Source file src/container/heap/heap.go

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package heap provides heap operations for any type that implements
     6  // heap.Interface. A heap is a tree with the property that each node is the
     7  // minimum-valued node in its subtree.
     8  //
     9  // The minimum element in the tree is the root, at index 0.
    10  //
    11  // A heap is a common way to implement a priority queue. To build a priority
    12  // queue, implement the Heap interface with the (negative) priority as the
    13  // ordering for the Less method, so Push adds items while Pop removes the
    14  // highest-priority item from the queue. The Examples include such an
    15  // implementation; the file example_pq_test.go has the complete source.
    16  //
    17  package heap
    18  
    19  import "sort"
    20  
    21  // The Interface type describes the requirements
    22  // for a type using the routines in this package.
    23  // Any type that implements it may be used as a
    24  // min-heap with the following invariants (established after
    25  // Init has been called or if the data is empty or sorted):
    26  //
    27  //	!h.Less(j, i) for 0 <= i < h.Len() and 2*i+1 <= j <= 2*i+2 and j < h.Len()
    28  //
    29  // Note that Push and Pop in this interface are for package heap's
    30  // implementation to call. To add and remove things from the heap,
    31  // use heap.Push and heap.Pop.
    32  type Interface interface {
    33  	sort.Interface
    34  	Push(x any) // add x as element Len()
    35  	Pop() any   // remove and return element Len() - 1.
    36  }
    37  
    38  // Init establishes the heap invariants required by the other routines in this package.
    39  // Init is idempotent with respect to the heap invariants
    40  // and may be called whenever the heap invariants may have been invalidated.
    41  // The complexity is O(n) where n = h.Len().
    42  func Init(h Interface) {
    43  	// heapify
    44  	n := h.Len()
    45  	for i := n/2 - 1; i >= 0; i-- {
    46  		down(h, i, n)
    47  	}
    48  }
    49  
    50  // Push pushes the element x onto the heap.
    51  // The complexity is O(log n) where n = h.Len().
    52  func Push(h Interface, x any) {
    53  	h.Push(x)
    54  	up(h, h.Len()-1)
    55  }
    56  
    57  // Pop removes and returns the minimum element (according to Less) from the heap.
    58  // The complexity is O(log n) where n = h.Len().
    59  // Pop is equivalent to Remove(h, 0).
    60  func Pop(h Interface) any {
    61  	n := h.Len() - 1
    62  	h.Swap(0, n)
    63  	down(h, 0, n)
    64  	return h.Pop()
    65  }
    66  
    67  // Remove removes and returns the element at index i from the heap.
    68  // The complexity is O(log n) where n = h.Len().
    69  func Remove(h Interface, i int) any {
    70  	n := h.Len() - 1
    71  	if n != i {
    72  		h.Swap(i, n)
    73  		if !down(h, i, n) {
    74  			up(h, i)
    75  		}
    76  	}
    77  	return h.Pop()
    78  }
    79  
    80  // Fix re-establishes the heap ordering after the element at index i has changed its value.
    81  // Changing the value of the element at index i and then calling Fix is equivalent to,
    82  // but less expensive than, calling Remove(h, i) followed by a Push of the new value.
    83  // The complexity is O(log n) where n = h.Len().
    84  func Fix(h Interface, i int) {
    85  	if !down(h, i, h.Len()) {
    86  		up(h, i)
    87  	}
    88  }
    89  
    90  func up(h Interface, j int) {
    91  	for {
    92  		i := (j - 1) / 2 // parent
    93  		if i == j || !h.Less(j, i) {
    94  			break
    95  		}
    96  		h.Swap(i, j)
    97  		j = i
    98  	}
    99  }
   100  
   101  func down(h Interface, i0, n int) bool {
   102  	i := i0
   103  	for {
   104  		j1 := 2*i + 1
   105  		if j1 >= n || j1 < 0 { // j1 < 0 after int overflow
   106  			break
   107  		}
   108  		j := j1 // left child
   109  		if j2 := j1 + 1; j2 < n && h.Less(j2, j1) {
   110  			j = j2 // = 2*i + 2  // right child
   111  		}
   112  		if !h.Less(j, i) {
   113  			break
   114  		}
   115  		h.Swap(i, j)
   116  		i = j
   117  	}
   118  	return i > i0
   119  }
   120  

View as plain text