Source file src/go/types/lookup.go

     1  // Copyright 2013 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // This file implements various field and method lookup functions.
     6  
     7  package types
     8  
     9  import (
    10  	"bytes"
    11  	"strings"
    12  )
    13  
    14  // Internal use of LookupFieldOrMethod: If the obj result is a method
    15  // associated with a concrete (non-interface) type, the method's signature
    16  // may not be fully set up. Call Checker.objDecl(obj, nil) before accessing
    17  // the method's type.
    18  
    19  // LookupFieldOrMethod looks up a field or method with given package and name
    20  // in T and returns the corresponding *Var or *Func, an index sequence, and a
    21  // bool indicating if there were any pointer indirections on the path to the
    22  // field or method. If addressable is set, T is the type of an addressable
    23  // variable (only matters for method lookups). T must not be nil.
    24  //
    25  // The last index entry is the field or method index in the (possibly embedded)
    26  // type where the entry was found, either:
    27  //
    28  //  1. the list of declared methods of a named type; or
    29  //  2. the list of all methods (method set) of an interface type; or
    30  //  3. the list of fields of a struct type.
    31  //
    32  // The earlier index entries are the indices of the embedded struct fields
    33  // traversed to get to the found entry, starting at depth 0.
    34  //
    35  // If no entry is found, a nil object is returned. In this case, the returned
    36  // index and indirect values have the following meaning:
    37  //
    38  //   - If index != nil, the index sequence points to an ambiguous entry
    39  //     (the same name appeared more than once at the same embedding level).
    40  //
    41  //   - If indirect is set, a method with a pointer receiver type was found
    42  //     but there was no pointer on the path from the actual receiver type to
    43  //     the method's formal receiver base type, nor was the receiver addressable.
    44  func LookupFieldOrMethod(T Type, addressable bool, pkg *Package, name string) (obj Object, index []int, indirect bool) {
    45  	if T == nil {
    46  		panic("LookupFieldOrMethod on nil type")
    47  	}
    48  
    49  	// Methods cannot be associated to a named pointer type.
    50  	// (spec: "The type denoted by T is called the receiver base type;
    51  	// it must not be a pointer or interface type and it must be declared
    52  	// in the same package as the method.").
    53  	// Thus, if we have a named pointer type, proceed with the underlying
    54  	// pointer type but discard the result if it is a method since we would
    55  	// not have found it for T (see also issue 8590).
    56  	if t, _ := T.(*Named); t != nil {
    57  		if p, _ := t.Underlying().(*Pointer); p != nil {
    58  			obj, index, indirect = lookupFieldOrMethod(p, false, pkg, name, false)
    59  			if _, ok := obj.(*Func); ok {
    60  				return nil, nil, false
    61  			}
    62  			return
    63  		}
    64  	}
    65  
    66  	obj, index, indirect = lookupFieldOrMethod(T, addressable, pkg, name, false)
    67  
    68  	// If we didn't find anything and if we have a type parameter with a core type,
    69  	// see if there is a matching field (but not a method, those need to be declared
    70  	// explicitly in the constraint). If the constraint is a named pointer type (see
    71  	// above), we are ok here because only fields are accepted as results.
    72  	const enableTParamFieldLookup = false // see issue #51576
    73  	if enableTParamFieldLookup && obj == nil && isTypeParam(T) {
    74  		if t := coreType(T); t != nil {
    75  			obj, index, indirect = lookupFieldOrMethod(t, addressable, pkg, name, false)
    76  			if _, ok := obj.(*Var); !ok {
    77  				obj, index, indirect = nil, nil, false // accept fields (variables) only
    78  			}
    79  		}
    80  	}
    81  	return
    82  }
    83  
    84  // lookupFieldOrMethod should only be called by LookupFieldOrMethod and missingMethod.
    85  // If foldCase is true, the lookup for methods will include looking for any method
    86  // which case-folds to the same as 'name' (used for giving helpful error messages).
    87  //
    88  // The resulting object may not be fully type-checked.
    89  func lookupFieldOrMethod(T Type, addressable bool, pkg *Package, name string, foldCase bool) (obj Object, index []int, indirect bool) {
    90  	// WARNING: The code in this function is extremely subtle - do not modify casually!
    91  
    92  	if name == "_" {
    93  		return // blank fields/methods are never found
    94  	}
    95  
    96  	typ, isPtr := deref(T)
    97  
    98  	// *typ where typ is an interface (incl. a type parameter) has no methods.
    99  	if isPtr {
   100  		if _, ok := under(typ).(*Interface); ok {
   101  			return
   102  		}
   103  	}
   104  
   105  	// Start with typ as single entry at shallowest depth.
   106  	current := []embeddedType{{typ, nil, isPtr, false}}
   107  
   108  	// seen tracks named types that we have seen already, allocated lazily.
   109  	// Used to avoid endless searches in case of recursive types.
   110  	//
   111  	// We must use a lookup on identity rather than a simple map[*Named]bool as
   112  	// instantiated types may be identical but not equal.
   113  	var seen instanceLookup
   114  
   115  	// search current depth
   116  	for len(current) > 0 {
   117  		var next []embeddedType // embedded types found at current depth
   118  
   119  		// look for (pkg, name) in all types at current depth
   120  		for _, e := range current {
   121  			typ := e.typ
   122  
   123  			// If we have a named type, we may have associated methods.
   124  			// Look for those first.
   125  			if named, _ := typ.(*Named); named != nil {
   126  				if alt := seen.lookup(named); alt != nil {
   127  					// We have seen this type before, at a more shallow depth
   128  					// (note that multiples of this type at the current depth
   129  					// were consolidated before). The type at that depth shadows
   130  					// this same type at the current depth, so we can ignore
   131  					// this one.
   132  					continue
   133  				}
   134  				seen.add(named)
   135  
   136  				// look for a matching attached method
   137  				named.resolve(nil)
   138  				if i, m := named.lookupMethod(pkg, name, foldCase); m != nil {
   139  					// potential match
   140  					// caution: method may not have a proper signature yet
   141  					index = concat(e.index, i)
   142  					if obj != nil || e.multiples {
   143  						return nil, index, false // collision
   144  					}
   145  					obj = m
   146  					indirect = e.indirect
   147  					continue // we can't have a matching field or interface method
   148  				}
   149  			}
   150  
   151  			switch t := under(typ).(type) {
   152  			case *Struct:
   153  				// look for a matching field and collect embedded types
   154  				for i, f := range t.fields {
   155  					if f.sameId(pkg, name) {
   156  						assert(f.typ != nil)
   157  						index = concat(e.index, i)
   158  						if obj != nil || e.multiples {
   159  							return nil, index, false // collision
   160  						}
   161  						obj = f
   162  						indirect = e.indirect
   163  						continue // we can't have a matching interface method
   164  					}
   165  					// Collect embedded struct fields for searching the next
   166  					// lower depth, but only if we have not seen a match yet
   167  					// (if we have a match it is either the desired field or
   168  					// we have a name collision on the same depth; in either
   169  					// case we don't need to look further).
   170  					// Embedded fields are always of the form T or *T where
   171  					// T is a type name. If e.typ appeared multiple times at
   172  					// this depth, f.typ appears multiple times at the next
   173  					// depth.
   174  					if obj == nil && f.embedded {
   175  						typ, isPtr := deref(f.typ)
   176  						// TODO(gri) optimization: ignore types that can't
   177  						// have fields or methods (only Named, Struct, and
   178  						// Interface types need to be considered).
   179  						next = append(next, embeddedType{typ, concat(e.index, i), e.indirect || isPtr, e.multiples})
   180  					}
   181  				}
   182  
   183  			case *Interface:
   184  				// look for a matching method (interface may be a type parameter)
   185  				if i, m := t.typeSet().LookupMethod(pkg, name, foldCase); m != nil {
   186  					assert(m.typ != nil)
   187  					index = concat(e.index, i)
   188  					if obj != nil || e.multiples {
   189  						return nil, index, false // collision
   190  					}
   191  					obj = m
   192  					indirect = e.indirect
   193  				}
   194  			}
   195  		}
   196  
   197  		if obj != nil {
   198  			// found a potential match
   199  			// spec: "A method call x.m() is valid if the method set of (the type of) x
   200  			//        contains m and the argument list can be assigned to the parameter
   201  			//        list of m. If x is addressable and &x's method set contains m, x.m()
   202  			//        is shorthand for (&x).m()".
   203  			if f, _ := obj.(*Func); f != nil {
   204  				// determine if method has a pointer receiver
   205  				if f.hasPtrRecv() && !indirect && !addressable {
   206  					return nil, nil, true // pointer/addressable receiver required
   207  				}
   208  			}
   209  			return
   210  		}
   211  
   212  		current = consolidateMultiples(next)
   213  	}
   214  
   215  	return nil, nil, false // not found
   216  }
   217  
   218  // embeddedType represents an embedded type
   219  type embeddedType struct {
   220  	typ       Type
   221  	index     []int // embedded field indices, starting with index at depth 0
   222  	indirect  bool  // if set, there was a pointer indirection on the path to this field
   223  	multiples bool  // if set, typ appears multiple times at this depth
   224  }
   225  
   226  // consolidateMultiples collects multiple list entries with the same type
   227  // into a single entry marked as containing multiples. The result is the
   228  // consolidated list.
   229  func consolidateMultiples(list []embeddedType) []embeddedType {
   230  	if len(list) <= 1 {
   231  		return list // at most one entry - nothing to do
   232  	}
   233  
   234  	n := 0                     // number of entries w/ unique type
   235  	prev := make(map[Type]int) // index at which type was previously seen
   236  	for _, e := range list {
   237  		if i, found := lookupType(prev, e.typ); found {
   238  			list[i].multiples = true
   239  			// ignore this entry
   240  		} else {
   241  			prev[e.typ] = n
   242  			list[n] = e
   243  			n++
   244  		}
   245  	}
   246  	return list[:n]
   247  }
   248  
   249  func lookupType(m map[Type]int, typ Type) (int, bool) {
   250  	// fast path: maybe the types are equal
   251  	if i, found := m[typ]; found {
   252  		return i, true
   253  	}
   254  
   255  	for t, i := range m {
   256  		if Identical(t, typ) {
   257  			return i, true
   258  		}
   259  	}
   260  
   261  	return 0, false
   262  }
   263  
   264  type instanceLookup struct {
   265  	m map[*Named][]*Named
   266  }
   267  
   268  func (l *instanceLookup) lookup(inst *Named) *Named {
   269  	for _, t := range l.m[inst.Origin()] {
   270  		if Identical(inst, t) {
   271  			return t
   272  		}
   273  	}
   274  	return nil
   275  }
   276  
   277  func (l *instanceLookup) add(inst *Named) {
   278  	if l.m == nil {
   279  		l.m = make(map[*Named][]*Named)
   280  	}
   281  	insts := l.m[inst.Origin()]
   282  	l.m[inst.Origin()] = append(insts, inst)
   283  }
   284  
   285  // MissingMethod returns (nil, false) if V implements T, otherwise it
   286  // returns a missing method required by T and whether it is missing or
   287  // just has the wrong type.
   288  //
   289  // For non-interface types V, or if static is set, V implements T if all
   290  // methods of T are present in V. Otherwise (V is an interface and static
   291  // is not set), MissingMethod only checks that methods of T which are also
   292  // present in V have matching types (e.g., for a type assertion x.(T) where
   293  // x is of interface type V).
   294  func MissingMethod(V Type, T *Interface, static bool) (method *Func, wrongType bool) {
   295  	m, alt := (*Checker)(nil).missingMethod(V, T, static)
   296  	// Only report a wrong type if the alternative method has the same name as m.
   297  	return m, alt != nil && alt.name == m.name // alt != nil implies m != nil
   298  }
   299  
   300  // missingMethod is like MissingMethod but accepts a *Checker as receiver.
   301  // The receiver may be nil if missingMethod is invoked through an exported
   302  // API call (such as MissingMethod), i.e., when all methods have been type-
   303  // checked.
   304  //
   305  // If a method is missing on T but is found on *T, or if a method is found
   306  // on T when looked up with case-folding, this alternative method is returned
   307  // as the second result.
   308  func (check *Checker) missingMethod(V Type, T *Interface, static bool) (method, alt *Func) {
   309  	if T.NumMethods() == 0 {
   310  		return
   311  	}
   312  
   313  	// V is an interface
   314  	if u, _ := under(V).(*Interface); u != nil {
   315  		tset := u.typeSet()
   316  		for _, m := range T.typeSet().methods {
   317  			_, f := tset.LookupMethod(m.pkg, m.name, false)
   318  
   319  			if f == nil {
   320  				if !static {
   321  					continue
   322  				}
   323  				return m, nil
   324  			}
   325  
   326  			if !Identical(f.typ, m.typ) {
   327  				return m, f
   328  			}
   329  		}
   330  
   331  		return
   332  	}
   333  
   334  	// V is not an interface
   335  	for _, m := range T.typeSet().methods {
   336  		// TODO(gri) should this be calling LookupFieldOrMethod instead (and why not)?
   337  		obj, _, _ := lookupFieldOrMethod(V, false, m.pkg, m.name, false)
   338  
   339  		// check if m is on *V, or on V with case-folding
   340  		found := obj != nil
   341  		if !found {
   342  			// TODO(gri) Instead of NewPointer(V) below, can we just set the "addressable" argument?
   343  			obj, _, _ = lookupFieldOrMethod(NewPointer(V), false, m.pkg, m.name, false)
   344  			if obj == nil {
   345  				obj, _, _ = lookupFieldOrMethod(V, false, m.pkg, m.name, true /* fold case */)
   346  			}
   347  		}
   348  
   349  		// we must have a method (not a struct field)
   350  		f, _ := obj.(*Func)
   351  		if f == nil {
   352  			return m, nil
   353  		}
   354  
   355  		// methods may not have a fully set up signature yet
   356  		if check != nil {
   357  			check.objDecl(f, nil)
   358  		}
   359  
   360  		if !found || !Identical(f.typ, m.typ) {
   361  			return m, f
   362  		}
   363  	}
   364  
   365  	return
   366  }
   367  
   368  // missingMethodReason returns a string giving the detailed reason for a missing method m,
   369  // where m is missing from V, but required by T. It puts the reason in parentheses,
   370  // and may include more have/want info after that. If non-nil, alt is a relevant
   371  // method that matches in some way. It may have the correct name, but wrong type, or
   372  // it may have a pointer receiver, or it may have the correct name except wrong case.
   373  // check may be nil.
   374  func (check *Checker) missingMethodReason(V, T Type, m, alt *Func) string {
   375  	var mname string
   376  	if check != nil && compilerErrorMessages {
   377  		mname = m.Name() + " method"
   378  	} else {
   379  		mname = "method " + m.Name()
   380  	}
   381  
   382  	if alt != nil {
   383  		if m.Name() != alt.Name() {
   384  			return check.sprintf("(missing %s)\n\t\thave %s\n\t\twant %s",
   385  				mname, check.funcString(alt), check.funcString(m))
   386  		}
   387  
   388  		if Identical(m.typ, alt.typ) {
   389  			return check.sprintf("(%s has pointer receiver)", mname)
   390  		}
   391  
   392  		return check.sprintf("(wrong type for %s)\n\t\thave %s\n\t\twant %s",
   393  			mname, check.funcString(alt), check.funcString(m))
   394  	}
   395  
   396  	if isInterfacePtr(V) {
   397  		return "(" + check.interfacePtrError(V) + ")"
   398  	}
   399  
   400  	if isInterfacePtr(T) {
   401  		return "(" + check.interfacePtrError(T) + ")"
   402  	}
   403  
   404  	return check.sprintf("(missing %s)", mname)
   405  }
   406  
   407  func isInterfacePtr(T Type) bool {
   408  	p, _ := under(T).(*Pointer)
   409  	return p != nil && IsInterface(p.base)
   410  }
   411  
   412  // check may be nil.
   413  func (check *Checker) interfacePtrError(T Type) string {
   414  	assert(isInterfacePtr(T))
   415  	if p, _ := under(T).(*Pointer); isTypeParam(p.base) {
   416  		return check.sprintf("type %s is pointer to type parameter, not type parameter", T)
   417  	}
   418  	return check.sprintf("type %s is pointer to interface, not interface", T)
   419  }
   420  
   421  // check may be nil.
   422  func (check *Checker) funcString(f *Func) string {
   423  	buf := bytes.NewBufferString(f.name)
   424  	var qf Qualifier
   425  	if check != nil {
   426  		qf = check.qualifier
   427  	}
   428  	WriteSignature(buf, f.typ.(*Signature), qf)
   429  	return buf.String()
   430  }
   431  
   432  // assertableTo reports whether a value of type V can be asserted to have type T.
   433  // It returns (nil, false) as affirmative answer. Otherwise it returns a missing
   434  // method required by V and whether it is missing or just has the wrong type.
   435  // The receiver may be nil if assertableTo is invoked through an exported API call
   436  // (such as AssertableTo), i.e., when all methods have been type-checked.
   437  // TODO(gri) replace calls to this function with calls to newAssertableTo.
   438  func (check *Checker) assertableTo(V *Interface, T Type) (method, wrongType *Func) {
   439  	// no static check is required if T is an interface
   440  	// spec: "If T is an interface type, x.(T) asserts that the
   441  	//        dynamic type of x implements the interface T."
   442  	if IsInterface(T) {
   443  		return
   444  	}
   445  	// TODO(gri) fix this for generalized interfaces
   446  	return check.missingMethod(T, V, false)
   447  }
   448  
   449  // newAssertableTo reports whether a value of type V can be asserted to have type T.
   450  // It also implements behavior for interfaces that currently are only permitted
   451  // in constraint position (we have not yet defined that behavior in the spec).
   452  func (check *Checker) newAssertableTo(V *Interface, T Type) error {
   453  	// no static check is required if T is an interface
   454  	// spec: "If T is an interface type, x.(T) asserts that the
   455  	//        dynamic type of x implements the interface T."
   456  	if IsInterface(T) {
   457  		return nil
   458  	}
   459  	return check.implements(T, V)
   460  }
   461  
   462  // deref dereferences typ if it is a *Pointer and returns its base and true.
   463  // Otherwise it returns (typ, false).
   464  func deref(typ Type) (Type, bool) {
   465  	if p, _ := typ.(*Pointer); p != nil {
   466  		// p.base should never be nil, but be conservative
   467  		if p.base == nil {
   468  			if debug {
   469  				panic("pointer with nil base type (possibly due to an invalid cyclic declaration)")
   470  			}
   471  			return Typ[Invalid], true
   472  		}
   473  		return p.base, true
   474  	}
   475  	return typ, false
   476  }
   477  
   478  // derefStructPtr dereferences typ if it is a (named or unnamed) pointer to a
   479  // (named or unnamed) struct and returns its base. Otherwise it returns typ.
   480  func derefStructPtr(typ Type) Type {
   481  	if p, _ := under(typ).(*Pointer); p != nil {
   482  		if _, ok := under(p.base).(*Struct); ok {
   483  			return p.base
   484  		}
   485  	}
   486  	return typ
   487  }
   488  
   489  // concat returns the result of concatenating list and i.
   490  // The result does not share its underlying array with list.
   491  func concat(list []int, i int) []int {
   492  	var t []int
   493  	t = append(t, list...)
   494  	return append(t, i)
   495  }
   496  
   497  // fieldIndex returns the index for the field with matching package and name, or a value < 0.
   498  func fieldIndex(fields []*Var, pkg *Package, name string) int {
   499  	if name != "_" {
   500  		for i, f := range fields {
   501  			if f.sameId(pkg, name) {
   502  				return i
   503  			}
   504  		}
   505  	}
   506  	return -1
   507  }
   508  
   509  // lookupMethod returns the index of and method with matching package and name, or (-1, nil).
   510  // If foldCase is true, method names are considered equal if they are equal with case folding.
   511  func lookupMethod(methods []*Func, pkg *Package, name string, foldCase bool) (int, *Func) {
   512  	if name != "_" {
   513  		for i, m := range methods {
   514  			if (m.name == name || foldCase && strings.EqualFold(m.name, name)) && m.sameId(pkg, m.name) {
   515  				return i, m
   516  			}
   517  		}
   518  	}
   519  	return -1, nil
   520  }
   521  

View as plain text