Source file src/crypto/elliptic/p384.go

     1  // Copyright 2013 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package elliptic
     6  
     7  import (
     8  	"crypto/elliptic/internal/nistec"
     9  	"crypto/rand"
    10  	"math/big"
    11  )
    12  
    13  // p384Curve is a Curve implementation based on nistec.P384Point.
    14  //
    15  // It's a wrapper that exposes the big.Int-based Curve interface and encodes the
    16  // legacy idiosyncrasies it requires, such as invalid and infinity point
    17  // handling.
    18  //
    19  // To interact with the nistec package, points are encoded into and decoded from
    20  // properly formatted byte slices. All big.Int use is limited to this package.
    21  // Encoding and decoding is 1/1000th of the runtime of a scalar multiplication,
    22  // so the overhead is acceptable.
    23  type p384Curve struct {
    24  	params *CurveParams
    25  }
    26  
    27  var p384 p384Curve
    28  var _ Curve = p384
    29  
    30  func initP384() {
    31  	p384.params = &CurveParams{
    32  		Name:    "P-384",
    33  		BitSize: 384,
    34  		// FIPS 186-4, section D.1.2.4
    35  		P: bigFromDecimal("394020061963944792122790401001436138050797392704654" +
    36  			"46667948293404245721771496870329047266088258938001861606973112319"),
    37  		N: bigFromDecimal("394020061963944792122790401001436138050797392704654" +
    38  			"46667946905279627659399113263569398956308152294913554433653942643"),
    39  		B: bigFromHex("b3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088" +
    40  			"f5013875ac656398d8a2ed19d2a85c8edd3ec2aef"),
    41  		Gx: bigFromHex("aa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741" +
    42  			"e082542a385502f25dbf55296c3a545e3872760ab7"),
    43  		Gy: bigFromHex("3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da31" +
    44  			"13b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5f"),
    45  	}
    46  }
    47  
    48  func (curve p384Curve) Params() *CurveParams {
    49  	return curve.params
    50  }
    51  
    52  func (curve p384Curve) IsOnCurve(x, y *big.Int) bool {
    53  	// IsOnCurve is documented to reject (0, 0), the conventional point at
    54  	// infinity, which however is accepted by p384PointFromAffine.
    55  	if x.Sign() == 0 && y.Sign() == 0 {
    56  		return false
    57  	}
    58  	_, ok := p384PointFromAffine(x, y)
    59  	return ok
    60  }
    61  
    62  func p384PointFromAffine(x, y *big.Int) (p *nistec.P384Point, ok bool) {
    63  	// (0, 0) is by convention the point at infinity, which can't be represented
    64  	// in affine coordinates. Marshal incorrectly encodes it as an uncompressed
    65  	// point, which SetBytes would correctly reject. See Issue 37294.
    66  	if x.Sign() == 0 && y.Sign() == 0 {
    67  		return nistec.NewP384Point(), true
    68  	}
    69  	if x.Sign() < 0 || y.Sign() < 0 {
    70  		return nil, false
    71  	}
    72  	if x.BitLen() > 384 || y.BitLen() > 384 {
    73  		return nil, false
    74  	}
    75  	p, err := nistec.NewP384Point().SetBytes(Marshal(P384(), x, y))
    76  	if err != nil {
    77  		return nil, false
    78  	}
    79  	return p, true
    80  }
    81  
    82  func p384PointToAffine(p *nistec.P384Point) (x, y *big.Int) {
    83  	out := p.Bytes()
    84  	if len(out) == 1 && out[0] == 0 {
    85  		// This is the correct encoding of the point at infinity, which
    86  		// Unmarshal does not support. See Issue 37294.
    87  		return new(big.Int), new(big.Int)
    88  	}
    89  	x, y = Unmarshal(P384(), out)
    90  	if x == nil {
    91  		panic("crypto/elliptic: internal error: Unmarshal rejected a valid point encoding")
    92  	}
    93  	return x, y
    94  }
    95  
    96  // p384RandomPoint returns a random point on the curve. It's used when Add,
    97  // Double, or ScalarMult are fed a point not on the curve, which is undefined
    98  // behavior. Originally, we used to do the math on it anyway (which allows
    99  // invalid curve attacks) and relied on the caller and Unmarshal to avoid this
   100  // happening in the first place. Now, we just can't construct a nistec.P384Point
   101  // for an invalid pair of coordinates, because that API is safer. If we panic,
   102  // we risk introducing a DoS. If we return nil, we risk a panic. If we return
   103  // the input, ecdsa.Verify might fail open. The safest course seems to be to
   104  // return a valid, random point, which hopefully won't help the attacker.
   105  func p384RandomPoint() (x, y *big.Int) {
   106  	_, x, y, err := GenerateKey(P384(), rand.Reader)
   107  	if err != nil {
   108  		panic("crypto/elliptic: failed to generate random point")
   109  	}
   110  	return x, y
   111  }
   112  
   113  func (p384Curve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) {
   114  	p1, ok := p384PointFromAffine(x1, y1)
   115  	if !ok {
   116  		return p384RandomPoint()
   117  	}
   118  	p2, ok := p384PointFromAffine(x2, y2)
   119  	if !ok {
   120  		return p384RandomPoint()
   121  	}
   122  	return p384PointToAffine(p1.Add(p1, p2))
   123  }
   124  
   125  func (p384Curve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) {
   126  	p, ok := p384PointFromAffine(x1, y1)
   127  	if !ok {
   128  		return p384RandomPoint()
   129  	}
   130  	return p384PointToAffine(p.Double(p))
   131  }
   132  
   133  func (p384Curve) ScalarMult(Bx, By *big.Int, scalar []byte) (*big.Int, *big.Int) {
   134  	p, ok := p384PointFromAffine(Bx, By)
   135  	if !ok {
   136  		return p384RandomPoint()
   137  	}
   138  	return p384PointToAffine(p.ScalarMult(p, scalar))
   139  }
   140  
   141  func (p384Curve) ScalarBaseMult(scalar []byte) (*big.Int, *big.Int) {
   142  	p := nistec.NewP384Generator()
   143  	return p384PointToAffine(p.ScalarMult(p, scalar))
   144  }
   145  

View as plain text