4079  			default:
  4080  				zSS(_a, op_XC, uint32(size-1), 0, uint32(reg), uint32(offset), uint32(reg), uint32(offset), asm)
  4081  			}
  4082  
  4083  			length -= size
  4084  			offset += size
  4085  		}
  4086  
  4087  	case 97: // store multiple
  4088  		rstart := p.From.Reg
  4089  		rend := p.Reg
  4090  		offset := c.regoff(&p.To)
  4091  		reg := p.To.Reg
  4092  		if reg == 0 {
  4093  			reg = REGSP
  4094  		}
  4095  		if offset < -DISP20/2 || offset >= DISP20/2 {
  4096  			if reg != int16(regtmp(p)) {
  4097  				zRRE(op_LGR, regtmp(p), uint32(reg), asm)
  4098  			}
  4099  			zRIL(_a, op_AGFI, regtmp(p), uint32(offset), asm)
  4100  			reg = int16(regtmp(p))
  4101  			offset = 0
  4102  		}
  4103  		switch p.As {
  4104  		case ASTMY:
  4105  			if offset >= 0 && offset < DISP12 {
  4106  				zRS(op_STM, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  4107  			} else {
  4108  				zRSY(op_STMY, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  4109  			}
  4110  		case ASTMG:
  4111  			zRSY(op_STMG, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  4112  		}
  4113  
  4114  	case 98: // load multiple
  4115  		rstart := p.Reg
  4116  		rend := p.To.Reg
  4117  		offset := c.regoff(&p.From)
  4118  		reg := p.From.Reg
  4119  		if reg == 0 {
  4120  			reg = REGSP
  4121  		}
  4122  		if offset < -DISP20/2 || offset >= DISP20/2 {
  4123  			if reg != int16(regtmp(p)) {
  4124  				zRRE(op_LGR, regtmp(p), uint32(reg), asm)
  4125  			}
  4126  			zRIL(_a, op_AGFI, regtmp(p), uint32(offset), asm)
  4127  			reg = int16(regtmp(p))
  4128  			offset = 0
  4129  		}
  4130  		switch p.As {
  4131  		case ALMY:
  4132  			if offset >= 0 && offset < DISP12 {
  4133  				zRS(op_LM, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  4134  			} else {
  4135  				zRSY(op_LMY, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  4136  			}
  4137  		case ALMG:
  4138  			zRSY(op_LMG, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  4139  		}
  4140  
  4141  	case 99: // interlocked load and op
  4142  		if p.To.Index != 0 {
  4143  			c.ctxt.Diag("cannot use indexed address")
  4144  		}
  4145  		offset := c.regoff(&p.To)
  4146  		if offset < -DISP20/2 || offset >= DISP20/2 {
  4147  			c.ctxt.Diag("%v does not fit into 20-bit signed integer", offset)
  4148  		}
  4149  		var opcode uint32
  4150  		switch p.As {
  4151  		case ALAA:
  4152  			opcode = op_LAA
  4153  		case ALAAG:
  4154  			opcode = op_LAAG
  4155  		case ALAAL:
  4156  			opcode = op_LAAL
  4157  		case ALAALG:
  4158  			opcode = op_LAALG
  4159  		case ALAN:
  4160  			opcode = op_LAN
  4161  		case ALANG:
  4162  			opcode = op_LANG
  4163  		case ALAX:
  4164  			opcode = op_LAX
  4165  		case ALAXG:
  4166  			opcode = op_LAXG
  4167  		case ALAO:
  4168  			opcode = op_LAO
  4169  		case ALAOG:
  4170  			opcode = op_LAOG
  4171  		}
  4172  		zRSY(opcode, uint32(p.Reg), uint32(p.From.Reg), uint32(p.To.Reg), uint32(offset), asm)
  4173  
  4174  	case 100: // VRX STORE
  4175  		op, m3, _ := vop(p.As)
  4176  		v1 := p.From.Reg
  4177  		if p.Reg != 0 {
  4178  			m3 = uint32(c.vregoff(&p.From))
  4179  			v1 = p.Reg
  4180  		}
  4181  		b2 := p.To.Reg
  4182  		if b2 == 0 {
  4183  			b2 = REGSP
  4184  		}
  4185  		d2 := uint32(c.vregoff(&p.To))
  4186  		zVRX(op, uint32(v1), uint32(p.To.Index), uint32(b2), d2, m3, asm)
  4187  
  4188  	case 101: // VRX LOAD
  4189  		op, m3, _ := vop(p.As)
  4190  		src := &p.From
  4191  		if p.GetFrom3() != nil {
  4192  			m3 = uint32(c.vregoff(&p.From))
  4193  			src = p.GetFrom3()
  4194  		}
  4195  		b2 := src.Reg
  4196  		if b2 == 0 {
  4197  			b2 = REGSP
  4198  		}
  4199  		d2 := uint32(c.vregoff(src))
  4200  		zVRX(op, uint32(p.To.Reg), uint32(src.Index), uint32(b2), d2, m3, asm)
  4201  
  4202  	case 102: // VRV SCATTER
  4203  		op, _, _ := vop(p.As)
  4204  		m3 := uint32(c.vregoff(&p.From))
  4205  		b2 := p.To.Reg
  4206  		if b2 == 0 {
  4207  			b2 = REGSP
  4208  		}
  4209  		d2 := uint32(c.vregoff(&p.To))
  4210  		zVRV(op, uint32(p.Reg), uint32(p.To.Index), uint32(b2), d2, m3, asm)
  4211  
  4212  	case 103: // VRV GATHER
  4213  		op, _, _ := vop(p.As)
  4214  		m3 := uint32(c.vregoff(&p.From))
  4215  		b2 := p.GetFrom3().Reg
  4216  		if b2 == 0 {
  4217  			b2 = REGSP
  4218  		}
  4219  		d2 := uint32(c.vregoff(p.GetFrom3()))
  4220  		zVRV(op, uint32(p.To.Reg), uint32(p.GetFrom3().Index), uint32(b2), d2, m3, asm)
  4221  
  4222  	case 104: // VRS SHIFT/ROTATE and LOAD GR FROM VR ELEMENT
  4223  		op, m4, _ := vop(p.As)
  4224  		fr := p.Reg
  4225  		if fr == 0 {
  4226  			fr = p.To.Reg
  4227  		}
  4228  		bits := uint32(c.vregoff(&p.From))
  4229  		zVRS(op, uint32(p.To.Reg), uint32(fr), uint32(p.From.Reg), bits, m4, asm)
  4230  
  4231  	case 105: // VRS STORE MULTIPLE
  4232  		op, _, _ := vop(p.As)
  4233  		offset := uint32(c.vregoff(&p.To))
  4234  		reg := p.To.Reg
  4235  		if reg == 0 {
  4236  			reg = REGSP
  4237  		}
  4238  		zVRS(op, uint32(p.From.Reg), uint32(p.Reg), uint32(reg), offset, 0, asm)
  4239  
  4240  	case 106: // VRS LOAD MULTIPLE
  4241  		op, _, _ := vop(p.As)
  4242  		offset := uint32(c.vregoff(&p.From))
  4243  		reg := p.From.Reg
  4244  		if reg == 0 {
  4245  			reg = REGSP
  4246  		}
  4247  		zVRS(op, uint32(p.Reg), uint32(p.To.Reg), uint32(reg), offset, 0, asm)
  4248  
  4249  	case 107: // VRS STORE WITH LENGTH
  4250  		op, _, _ := vop(p.As)
  4251  		offset := uint32(c.vregoff(&p.To))
  4252  		reg := p.To.Reg
  4253  		if reg == 0 {
  4254  			reg = REGSP
  4255  		}
  4256  		zVRS(op, uint32(p.Reg), uint32(p.From.Reg), uint32(reg), offset, 0, asm)
  4257  
  4258  	case 108: // VRS LOAD WITH LENGTH
  4259  		op, _, _ := vop(p.As)
  4260  		offset := uint32(c.vregoff(p.GetFrom3()))
  4261  		reg := p.GetFrom3().Reg
  4262  		if reg == 0 {
  4263  			reg = REGSP
  4264  		}
  4265  		zVRS(op, uint32(p.To.Reg), uint32(p.From.Reg), uint32(reg), offset, 0, asm)
  4266  
  4267  	case 109: // VRI-a
  4268  		op, m3, _ := vop(p.As)
  4269  		i2 := uint32(c.vregoff(&p.From))
  4270  		if p.GetFrom3() != nil {
  4271  			m3 = uint32(c.vregoff(&p.From))
  4272  			i2 = uint32(c.vregoff(p.GetFrom3()))
  4273  		}
  4274  		switch p.As {
  4275  		case AVZERO:
  4276  			i2 = 0
  4277  		case AVONE:
  4278  			i2 = 0xffff
  4279  		}
  4280  		zVRIa(op, uint32(p.To.Reg), i2, m3, asm)
  4281  
  4282  	case 110:
  4283  		op, m4, _ := vop(p.As)
  4284  		i2 := uint32(c.vregoff(&p.From))
  4285  		i3 := uint32(c.vregoff(p.GetFrom3()))
  4286  		zVRIb(op, uint32(p.To.Reg), i2, i3, m4, asm)
  4287  
  4288  	case 111:
  4289  		op, m4, _ := vop(p.As)
  4290  		i2 := uint32(c.vregoff(&p.From))
  4291  		zVRIc(op, uint32(p.To.Reg), uint32(p.Reg), i2, m4, asm)
  4292  
  4293  	case 112:
  4294  		op, m5, _ := vop(p.As)
  4295  		i4 := uint32(c.vregoff(&p.From))
  4296  		zVRId(op, uint32(p.To.Reg), uint32(p.Reg), uint32(p.GetFrom3().Reg), i4, m5, asm)
  4297  
  4298  	case 113:
  4299  		op, m4, _ := vop(p.As)
  4300  		m5 := singleElementMask(p.As)
  4301  		i3 := uint32(c.vregoff(&p.From))
  4302  		zVRIe(op, uint32(p.To.Reg), uint32(p.Reg), i3, m5, m4, asm)
  4303  
  4304  	case 114: // VRR-a
  4305  		op, m3, m5 := vop(p.As)
  4306  		m4 := singleElementMask(p.As)
  4307  		zVRRa(op, uint32(p.To.Reg), uint32(p.From.Reg), m5, m4, m3, asm)
  4308  
  4309  	case 115: // VRR-a COMPARE
  4310  		op, m3, m5 := vop(p.As)
  4311  		m4 := singleElementMask(p.As)
  4312  		zVRRa(op, uint32(p.From.Reg), uint32(p.To.Reg), m5, m4, m3, asm)
  4313  
  4314  	case 117: // VRR-b
  4315  		op, m4, m5 := vop(p.As)
  4316  		zVRRb(op, uint32(p.To.Reg), uint32(p.From.Reg), uint32(p.Reg), m5, m4, asm)
  4317  
  4318  	case 118: // VRR-c
  4319  		op, m4, m6 := vop(p.As)
  4320  		m5 := singleElementMask(p.As)
  4321  		v3 := p.Reg
  4322  		if v3 == 0 {
  4323  			v3 = p.To.Reg
  4324  		}
  4325  		zVRRc(op, uint32(p.To.Reg), uint32(p.From.Reg), uint32(v3), m6, m5, m4, asm)
  4326  
  4327  	case 119: // VRR-c SHIFT/ROTATE/DIVIDE/SUB (rhs value on the left, like SLD, DIV etc.)
  4328  		op, m4, m6 := vop(p.As)
  4329  		m5 := singleElementMask(p.As)
  4330  		v2 := p.Reg
  4331  		if v2 == 0 {
  4332  			v2 = p.To.Reg
  4333  		}
  4334  		zVRRc(op, uint32(p.To.Reg), uint32(v2), uint32(p.From.Reg), m6, m5, m4, asm)
  4335  
  4336  	case 120: // VRR-d
  4337  		op, m6, _ := vop(p.As)
  4338  		m5 := singleElementMask(p.As)
  4339  		v1 := uint32(p.To.Reg)
  4340  		v2 := uint32(p.From.Reg)
  4341  		v3 := uint32(p.Reg)
  4342  		v4 := uint32(p.GetFrom3().Reg)
  4343  		zVRRd(op, v1, v2, v3, m6, m5, v4, asm)
  4344  
  4345  	case 121: // VRR-e
  4346  		op, m6, _ := vop(p.As)
  4347  		m5 := singleElementMask(p.As)
  4348  		v1 := uint32(p.To.Reg)
  4349  		v2 := uint32(p.From.Reg)
  4350  		v3 := uint32(p.Reg)
  4351  		v4 := uint32(p.GetFrom3().Reg)
  4352  		zVRRe(op, v1, v2, v3, m6, m5, v4, asm)
  4353  
  4354  	case 122: // VRR-f LOAD VRS FROM GRS DISJOINT
  4355  		op, _, _ := vop(p.As)
  4356  		zVRRf(op, uint32(p.To.Reg), uint32(p.From.Reg), uint32(p.Reg), asm)
  4357  
  4358  	case 123: // VPDI $m4, V2, V3, V1
  4359  		op, _, _ := vop(p.As)
  4360  		m4 := c.regoff(&p.From)
  4361  		zVRRc(op, uint32(p.To.Reg), uint32(p.Reg), uint32(p.GetFrom3().Reg), 0, 0, uint32(m4), asm)
  4362  	}
  4363  }
  4364  
  4365  func (c *ctxtz) vregoff(a *obj.Addr) int64 {
  4366  	c.instoffset = 0
  4367  	if a != nil {
  4368  		c.aclass(a)
  4369  	}
  4370  	return c.instoffset
  4371  }
  4372  
  4373  func (c *ctxtz) regoff(a *obj.Addr) int32 {
  4374  	return int32(c.vregoff(a))
  4375  }
  4376  
  4377  // find if the displacement is within 12 bit
  4378  func isU12(displacement int32) bool {
  4379  	return displacement >= 0 && displacement < DISP12
  4380  }
  4381  
  4382  // zopload12 returns the RX op with 12 bit displacement for the given load
  4383  func (c *ctxtz) zopload12(a obj.As) (uint32, bool) {
  4384  	switch a {
  4385  	case AFMOVD:
  4386  		return op_LD, true
  4387  	case AFMOVS:
  4388  		return op_LE, true
  4389  	}
  4390  	return 0, false
  4391  }
  4392  
  4393  // zopload returns the RXY op for the given load
  4394  func (c *ctxtz) zopload(a obj.As) uint32 {
  4395  	switch a {
  4396  	// fixed point load
  4397  	case AMOVD:
  4398  		return op_LG
  4399  	case AMOVW:
  4400  		return op_LGF
  4401  	case AMOVWZ:
  4402  		return op_LLGF
  4403  	case AMOVH:
  4404  		return op_LGH
  4405  	case AMOVHZ:
  4406  		return op_LLGH
  4407  	case AMOVB:
  4408  		return op_LGB
  4409  	case AMOVBZ:
  4410  		return op_LLGC
  4411  
  4412  	// floating point load
  4413  	case AFMOVD:
  4414  		return op_LDY
  4415  	case AFMOVS:
  4416  		return op_LEY
  4417  
  4418  	// byte reversed load
  4419  	case AMOVDBR:
  4420  		return op_LRVG
  4421  	case AMOVWBR:
  4422  		return op_LRV
  4423  	case AMOVHBR:
  4424  		return op_LRVH
  4425  	}
  4426  
  4427  	c.ctxt.Diag("unknown store opcode %v", a)
  4428  	return 0
  4429  }
  4430  
  4431  // zopstore12 returns the RX op with 12 bit displacement for the given store
  4432  func (c *ctxtz) zopstore12(a obj.As) (uint32, bool) {
  4433  	switch a {
  4434  	case AFMOVD:
  4435  		return op_STD, true
  4436  	case AFMOVS:
  4437  		return op_STE, true
  4438  	case AMOVW, AMOVWZ:
  4439  		return op_ST, true
  4440  	case AMOVH, AMOVHZ:
  4441  		return op_STH, true
  4442  	case AMOVB, AMOVBZ:
  4443  		return op_STC, true
  4444  	}
  4445  	return 0, false
  4446  }
  4447  
  4448  // zopstore returns the RXY op for the given store
  4449  func (c *ctxtz) zopstore(a obj.As) uint32 {
  4450  	switch a {
  4451  	// fixed point store
  4452  	case AMOVD:
  4453  		return op_STG
  4454  	case AMOVW, AMOVWZ:
  4455  		return op_STY
  4456  	case AMOVH, AMOVHZ:
  4457  		return op_STHY
  4458  	case AMOVB, AMOVBZ:
  4459  		return op_STCY
  4460  
  4461  	// floating point store
  4462  	case AFMOVD:
  4463  		return op_STDY
  4464  	case AFMOVS:
  4465  		return op_STEY
  4466  
  4467  	// byte reversed store
  4468  	case AMOVDBR:
  4469  		return op_STRVG
  4470  	case AMOVWBR:
  4471  		return op_STRV
  4472  	case AMOVHBR:
  4473  		return op_STRVH
  4474  	}
  4475  
  4476  	c.ctxt.Diag("unknown store opcode %v", a)
  4477  	return 0
  4478  }
  4479  
  4480  // zoprre returns the RRE op for the given a
  4481  func (c *ctxtz) zoprre(a obj.As) uint32 {
  4482  	switch a {
  4483  	case ACMP:
  4484  		return op_CGR
  4485  	case ACMPU:
  4486  		return op_CLGR
  4487  	case AFCMPO: //ordered
  4488  		return op_KDBR
  4489  	case AFCMPU: //unordered
  4490  		return op_CDBR
  4491  	case ACEBR:
  4492  		return op_CEBR
  4493  	}
  4494  	c.ctxt.Diag("unknown rre opcode %v", a)
  4495  	return 0
  4496  }
  4497  
  4498  // zoprr returns the RR op for the given a
  4499  func (c *ctxtz) zoprr(a obj.As) uint32 {
  4500  	switch a {
  4501  	case ACMPW:
  4502  		return op_CR
  4503  	case ACMPWU:
  4504  		return op_CLR
  4505  	}
  4506  	c.ctxt.Diag("unknown rr opcode %v", a)
  4507  	return 0
  4508  }
  4509  
  4510  // zopril returns the RIL op for the given a
  4511  func (c *ctxtz) zopril(a obj.As) uint32 {
  4512  	switch a {
  4513  	case ACMP:
  4514  		return op_CGFI
  4515  	case ACMPU:
  4516  		return op_CLGFI
  4517  	case ACMPW:
  4518  		return op_CFI
  4519  	case ACMPWU:
  4520  		return op_CLFI
  4521  	}
  4522  	c.ctxt.Diag("unknown ril opcode %v", a)
  4523  	return 0
  4524  }
  4525  
  4526  // z instructions sizes
  4527  const (
  4528  	sizeE    = 2
  4529  	sizeI    = 2
  4530  	sizeIE   = 4
  4531  	sizeMII  = 6
  4532  	sizeRI   = 4
  4533  	sizeRI1  = 4
  4534  	sizeRI2  = 4
  4535  	sizeRI3  = 4
  4536  	sizeRIE  = 6
  4537  	sizeRIE1 = 6
  4538  	sizeRIE2 = 6
  4539  	sizeRIE3 = 6
  4540  	sizeRIE4 = 6
  4541  	sizeRIE5 = 6
  4542  	sizeRIE6 = 6
  4543  	sizeRIL  = 6
  4544  	sizeRIL1 = 6
  4545  	sizeRIL2 = 6
  4546  	sizeRIL3 = 6
  4547  	sizeRIS  = 6
  4548  	sizeRR   = 2
  4549  	sizeRRD  = 4
  4550  	sizeRRE  = 4
  4551  	sizeRRF  = 4
  4552  	sizeRRF1 = 4
  4553  	sizeRRF2 = 4
  4554  	sizeRRF3 = 4
  4555  	sizeRRF4 = 4
  4556  	sizeRRF5 = 4
  4557  	sizeRRR  = 2
  4558  	sizeRRS  = 6
  4559  	sizeRS   = 4
  4560  	sizeRS1  = 4
  4561  	sizeRS2  = 4
  4562  	sizeRSI  = 4
  4563  	sizeRSL  = 6
  4564  	sizeRSY  = 6
  4565  	sizeRSY1 = 6
  4566  	sizeRSY2 = 6
  4567  	sizeRX   = 4
  4568  	sizeRX1  = 4
  4569  	sizeRX2  = 4
  4570  	sizeRXE  = 6
  4571  	sizeRXF  = 6
  4572  	sizeRXY  = 6
  4573  	sizeRXY1 = 6
  4574  	sizeRXY2 = 6
  4575  	sizeS    = 4
  4576  	sizeSI   = 4
  4577  	sizeSIL  = 6
  4578  	sizeSIY  = 6
  4579  	sizeSMI  = 6
  4580  	sizeSS   = 6
  4581  	sizeSS1  = 6
  4582  	sizeSS2  = 6
  4583  	sizeSS3  = 6
  4584  	sizeSS4  = 6
  4585  	sizeSS5  = 6
  4586  	sizeSS6  = 6
  4587  	sizeSSE  = 6
  4588  	sizeSSF  = 6
  4589  )
  4590  
  4591  // instruction format variations
  4592  type form int
  4593  
  4594  const (
  4595  	_a form = iota
  4596  	_b
  4597  	_c
  4598  	_d
  4599  	_e
  4600  	_f
  4601  )
  4602  
  4603  func zE(op uint32, asm *[]byte) {
  4604  	*asm = append(*asm, uint8(op>>8), uint8(op))
  4605  }
  4606  
  4607  func zI(op, i1 uint32, asm *[]byte) {
  4608  	*asm = append(*asm, uint8(op>>8), uint8(i1))
  4609  }
  4610  
  4611  func zMII(op, m1, ri2, ri3 uint32, asm *[]byte) {
  4612  	*asm = append(*asm,
  4613  		uint8(op>>8),
  4614  		(uint8(m1)<<4)|uint8((ri2>>8)&0x0F),
  4615  		uint8(ri2),
  4616  		uint8(ri3>>16),
  4617  		uint8(ri3>>8),
  4618  		uint8(ri3))
  4619  }
  4620  
  4621  func zRI(op, r1_m1, i2_ri2 uint32, asm *[]byte) {
  4622  	*asm = append(*asm,
  4623  		uint8(op>>8),
  4624  		(uint8(r1_m1)<<4)|(uint8(op)&0x0F),
  4625  		uint8(i2_ri2>>8),
  4626  		uint8(i2_ri2))
  4627  }
  4628  
  4629  // Expected argument values for the instruction formats.
  4630  //
  4631  // Format    a1  a2   a3  a4  a5  a6  a7
  4632  // ------------------------------------
  4633  // a         r1,  0,  i2,  0,  0, m3,  0
  4634  // b         r1, r2, ri4,  0,  0, m3,  0
  4635  // c         r1, m3, ri4,  0,  0,  0, i2
  4636  // d         r1, r3,  i2,  0,  0,  0,  0
  4637  // e         r1, r3, ri2,  0,  0,  0,  0
  4638  // f         r1, r2,   0, i3, i4,  0, i5
  4639  // g         r1, m3,  i2,  0,  0,  0,  0
  4640  func zRIE(f form, op, r1, r2_m3_r3, i2_ri4_ri2, i3, i4, m3, i2_i5 uint32, asm *[]byte) {
  4641  	*asm = append(*asm, uint8(op>>8), uint8(r1)<<4|uint8(r2_m3_r3&0x0F))
  4642  
  4643  	switch f {
  4644  	default:
  4645  		*asm = append(*asm, uint8(i2_ri4_ri2>>8), uint8(i2_ri4_ri2))
  4646  	case _f:
  4647  		*asm = append(*asm, uint8(i3), uint8(i4))
  4648  	}
  4649  
  4650  	switch f {
  4651  	case _a, _b:
  4652  		*asm = append(*asm, uint8(m3)<<4)
  4653  	default:
  4654  		*asm = append(*asm, uint8(i2_i5))
  4655  	}
  4656  
  4657  	*asm = append(*asm, uint8(op))
  4658  }
  4659  
  4660  func zRIL(f form, op, r1_m1, i2_ri2 uint32, asm *[]byte) {
  4661  	if f == _a || f == _b {
  4662  		r1_m1 = r1_m1 - obj.RBaseS390X // this is a register base
  4663  	}
  4664  	*asm = append(*asm,
  4665  		uint8(op>>8),
  4666  		(uint8(r1_m1)<<4)|(uint8(op)&0x0F),
  4667  		uint8(i2_ri2>>24),
  4668  		uint8(i2_ri2>>16),
  4669  		uint8(i2_ri2>>8),
  4670  		uint8(i2_ri2))
  4671  }
  4672  
  4673  func zRIS(op, r1, m3, b4, d4, i2 uint32, asm *[]byte) {
  4674  	*asm = append(*asm,
  4675  		uint8(op>>8),
  4676  		(uint8(r1)<<4)|uint8(m3&0x0F),
  4677  		(uint8(b4)<<4)|(uint8(d4>>8)&0x0F),
  4678  		uint8(d4),
  4679  		uint8(i2),
  4680  		uint8(op))
  4681  }
  4682  
  4683  func zRR(op, r1, r2 uint32, asm *[]byte) {
  4684  	*asm = append(*asm, uint8(op>>8), (uint8(r1)<<4)|uint8(r2&0x0F))
  4685  }
  4686  
  4687  func zRRD(op, r1, r3, r2 uint32, asm *[]byte) {
  4688  	*asm = append(*asm,
  4689  		uint8(op>>8),
  4690  		uint8(op),
  4691  		uint8(r1)<<4,
  4692  		(uint8(r3)<<4)|uint8(r2&0x0F))
  4693  }
  4694  
  4695  func zRRE(op, r1, r2 uint32, asm *[]byte) {
  4696  	*asm = append(*asm,
  4697  		uint8(op>>8),
  4698  		uint8(op),
  4699  		0,
  4700  		(uint8(r1)<<4)|uint8(r2&0x0F))
  4701  }
  4702  
  4703  func zRRF(op, r3_m3, m4, r1, r2 uint32, asm *[]byte) {
  4704  	*asm = append(*asm,
  4705  		uint8(op>>8),
  4706  		uint8(op),
  4707  		(uint8(r3_m3)<<4)|uint8(m4&0x0F),
  4708  		(uint8(r1)<<4)|uint8(r2&0x0F))
  4709  }
  4710  
  4711  func zRRS(op, r1, r2, b4, d4, m3 uint32, asm *[]byte) {
  4712  	*asm = append(*asm,
  4713  		uint8(op>>8),
  4714  		(uint8(r1)<<4)|uint8(r2&0x0F),
  4715  		(uint8(b4)<<4)|uint8((d4>>8)&0x0F),
  4716  		uint8(d4),
  4717  		uint8(m3)<<4,
  4718  		uint8(op))
  4719  }
  4720  
  4721  func zRS(op, r1, r3_m3, b2, d2 uint32, asm *[]byte) {
  4722  	*asm = append(*asm,
  4723  		uint8(op>>8),
  4724  		(uint8(r1)<<4)|uint8(r3_m3&0x0F),
  4725  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4726  		uint8(d2))
  4727  }
  4728  
  4729  func zRSI(op, r1, r3, ri2 uint32, asm *[]byte) {
  4730  	*asm = append(*asm,
  4731  		uint8(op>>8),
  4732  		(uint8(r1)<<4)|uint8(r3&0x0F),
  4733  		uint8(ri2>>8),
  4734  		uint8(ri2))
  4735  }
  4736  
  4737  func zRSL(op, l1, b2, d2 uint32, asm *[]byte) {
  4738  	*asm = append(*asm,
  4739  		uint8(op>>8),
  4740  		uint8(l1),
  4741  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4742  		uint8(d2),
  4743  		uint8(op))
  4744  }
  4745  
  4746  func zRSY(op, r1, r3_m3, b2, d2 uint32, asm *[]byte) {
  4747  	dl2 := uint16(d2) & 0x0FFF
  4748  	*asm = append(*asm,
  4749  		uint8(op>>8),
  4750  		(uint8(r1)<<4)|uint8(r3_m3&0x0F),
  4751  		(uint8(b2)<<4)|(uint8(dl2>>8)&0x0F),
  4752  		uint8(dl2),
  4753  		uint8(d2>>12),
  4754  		uint8(op))
  4755  }
  4756  
  4757  func zRX(op, r1_m1, x2, b2, d2 uint32, asm *[]byte) {
  4758  	*asm = append(*asm,
  4759  		uint8(op>>8),
  4760  		(uint8(r1_m1)<<4)|uint8(x2&0x0F),
  4761  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4762  		uint8(d2))
  4763  }
  4764  
  4765  func zRXE(op, r1, x2, b2, d2, m3 uint32, asm *[]byte) {
  4766  	*asm = append(*asm,
  4767  		uint8(op>>8),
  4768  		(uint8(r1)<<4)|uint8(x2&0x0F),
  4769  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4770  		uint8(d2),
  4771  		uint8(m3)<<4,
  4772  		uint8(op))
  4773  }
  4774  
  4775  func zRXF(op, r3, x2, b2, d2, m1 uint32, asm *[]byte) {
  4776  	*asm = append(*asm,
  4777  		uint8(op>>8),
  4778  		(uint8(r3)<<4)|uint8(x2&0x0F),
  4779  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4780  		uint8(d2),
  4781  		uint8(m1)<<4,
  4782  		uint8(op))
  4783  }
  4784  
  4785  func zRXY(op, r1_m1, x2, b2, d2 uint32, asm *[]byte) {
  4786  	dl2 := uint16(d2) & 0x0FFF
  4787  	*asm = append(*asm,
  4788  		uint8(op>>8),
  4789  		(uint8(r1_m1)<<4)|uint8(x2&0x0F),
  4790  		(uint8(b2)<<4)|(uint8(dl2>>8)&0x0F),
  4791  		uint8(dl2),
  4792  		uint8(d2>>12),
  4793  		uint8(op))
  4794  }
  4795  
  4796  func zS(op, b2, d2 uint32, asm *[]byte) {
  4797  	*asm = append(*asm,
  4798  		uint8(op>>8),
  4799  		uint8(op),
  4800  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4801  		uint8(d2))
  4802  }
  4803  
  4804  func zSI(op, i2, b1, d1 uint32, asm *[]byte) {
  4805  	*asm = append(*asm,
  4806  		uint8(op>>8),
  4807  		uint8(i2),
  4808  		(uint8(b1)<<4)|uint8((d1>>8)&0x0F),
  4809  		uint8(d1))
  4810  }
  4811  
  4812  func zSIL(op, b1, d1, i2 uint32, asm *[]byte) {
  4813  	*asm = append(*asm,
  4814  		uint8(op>>8),
  4815  		uint8(op),
  4816  		(uint8(b1)<<4)|uint8((d1>>8)&0x0F),
  4817  		uint8(d1),
  4818  		uint8(i2>>8),
  4819  		uint8(i2))
  4820  }
  4821  
  4822  func zSIY(op, i2, b1, d1 uint32, asm *[]byte) {
  4823  	dl1 := uint16(d1) & 0x0FFF
  4824  	*asm = append(*asm,
  4825  		uint8(op>>8),
  4826  		uint8(i2),
  4827  		(uint8(b1)<<4)|(uint8(dl1>>8)&0x0F),
  4828  		uint8(dl1),
  4829  		uint8(d1>>12),
  4830  		uint8(op))
  4831  }
  4832  
  4833  func zSMI(op, m1, b3, d3, ri2 uint32, asm *[]byte) {
  4834  	*asm = append(*asm,
  4835  		uint8(op>>8),
  4836  		uint8(m1)<<4,
  4837  		(uint8(b3)<<4)|uint8((d3>>8)&0x0F),
  4838  		uint8(d3),
  4839  		uint8(ri2>>8),
  4840  		uint8(ri2))
  4841  }
  4842  
  4843  // Expected argument values for the instruction formats.
  4844  //
  4845  // Format    a1  a2  a3  a4  a5  a6
  4846  // -------------------------------
  4847  // a         l1,  0, b1, d1, b2, d2
  4848  // b         l1, l2, b1, d1, b2, d2
  4849  // c         l1, i3, b1, d1, b2, d2
  4850  // d         r1, r3, b1, d1, b2, d2
  4851  // e         r1, r3, b2, d2, b4, d4
  4852  // f          0, l2, b1, d1, b2, d2
  4853  func zSS(f form, op, l1_r1, l2_i3_r3, b1_b2, d1_d2, b2_b4, d2_d4 uint32, asm *[]byte) {
  4854  	*asm = append(*asm, uint8(op>>8))
  4855  
  4856  	switch f {
  4857  	case _a:
  4858  		*asm = append(*asm, uint8(l1_r1))
  4859  	case _b, _c, _d, _e:
  4860  		*asm = append(*asm, (uint8(l1_r1)<<4)|uint8(l2_i3_r3&0x0F))
  4861  	case _f:
  4862  		*asm = append(*asm, uint8(l2_i3_r3))
  4863  	}
  4864  
  4865  	*asm = append(*asm,
  4866  		(uint8(b1_b2)<<4)|uint8((d1_d2>>8)&0x0F),
  4867  		uint8(d1_d2),
  4868  		(uint8(b2_b4)<<4)|uint8((d2_d4>>8)&0x0F),
  4869  		uint8(d2_d4))
  4870  }
  4871  
  4872  func zSSE(op, b1, d1, b2, d2 uint32, asm *[]byte) {
  4873  	*asm = append(*asm,
  4874  		uint8(op>>8),
  4875  		uint8(op),
  4876  		(uint8(b1)<<4)|uint8((d1>>8)&0x0F),
  4877  		uint8(d1),
  4878  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4879  		uint8(d2))
  4880  }
  4881  
  4882  func zSSF(op, r3, b1, d1, b2, d2 uint32, asm *[]byte) {
  4883  	*asm = append(*asm,
  4884  		uint8(op>>8),
  4885  		(uint8(r3)<<4)|(uint8(op)&0x0F),
  4886  		(uint8(b1)<<4)|uint8((d1>>8)&0x0F),
  4887  		uint8(d1),
  4888  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4889  		uint8(d2))
  4890  }
  4891  
  4892  func rxb(va, vb, vc, vd uint32) uint8 {
  4893  	mask := uint8(0)
  4894  	if va >= REG_V16 && va <= REG_V31 {
  4895  		mask |= 0x8
  4896  	}
  4897  	if vb >= REG_V16 && vb <= REG_V31 {
  4898  		mask |= 0x4
  4899  	}
  4900  	if vc >= REG_V16 && vc <= REG_V31 {
  4901  		mask |= 0x2
  4902  	}
  4903  	if vd >= REG_V16 && vd <= REG_V31 {
  4904  		mask |= 0x1
  4905  	}
  4906  	return mask
  4907  }
  4908  
  4909  func zVRX(op, v1, x2, b2, d2, m3 uint32, asm *[]byte) {
  4910  	*asm = append(*asm,
  4911  		uint8(op>>8),
  4912  		(uint8(v1)<<4)|(uint8(x2)&0xf),
  4913  		(uint8(b2)<<4)|(uint8(d2>>8)&0xf),
  4914  		uint8(d2),
  4915  		(uint8(m3)<<4)|rxb(v1, 0, 0, 0),
  4916  		uint8(op))
  4917  }
  4918  
  4919  func zVRV(op, v1, v2, b2, d2, m3 uint32, asm *[]byte) {
  4920  	*asm = append(*asm,
  4921  		uint8(op>>8),
  4922  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4923  		(uint8(b2)<<4)|(uint8(d2>>8)&0xf),
  4924  		uint8(d2),
  4925  		(uint8(m3)<<4)|rxb(v1, v2, 0, 0),
  4926  		uint8(op))
  4927  }
  4928  
  4929  func zVRS(op, v1, v3_r3, b2, d2, m4 uint32, asm *[]byte) {
  4930  	*asm = append(*asm,
  4931  		uint8(op>>8),
  4932  		(uint8(v1)<<4)|(uint8(v3_r3)&0xf),
  4933  		(uint8(b2)<<4)|(uint8(d2>>8)&0xf),
  4934  		uint8(d2),
  4935  		(uint8(m4)<<4)|rxb(v1, v3_r3, 0, 0),
  4936  		uint8(op))
  4937  }
  4938  
  4939  func zVRRa(op, v1, v2, m5, m4, m3 uint32, asm *[]byte) {
  4940  	*asm = append(*asm,
  4941  		uint8(op>>8),
  4942  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4943  		0,
  4944  		(uint8(m5)<<4)|(uint8(m4)&0xf),
  4945  		(uint8(m3)<<4)|rxb(v1, v2, 0, 0),
  4946  		uint8(op))
  4947  }
  4948  
  4949  func zVRRb(op, v1, v2, v3, m5, m4 uint32, asm *[]byte) {
  4950  	*asm = append(*asm,
  4951  		uint8(op>>8),
  4952  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4953  		uint8(v3)<<4,
  4954  		uint8(m5)<<4,
  4955  		(uint8(m4)<<4)|rxb(v1, v2, v3, 0),
  4956  		uint8(op))
  4957  }
  4958  
  4959  func zVRRc(op, v1, v2, v3, m6, m5, m4 uint32, asm *[]byte) {
  4960  	*asm = append(*asm,
  4961  		uint8(op>>8),
  4962  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4963  		uint8(v3)<<4,
  4964  		(uint8(m6)<<4)|(uint8(m5)&0xf),
  4965  		(uint8(m4)<<4)|rxb(v1, v2, v3, 0),
  4966  		uint8(op))
  4967  }
  4968  
  4969  func zVRRd(op, v1, v2, v3, m5, m6, v4 uint32, asm *[]byte) {
  4970  	*asm = append(*asm,
  4971  		uint8(op>>8),
  4972  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4973  		(uint8(v3)<<4)|(uint8(m5)&0xf),
  4974  		uint8(m6)<<4,
  4975  		(uint8(v4)<<4)|rxb(v1, v2, v3, v4),
  4976  		uint8(op))
  4977  }
  4978  
  4979  func zVRRe(op, v1, v2, v3, m6, m5, v4 uint32, asm *[]byte) {
  4980  	*asm = append(*asm,
  4981  		uint8(op>>8),
  4982  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4983  		(uint8(v3)<<4)|(uint8(m6)&0xf),
  4984  		uint8(m5),
  4985  		(uint8(v4)<<4)|rxb(v1, v2, v3, v4),
  4986  		uint8(op))
  4987  }
  4988  
  4989  func zVRRf(op, v1, r2, r3 uint32, asm *[]byte) {
  4990  	*asm = append(*asm,
  4991  		uint8(op>>8),
  4992  		(uint8(v1)<<4)|(uint8(r2)&0xf),
  4993  		uint8(r3)<<4,
  4994  		0,
  4995  		rxb(v1, 0, 0, 0),
  4996  		uint8(op))
  4997  }
  4998  
  4999  func zVRIa(op, v1, i2, m3 uint32, asm *[]byte) {
  5000  	*asm = append(*asm,
  5001  		uint8(op>>8),
  5002  		uint8(v1)<<4,
  5003  		uint8(i2>>8),
  5004  		uint8(i2),
  5005  		(uint8(m3)<<4)|rxb(v1, 0, 0, 0),
  5006  		uint8(op))
  5007  }
  5008  
  5009  func zVRIb(op, v1, i2, i3, m4 uint32, asm *[]byte) {
  5010  	*asm = append(*asm,
  5011  		uint8(op>>8),
  5012  		uint8(v1)<<4,
  5013  		uint8(i2),
  5014  		uint8(i3),
  5015  		(uint8(m4)<<4)|rxb(v1, 0, 0, 0),
  5016  		uint8(op))
  5017  }
  5018  
  5019  func zVRIc(op, v1, v3, i2, m4 uint32, asm *[]byte) {
  5020  	*asm = append(*asm,
  5021  		uint8(op>>8),
  5022  		(uint8(v1)<<4)|(uint8(v3)&0xf),
  5023  		uint8(i2>>8),
  5024  		uint8(i2),
  5025  		(uint8(m4)<<4)|rxb(v1, v3, 0, 0),
  5026  		uint8(op))
  5027  }
  5028  
  5029  func zVRId(op, v1, v2, v3, i4, m5 uint32, asm *[]byte) {
  5030  	*asm = append(*asm,
  5031  		uint8(op>>8),
  5032  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  5033  		uint8(v3)<<4,
  5034  		uint8(i4),
  5035  		(uint8(m5)<<4)|rxb(v1, v2, v3, 0),
  5036  		uint8(op))
  5037  }
  5038  
  5039  func zVRIe(op, v1, v2, i3, m5, m4 uint32, asm *[]byte) {
  5040  	*asm = append(*asm,
  5041  		uint8(op>>8),
  5042  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  5043  		uint8(i3>>4),
  5044  		(uint8(i3)<<4)|(uint8(m5)&0xf),
  5045  		(uint8(m4)<<4)|rxb(v1, v2, 0, 0),
  5046  		uint8(op))
  5047  }
  5048  

View as plain text