Source file src/crypto/elliptic/internal/nistec/p521.go

     1  // Copyright 2021 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package nistec implements the NIST P elliptic curves from FIPS 186-4.
     6  //
     7  // This package uses fiat-crypto for its backend field arithmetic (not math/big)
     8  // and exposes constant-time, heap allocation-free, byte slice-based safe APIs.
     9  // Group operations use modern and safe complete addition formulas. The point at
    10  // infinity is handled and encoded according to SEC 1, Version 2.0, and invalid
    11  // curve points can't be represented.
    12  package nistec
    13  
    14  import (
    15  	"crypto/elliptic/internal/fiat"
    16  	"crypto/subtle"
    17  	"errors"
    18  )
    19  
    20  var p521B, _ = new(fiat.P521Element).SetBytes([]byte{
    21  	0x00, 0x51, 0x95, 0x3e, 0xb9, 0x61, 0x8e, 0x1c, 0x9a, 0x1f, 0x92, 0x9a,
    22  	0x21, 0xa0, 0xb6, 0x85, 0x40, 0xee, 0xa2, 0xda, 0x72, 0x5b, 0x99, 0xb3,
    23  	0x15, 0xf3, 0xb8, 0xb4, 0x89, 0x91, 0x8e, 0xf1, 0x09, 0xe1, 0x56, 0x19,
    24  	0x39, 0x51, 0xec, 0x7e, 0x93, 0x7b, 0x16, 0x52, 0xc0, 0xbd, 0x3b, 0xb1,
    25  	0xbf, 0x07, 0x35, 0x73, 0xdf, 0x88, 0x3d, 0x2c, 0x34, 0xf1, 0xef, 0x45,
    26  	0x1f, 0xd4, 0x6b, 0x50, 0x3f, 0x00})
    27  
    28  var p521G, _ = NewP521Point().SetBytes([]byte{0x04,
    29  	0x00, 0xc6, 0x85, 0x8e, 0x06, 0xb7, 0x04, 0x04, 0xe9, 0xcd, 0x9e, 0x3e,
    30  	0xcb, 0x66, 0x23, 0x95, 0xb4, 0x42, 0x9c, 0x64, 0x81, 0x39, 0x05, 0x3f,
    31  	0xb5, 0x21, 0xf8, 0x28, 0xaf, 0x60, 0x6b, 0x4d, 0x3d, 0xba, 0xa1, 0x4b,
    32  	0x5e, 0x77, 0xef, 0xe7, 0x59, 0x28, 0xfe, 0x1d, 0xc1, 0x27, 0xa2, 0xff,
    33  	0xa8, 0xde, 0x33, 0x48, 0xb3, 0xc1, 0x85, 0x6a, 0x42, 0x9b, 0xf9, 0x7e,
    34  	0x7e, 0x31, 0xc2, 0xe5, 0xbd, 0x66, 0x01, 0x18, 0x39, 0x29, 0x6a, 0x78,
    35  	0x9a, 0x3b, 0xc0, 0x04, 0x5c, 0x8a, 0x5f, 0xb4, 0x2c, 0x7d, 0x1b, 0xd9,
    36  	0x98, 0xf5, 0x44, 0x49, 0x57, 0x9b, 0x44, 0x68, 0x17, 0xaf, 0xbd, 0x17,
    37  	0x27, 0x3e, 0x66, 0x2c, 0x97, 0xee, 0x72, 0x99, 0x5e, 0xf4, 0x26, 0x40,
    38  	0xc5, 0x50, 0xb9, 0x01, 0x3f, 0xad, 0x07, 0x61, 0x35, 0x3c, 0x70, 0x86,
    39  	0xa2, 0x72, 0xc2, 0x40, 0x88, 0xbe, 0x94, 0x76, 0x9f, 0xd1, 0x66, 0x50})
    40  
    41  const p521ElementLength = 66
    42  
    43  // P521Point is a P-521 point. The zero value is NOT valid.
    44  type P521Point struct {
    45  	// The point is represented in projective coordinates (X:Y:Z),
    46  	// where x = X/Z and y = Y/Z.
    47  	x, y, z *fiat.P521Element
    48  }
    49  
    50  // NewP521Point returns a new P521Point representing the point at infinity point.
    51  func NewP521Point() *P521Point {
    52  	return &P521Point{
    53  		x: new(fiat.P521Element),
    54  		y: new(fiat.P521Element).One(),
    55  		z: new(fiat.P521Element),
    56  	}
    57  }
    58  
    59  // NewP521Generator returns a new P521Point set to the canonical generator.
    60  func NewP521Generator() *P521Point {
    61  	return (&P521Point{
    62  		x: new(fiat.P521Element),
    63  		y: new(fiat.P521Element),
    64  		z: new(fiat.P521Element),
    65  	}).Set(p521G)
    66  }
    67  
    68  // Set sets p = q and returns p.
    69  func (p *P521Point) Set(q *P521Point) *P521Point {
    70  	p.x.Set(q.x)
    71  	p.y.Set(q.y)
    72  	p.z.Set(q.z)
    73  	return p
    74  }
    75  
    76  // SetBytes sets p to the compressed, uncompressed, or infinity value encoded in
    77  // b, as specified in SEC 1, Version 2.0, Section 2.3.4. If the point is not on
    78  // the curve, it returns nil and an error, and the receiver is unchanged.
    79  // Otherwise, it returns p.
    80  func (p *P521Point) SetBytes(b []byte) (*P521Point, error) {
    81  	switch {
    82  	// Point at infinity.
    83  	case len(b) == 1 && b[0] == 0:
    84  		return p.Set(NewP521Point()), nil
    85  
    86  	// Uncompressed form.
    87  	case len(b) == 1+2*p521ElementLength && b[0] == 4:
    88  		x, err := new(fiat.P521Element).SetBytes(b[1 : 1+p521ElementLength])
    89  		if err != nil {
    90  			return nil, err
    91  		}
    92  		y, err := new(fiat.P521Element).SetBytes(b[1+p521ElementLength:])
    93  		if err != nil {
    94  			return nil, err
    95  		}
    96  		if err := p521CheckOnCurve(x, y); err != nil {
    97  			return nil, err
    98  		}
    99  		p.x.Set(x)
   100  		p.y.Set(y)
   101  		p.z.One()
   102  		return p, nil
   103  
   104  	// Compressed form
   105  	case len(b) == 1+p521ElementLength && b[0] == 0:
   106  		return nil, errors.New("unimplemented") // TODO(filippo)
   107  
   108  	default:
   109  		return nil, errors.New("invalid P521 point encoding")
   110  	}
   111  }
   112  
   113  func p521CheckOnCurve(x, y *fiat.P521Element) error {
   114  	// x³ - 3x + b.
   115  	x3 := new(fiat.P521Element).Square(x)
   116  	x3.Mul(x3, x)
   117  
   118  	threeX := new(fiat.P521Element).Add(x, x)
   119  	threeX.Add(threeX, x)
   120  
   121  	x3.Sub(x3, threeX)
   122  	x3.Add(x3, p521B)
   123  
   124  	// y² = x³ - 3x + b
   125  	y2 := new(fiat.P521Element).Square(y)
   126  
   127  	if x3.Equal(y2) != 1 {
   128  		return errors.New("P521 point not on curve")
   129  	}
   130  	return nil
   131  }
   132  
   133  // Bytes returns the uncompressed or infinity encoding of p, as specified in
   134  // SEC 1, Version 2.0, Section 2.3.3. Note that the encoding of the point at
   135  // infinity is shorter than all other encodings.
   136  func (p *P521Point) Bytes() []byte {
   137  	// This function is outlined to make the allocations inline in the caller
   138  	// rather than happen on the heap.
   139  	var out [133]byte
   140  	return p.bytes(&out)
   141  }
   142  
   143  func (p *P521Point) bytes(out *[133]byte) []byte {
   144  	if p.z.IsZero() == 1 {
   145  		return append(out[:0], 0)
   146  	}
   147  
   148  	zinv := new(fiat.P521Element).Invert(p.z)
   149  	xx := new(fiat.P521Element).Mul(p.x, zinv)
   150  	yy := new(fiat.P521Element).Mul(p.y, zinv)
   151  
   152  	buf := append(out[:0], 4)
   153  	buf = append(buf, xx.Bytes()...)
   154  	buf = append(buf, yy.Bytes()...)
   155  	return buf
   156  }
   157  
   158  // Add sets q = p1 + p2, and returns q. The points may overlap.
   159  func (q *P521Point) Add(p1, p2 *P521Point) *P521Point {
   160  	// Complete addition formula for a = -3 from "Complete addition formulas for
   161  	// prime order elliptic curves" (https://eprint.iacr.org/2015/1060), §A.2.
   162  
   163  	t0 := new(fiat.P521Element).Mul(p1.x, p2.x) // t0 := X1 * X2
   164  	t1 := new(fiat.P521Element).Mul(p1.y, p2.y) // t1 := Y1 * Y2
   165  	t2 := new(fiat.P521Element).Mul(p1.z, p2.z) // t2 := Z1 * Z2
   166  	t3 := new(fiat.P521Element).Add(p1.x, p1.y) // t3 := X1 + Y1
   167  	t4 := new(fiat.P521Element).Add(p2.x, p2.y) // t4 := X2 + Y2
   168  	t3.Mul(t3, t4)                              // t3 := t3 * t4
   169  	t4.Add(t0, t1)                              // t4 := t0 + t1
   170  	t3.Sub(t3, t4)                              // t3 := t3 - t4
   171  	t4.Add(p1.y, p1.z)                          // t4 := Y1 + Z1
   172  	x3 := new(fiat.P521Element).Add(p2.y, p2.z) // X3 := Y2 + Z2
   173  	t4.Mul(t4, x3)                              // t4 := t4 * X3
   174  	x3.Add(t1, t2)                              // X3 := t1 + t2
   175  	t4.Sub(t4, x3)                              // t4 := t4 - X3
   176  	x3.Add(p1.x, p1.z)                          // X3 := X1 + Z1
   177  	y3 := new(fiat.P521Element).Add(p2.x, p2.z) // Y3 := X2 + Z2
   178  	x3.Mul(x3, y3)                              // X3 := X3 * Y3
   179  	y3.Add(t0, t2)                              // Y3 := t0 + t2
   180  	y3.Sub(x3, y3)                              // Y3 := X3 - Y3
   181  	z3 := new(fiat.P521Element).Mul(p521B, t2)  // Z3 := b * t2
   182  	x3.Sub(y3, z3)                              // X3 := Y3 - Z3
   183  	z3.Add(x3, x3)                              // Z3 := X3 + X3
   184  	x3.Add(x3, z3)                              // X3 := X3 + Z3
   185  	z3.Sub(t1, x3)                              // Z3 := t1 - X3
   186  	x3.Add(t1, x3)                              // X3 := t1 + X3
   187  	y3.Mul(p521B, y3)                           // Y3 := b * Y3
   188  	t1.Add(t2, t2)                              // t1 := t2 + t2
   189  	t2.Add(t1, t2)                              // t2 := t1 + t2
   190  	y3.Sub(y3, t2)                              // Y3 := Y3 - t2
   191  	y3.Sub(y3, t0)                              // Y3 := Y3 - t0
   192  	t1.Add(y3, y3)                              // t1 := Y3 + Y3
   193  	y3.Add(t1, y3)                              // Y3 := t1 + Y3
   194  	t1.Add(t0, t0)                              // t1 := t0 + t0
   195  	t0.Add(t1, t0)                              // t0 := t1 + t0
   196  	t0.Sub(t0, t2)                              // t0 := t0 - t2
   197  	t1.Mul(t4, y3)                              // t1 := t4 * Y3
   198  	t2.Mul(t0, y3)                              // t2 := t0 * Y3
   199  	y3.Mul(x3, z3)                              // Y3 := X3 * Z3
   200  	y3.Add(y3, t2)                              // Y3 := Y3 + t2
   201  	x3.Mul(t3, x3)                              // X3 := t3 * X3
   202  	x3.Sub(x3, t1)                              // X3 := X3 - t1
   203  	z3.Mul(t4, z3)                              // Z3 := t4 * Z3
   204  	t1.Mul(t3, t0)                              // t1 := t3 * t0
   205  	z3.Add(z3, t1)                              // Z3 := Z3 + t1
   206  
   207  	q.x.Set(x3)
   208  	q.y.Set(y3)
   209  	q.z.Set(z3)
   210  	return q
   211  }
   212  
   213  // Double sets q = p + p, and returns q. The points may overlap.
   214  func (q *P521Point) Double(p *P521Point) *P521Point {
   215  	// Complete addition formula for a = -3 from "Complete addition formulas for
   216  	// prime order elliptic curves" (https://eprint.iacr.org/2015/1060), §A.2.
   217  
   218  	t0 := new(fiat.P521Element).Square(p.x)    // t0 := X ^ 2
   219  	t1 := new(fiat.P521Element).Square(p.y)    // t1 := Y ^ 2
   220  	t2 := new(fiat.P521Element).Square(p.z)    // t2 := Z ^ 2
   221  	t3 := new(fiat.P521Element).Mul(p.x, p.y)  // t3 := X * Y
   222  	t3.Add(t3, t3)                             // t3 := t3 + t3
   223  	z3 := new(fiat.P521Element).Mul(p.x, p.z)  // Z3 := X * Z
   224  	z3.Add(z3, z3)                             // Z3 := Z3 + Z3
   225  	y3 := new(fiat.P521Element).Mul(p521B, t2) // Y3 := b * t2
   226  	y3.Sub(y3, z3)                             // Y3 := Y3 - Z3
   227  	x3 := new(fiat.P521Element).Add(y3, y3)    // X3 := Y3 + Y3
   228  	y3.Add(x3, y3)                             // Y3 := X3 + Y3
   229  	x3.Sub(t1, y3)                             // X3 := t1 - Y3
   230  	y3.Add(t1, y3)                             // Y3 := t1 + Y3
   231  	y3.Mul(x3, y3)                             // Y3 := X3 * Y3
   232  	x3.Mul(x3, t3)                             // X3 := X3 * t3
   233  	t3.Add(t2, t2)                             // t3 := t2 + t2
   234  	t2.Add(t2, t3)                             // t2 := t2 + t3
   235  	z3.Mul(p521B, z3)                          // Z3 := b * Z3
   236  	z3.Sub(z3, t2)                             // Z3 := Z3 - t2
   237  	z3.Sub(z3, t0)                             // Z3 := Z3 - t0
   238  	t3.Add(z3, z3)                             // t3 := Z3 + Z3
   239  	z3.Add(z3, t3)                             // Z3 := Z3 + t3
   240  	t3.Add(t0, t0)                             // t3 := t0 + t0
   241  	t0.Add(t3, t0)                             // t0 := t3 + t0
   242  	t0.Sub(t0, t2)                             // t0 := t0 - t2
   243  	t0.Mul(t0, z3)                             // t0 := t0 * Z3
   244  	y3.Add(y3, t0)                             // Y3 := Y3 + t0
   245  	t0.Mul(p.y, p.z)                           // t0 := Y * Z
   246  	t0.Add(t0, t0)                             // t0 := t0 + t0
   247  	z3.Mul(t0, z3)                             // Z3 := t0 * Z3
   248  	x3.Sub(x3, z3)                             // X3 := X3 - Z3
   249  	z3.Mul(t0, t1)                             // Z3 := t0 * t1
   250  	z3.Add(z3, z3)                             // Z3 := Z3 + Z3
   251  	z3.Add(z3, z3)                             // Z3 := Z3 + Z3
   252  
   253  	q.x.Set(x3)
   254  	q.y.Set(y3)
   255  	q.z.Set(z3)
   256  	return q
   257  }
   258  
   259  // Select sets q to p1 if cond == 1, and to p2 if cond == 0.
   260  func (q *P521Point) Select(p1, p2 *P521Point, cond int) *P521Point {
   261  	q.x.Select(p1.x, p2.x, cond)
   262  	q.y.Select(p1.y, p2.y, cond)
   263  	q.z.Select(p1.z, p2.z, cond)
   264  	return q
   265  }
   266  
   267  // ScalarMult sets p = scalar * q, and returns p.
   268  func (p *P521Point) ScalarMult(q *P521Point, scalar []byte) *P521Point {
   269  	// table holds the first 16 multiples of q. The explicit newP521Point calls
   270  	// get inlined, letting the allocations live on the stack.
   271  	var table = [16]*P521Point{
   272  		NewP521Point(), NewP521Point(), NewP521Point(), NewP521Point(),
   273  		NewP521Point(), NewP521Point(), NewP521Point(), NewP521Point(),
   274  		NewP521Point(), NewP521Point(), NewP521Point(), NewP521Point(),
   275  		NewP521Point(), NewP521Point(), NewP521Point(), NewP521Point(),
   276  	}
   277  	for i := 1; i < 16; i++ {
   278  		table[i].Add(table[i-1], q)
   279  	}
   280  
   281  	// Instead of doing the classic double-and-add chain, we do it with a
   282  	// four-bit window: we double four times, and then add [0-15]P.
   283  	t := NewP521Point()
   284  	p.Set(NewP521Point())
   285  	for _, byte := range scalar {
   286  		p.Double(p)
   287  		p.Double(p)
   288  		p.Double(p)
   289  		p.Double(p)
   290  
   291  		for i := uint8(0); i < 16; i++ {
   292  			cond := subtle.ConstantTimeByteEq(byte>>4, i)
   293  			t.Select(table[i], t, cond)
   294  		}
   295  		p.Add(p, t)
   296  
   297  		p.Double(p)
   298  		p.Double(p)
   299  		p.Double(p)
   300  		p.Double(p)
   301  
   302  		for i := uint8(0); i < 16; i++ {
   303  			cond := subtle.ConstantTimeByteEq(byte&0b1111, i)
   304  			t.Select(table[i], t, cond)
   305  		}
   306  		p.Add(p, t)
   307  	}
   308  
   309  	return p
   310  }
   311  

View as plain text