Source file src/crypto/ecdsa/ecdsa.go

     1  // Copyright 2011 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package ecdsa implements the Elliptic Curve Digital Signature Algorithm, as
     6  // defined in FIPS 186-4 and SEC 1, Version 2.0.
     7  //
     8  // Signatures generated by this package are not deterministic, but entropy is
     9  // mixed with the private key and the message, achieving the same level of
    10  // security in case of randomness source failure.
    11  package ecdsa
    12  
    13  // [FIPS 186-4] references ANSI X9.62-2005 for the bulk of the ECDSA algorithm.
    14  // That standard is not freely available, which is a problem in an open source
    15  // implementation, because not only the implementer, but also any maintainer,
    16  // contributor, reviewer, auditor, and learner needs access to it. Instead, this
    17  // package references and follows the equivalent [SEC 1, Version 2.0].
    18  //
    19  // [FIPS 186-4]: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
    20  // [SEC 1, Version 2.0]: https://www.secg.org/sec1-v2.pdf
    21  
    22  import (
    23  	"crypto"
    24  	"crypto/aes"
    25  	"crypto/cipher"
    26  	"crypto/elliptic"
    27  	"crypto/internal/randutil"
    28  	"crypto/sha512"
    29  	"errors"
    30  	"io"
    31  	"math/big"
    32  
    33  	"golang.org/x/crypto/cryptobyte"
    34  	"golang.org/x/crypto/cryptobyte/asn1"
    35  )
    36  
    37  // A invertible implements fast inverse in GF(N).
    38  type invertible interface {
    39  	// Inverse returns the inverse of k mod Params().N.
    40  	Inverse(k *big.Int) *big.Int
    41  }
    42  
    43  // A combinedMult implements fast combined multiplication for verification.
    44  type combinedMult interface {
    45  	// CombinedMult returns [s1]G + [s2]P where G is the generator.
    46  	CombinedMult(Px, Py *big.Int, s1, s2 []byte) (x, y *big.Int)
    47  }
    48  
    49  const (
    50  	aesIV = "IV for ECDSA CTR"
    51  )
    52  
    53  // PublicKey represents an ECDSA public key.
    54  type PublicKey struct {
    55  	elliptic.Curve
    56  	X, Y *big.Int
    57  }
    58  
    59  // Any methods implemented on PublicKey might need to also be implemented on
    60  // PrivateKey, as the latter embeds the former and will expose its methods.
    61  
    62  // Equal reports whether pub and x have the same value.
    63  //
    64  // Two keys are only considered to have the same value if they have the same Curve value.
    65  // Note that for example elliptic.P256() and elliptic.P256().Params() are different
    66  // values, as the latter is a generic not constant time implementation.
    67  func (pub *PublicKey) Equal(x crypto.PublicKey) bool {
    68  	xx, ok := x.(*PublicKey)
    69  	if !ok {
    70  		return false
    71  	}
    72  	return pub.X.Cmp(xx.X) == 0 && pub.Y.Cmp(xx.Y) == 0 &&
    73  		// Standard library Curve implementations are singletons, so this check
    74  		// will work for those. Other Curves might be equivalent even if not
    75  		// singletons, but there is no definitive way to check for that, and
    76  		// better to err on the side of safety.
    77  		pub.Curve == xx.Curve
    78  }
    79  
    80  // PrivateKey represents an ECDSA private key.
    81  type PrivateKey struct {
    82  	PublicKey
    83  	D *big.Int
    84  }
    85  
    86  // Public returns the public key corresponding to priv.
    87  func (priv *PrivateKey) Public() crypto.PublicKey {
    88  	return &priv.PublicKey
    89  }
    90  
    91  // Equal reports whether priv and x have the same value.
    92  //
    93  // See PublicKey.Equal for details on how Curve is compared.
    94  func (priv *PrivateKey) Equal(x crypto.PrivateKey) bool {
    95  	xx, ok := x.(*PrivateKey)
    96  	if !ok {
    97  		return false
    98  	}
    99  	return priv.PublicKey.Equal(&xx.PublicKey) && priv.D.Cmp(xx.D) == 0
   100  }
   101  
   102  // Sign signs digest with priv, reading randomness from rand. The opts argument
   103  // is not currently used but, in keeping with the crypto.Signer interface,
   104  // should be the hash function used to digest the message.
   105  //
   106  // This method implements crypto.Signer, which is an interface to support keys
   107  // where the private part is kept in, for example, a hardware module. Common
   108  // uses can use the SignASN1 function in this package directly.
   109  func (priv *PrivateKey) Sign(rand io.Reader, digest []byte, opts crypto.SignerOpts) ([]byte, error) {
   110  	r, s, err := Sign(rand, priv, digest)
   111  	if err != nil {
   112  		return nil, err
   113  	}
   114  
   115  	var b cryptobyte.Builder
   116  	b.AddASN1(asn1.SEQUENCE, func(b *cryptobyte.Builder) {
   117  		b.AddASN1BigInt(r)
   118  		b.AddASN1BigInt(s)
   119  	})
   120  	return b.Bytes()
   121  }
   122  
   123  var one = new(big.Int).SetInt64(1)
   124  
   125  // randFieldElement returns a random element of the order of the given
   126  // curve using the procedure given in FIPS 186-4, Appendix B.5.1.
   127  func randFieldElement(c elliptic.Curve, rand io.Reader) (k *big.Int, err error) {
   128  	params := c.Params()
   129  	// Note that for P-521 this will actually be 63 bits more than the order, as
   130  	// division rounds down, but the extra bit is inconsequential.
   131  	b := make([]byte, params.BitSize/8+8) // TODO: use params.N.BitLen()
   132  	_, err = io.ReadFull(rand, b)
   133  	if err != nil {
   134  		return
   135  	}
   136  
   137  	k = new(big.Int).SetBytes(b)
   138  	n := new(big.Int).Sub(params.N, one)
   139  	k.Mod(k, n)
   140  	k.Add(k, one)
   141  	return
   142  }
   143  
   144  // GenerateKey generates a public and private key pair.
   145  func GenerateKey(c elliptic.Curve, rand io.Reader) (*PrivateKey, error) {
   146  	k, err := randFieldElement(c, rand)
   147  	if err != nil {
   148  		return nil, err
   149  	}
   150  
   151  	priv := new(PrivateKey)
   152  	priv.PublicKey.Curve = c
   153  	priv.D = k
   154  	priv.PublicKey.X, priv.PublicKey.Y = c.ScalarBaseMult(k.Bytes())
   155  	return priv, nil
   156  }
   157  
   158  // hashToInt converts a hash value to an integer. Per FIPS 186-4, Section 6.4,
   159  // we use the left-most bits of the hash to match the bit-length of the order of
   160  // the curve. This also performs Step 5 of SEC 1, Version 2.0, Section 4.1.3.
   161  func hashToInt(hash []byte, c elliptic.Curve) *big.Int {
   162  	orderBits := c.Params().N.BitLen()
   163  	orderBytes := (orderBits + 7) / 8
   164  	if len(hash) > orderBytes {
   165  		hash = hash[:orderBytes]
   166  	}
   167  
   168  	ret := new(big.Int).SetBytes(hash)
   169  	excess := len(hash)*8 - orderBits
   170  	if excess > 0 {
   171  		ret.Rsh(ret, uint(excess))
   172  	}
   173  	return ret
   174  }
   175  
   176  // fermatInverse calculates the inverse of k in GF(P) using Fermat's method
   177  // (exponentiation modulo P - 2, per Euler's theorem). This has better
   178  // constant-time properties than Euclid's method (implemented in
   179  // math/big.Int.ModInverse and FIPS 186-4, Appendix C.1) although math/big
   180  // itself isn't strictly constant-time so it's not perfect.
   181  func fermatInverse(k, N *big.Int) *big.Int {
   182  	two := big.NewInt(2)
   183  	nMinus2 := new(big.Int).Sub(N, two)
   184  	return new(big.Int).Exp(k, nMinus2, N)
   185  }
   186  
   187  var errZeroParam = errors.New("zero parameter")
   188  
   189  // Sign signs a hash (which should be the result of hashing a larger message)
   190  // using the private key, priv. If the hash is longer than the bit-length of the
   191  // private key's curve order, the hash will be truncated to that length. It
   192  // returns the signature as a pair of integers. Most applications should use
   193  // SignASN1 instead of dealing directly with r, s.
   194  func Sign(rand io.Reader, priv *PrivateKey, hash []byte) (r, s *big.Int, err error) {
   195  	randutil.MaybeReadByte(rand)
   196  
   197  	// This implementation derives the nonce from an AES-CTR CSPRNG keyed by:
   198  	//
   199  	//    SHA2-512(priv.D || entropy || hash)[:32]
   200  	//
   201  	// The CSPRNG key is indifferentiable from a random oracle as shown in
   202  	// [Coron], the AES-CTR stream is indifferentiable from a random oracle
   203  	// under standard cryptographic assumptions (see [Larsson] for examples).
   204  	//
   205  	// [Coron]: https://cs.nyu.edu/~dodis/ps/merkle.pdf
   206  	// [Larsson]: https://web.archive.org/web/20040719170906/https://www.nada.kth.se/kurser/kth/2D1441/semteo03/lecturenotes/assump.pdf
   207  
   208  	// Get 256 bits of entropy from rand.
   209  	entropy := make([]byte, 32)
   210  	_, err = io.ReadFull(rand, entropy)
   211  	if err != nil {
   212  		return
   213  	}
   214  
   215  	// Initialize an SHA-512 hash context; digest...
   216  	md := sha512.New()
   217  	md.Write(priv.D.Bytes()) // the private key,
   218  	md.Write(entropy)        // the entropy,
   219  	md.Write(hash)           // and the input hash;
   220  	key := md.Sum(nil)[:32]  // and compute ChopMD-256(SHA-512),
   221  	// which is an indifferentiable MAC.
   222  
   223  	// Create an AES-CTR instance to use as a CSPRNG.
   224  	block, err := aes.NewCipher(key)
   225  	if err != nil {
   226  		return nil, nil, err
   227  	}
   228  
   229  	// Create a CSPRNG that xors a stream of zeros with
   230  	// the output of the AES-CTR instance.
   231  	csprng := cipher.StreamReader{
   232  		R: zeroReader,
   233  		S: cipher.NewCTR(block, []byte(aesIV)),
   234  	}
   235  
   236  	c := priv.PublicKey.Curve
   237  	return sign(priv, &csprng, c, hash)
   238  }
   239  
   240  func signGeneric(priv *PrivateKey, csprng *cipher.StreamReader, c elliptic.Curve, hash []byte) (r, s *big.Int, err error) {
   241  	// SEC 1, Version 2.0, Section 4.1.3
   242  	N := c.Params().N
   243  	if N.Sign() == 0 {
   244  		return nil, nil, errZeroParam
   245  	}
   246  	var k, kInv *big.Int
   247  	for {
   248  		for {
   249  			k, err = randFieldElement(c, *csprng)
   250  			if err != nil {
   251  				r = nil
   252  				return
   253  			}
   254  
   255  			if in, ok := priv.Curve.(invertible); ok {
   256  				kInv = in.Inverse(k)
   257  			} else {
   258  				kInv = fermatInverse(k, N) // N != 0
   259  			}
   260  
   261  			r, _ = priv.Curve.ScalarBaseMult(k.Bytes())
   262  			r.Mod(r, N)
   263  			if r.Sign() != 0 {
   264  				break
   265  			}
   266  		}
   267  
   268  		e := hashToInt(hash, c)
   269  		s = new(big.Int).Mul(priv.D, r)
   270  		s.Add(s, e)
   271  		s.Mul(s, kInv)
   272  		s.Mod(s, N) // N != 0
   273  		if s.Sign() != 0 {
   274  			break
   275  		}
   276  	}
   277  
   278  	return
   279  }
   280  
   281  // SignASN1 signs a hash (which should be the result of hashing a larger message)
   282  // using the private key, priv. If the hash is longer than the bit-length of the
   283  // private key's curve order, the hash will be truncated to that length. It
   284  // returns the ASN.1 encoded signature.
   285  func SignASN1(rand io.Reader, priv *PrivateKey, hash []byte) ([]byte, error) {
   286  	return priv.Sign(rand, hash, nil)
   287  }
   288  
   289  // Verify verifies the signature in r, s of hash using the public key, pub. Its
   290  // return value records whether the signature is valid. Most applications should
   291  // use VerifyASN1 instead of dealing directly with r, s.
   292  func Verify(pub *PublicKey, hash []byte, r, s *big.Int) bool {
   293  	c := pub.Curve
   294  	N := c.Params().N
   295  
   296  	if r.Sign() <= 0 || s.Sign() <= 0 {
   297  		return false
   298  	}
   299  	if r.Cmp(N) >= 0 || s.Cmp(N) >= 0 {
   300  		return false
   301  	}
   302  	return verify(pub, c, hash, r, s)
   303  }
   304  
   305  func verifyGeneric(pub *PublicKey, c elliptic.Curve, hash []byte, r, s *big.Int) bool {
   306  	// SEC 1, Version 2.0, Section 4.1.4
   307  	e := hashToInt(hash, c)
   308  	var w *big.Int
   309  	N := c.Params().N
   310  	if in, ok := c.(invertible); ok {
   311  		w = in.Inverse(s)
   312  	} else {
   313  		w = new(big.Int).ModInverse(s, N)
   314  	}
   315  
   316  	u1 := e.Mul(e, w)
   317  	u1.Mod(u1, N)
   318  	u2 := w.Mul(r, w)
   319  	u2.Mod(u2, N)
   320  
   321  	// Check if implements S1*g + S2*p
   322  	var x, y *big.Int
   323  	if opt, ok := c.(combinedMult); ok {
   324  		x, y = opt.CombinedMult(pub.X, pub.Y, u1.Bytes(), u2.Bytes())
   325  	} else {
   326  		x1, y1 := c.ScalarBaseMult(u1.Bytes())
   327  		x2, y2 := c.ScalarMult(pub.X, pub.Y, u2.Bytes())
   328  		x, y = c.Add(x1, y1, x2, y2)
   329  	}
   330  
   331  	if x.Sign() == 0 && y.Sign() == 0 {
   332  		return false
   333  	}
   334  	x.Mod(x, N)
   335  	return x.Cmp(r) == 0
   336  }
   337  
   338  // VerifyASN1 verifies the ASN.1 encoded signature, sig, of hash using the
   339  // public key, pub. Its return value records whether the signature is valid.
   340  func VerifyASN1(pub *PublicKey, hash, sig []byte) bool {
   341  	var (
   342  		r, s  = &big.Int{}, &big.Int{}
   343  		inner cryptobyte.String
   344  	)
   345  	input := cryptobyte.String(sig)
   346  	if !input.ReadASN1(&inner, asn1.SEQUENCE) ||
   347  		!input.Empty() ||
   348  		!inner.ReadASN1Integer(r) ||
   349  		!inner.ReadASN1Integer(s) ||
   350  		!inner.Empty() {
   351  		return false
   352  	}
   353  	return Verify(pub, hash, r, s)
   354  }
   355  
   356  type zr struct {
   357  	io.Reader
   358  }
   359  
   360  // Read replaces the contents of dst with zeros.
   361  func (z *zr) Read(dst []byte) (n int, err error) {
   362  	for i := range dst {
   363  		dst[i] = 0
   364  	}
   365  	return len(dst), nil
   366  }
   367  
   368  var zeroReader = &zr{}
   369  

View as plain text