Source file src/hash/crc32/crc32.go

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package crc32 implements the 32-bit cyclic redundancy check, or CRC-32,
     6  // checksum. See https://en.wikipedia.org/wiki/Cyclic_redundancy_check for
     7  // information.
     8  //
     9  // Polynomials are represented in LSB-first form also known as reversed representation.
    10  //
    11  // See https://en.wikipedia.org/wiki/Mathematics_of_cyclic_redundancy_checks#Reversed_representations_and_reciprocal_polynomials
    12  // for information.
    13  package crc32
    14  
    15  import (
    16  	"errors"
    17  	"hash"
    18  	"sync"
    19  	"sync/atomic"
    20  )
    21  
    22  // The size of a CRC-32 checksum in bytes.
    23  const Size = 4
    24  
    25  // Predefined polynomials.
    26  const (
    27  	// IEEE is by far and away the most common CRC-32 polynomial.
    28  	// Used by ethernet (IEEE 802.3), v.42, fddi, gzip, zip, png, ...
    29  	IEEE = 0xedb88320
    30  
    31  	// Castagnoli's polynomial, used in iSCSI.
    32  	// Has better error detection characteristics than IEEE.
    33  	// https://dx.doi.org/10.1109/26.231911
    34  	Castagnoli = 0x82f63b78
    35  
    36  	// Koopman's polynomial.
    37  	// Also has better error detection characteristics than IEEE.
    38  	// https://dx.doi.org/10.1109/DSN.2002.1028931
    39  	Koopman = 0xeb31d82e
    40  )
    41  
    42  // Table is a 256-word table representing the polynomial for efficient processing.
    43  type Table [256]uint32
    44  
    45  // This file makes use of functions implemented in architecture-specific files.
    46  // The interface that they implement is as follows:
    47  //
    48  //    // archAvailableIEEE reports whether an architecture-specific CRC32-IEEE
    49  //    // algorithm is available.
    50  //    archAvailableIEEE() bool
    51  //
    52  //    // archInitIEEE initializes the architecture-specific CRC3-IEEE algorithm.
    53  //    // It can only be called if archAvailableIEEE() returns true.
    54  //    archInitIEEE()
    55  //
    56  //    // archUpdateIEEE updates the given CRC32-IEEE. It can only be called if
    57  //    // archInitIEEE() was previously called.
    58  //    archUpdateIEEE(crc uint32, p []byte) uint32
    59  //
    60  //    // archAvailableCastagnoli reports whether an architecture-specific
    61  //    // CRC32-C algorithm is available.
    62  //    archAvailableCastagnoli() bool
    63  //
    64  //    // archInitCastagnoli initializes the architecture-specific CRC32-C
    65  //    // algorithm. It can only be called if archAvailableCastagnoli() returns
    66  //    // true.
    67  //    archInitCastagnoli()
    68  //
    69  //    // archUpdateCastagnoli updates the given CRC32-C. It can only be called
    70  //    // if archInitCastagnoli() was previously called.
    71  //    archUpdateCastagnoli(crc uint32, p []byte) uint32
    72  
    73  // castagnoliTable points to a lazily initialized Table for the Castagnoli
    74  // polynomial. MakeTable will always return this value when asked to make a
    75  // Castagnoli table so we can compare against it to find when the caller is
    76  // using this polynomial.
    77  var castagnoliTable *Table
    78  var castagnoliTable8 *slicing8Table
    79  var castagnoliArchImpl bool
    80  var updateCastagnoli func(crc uint32, p []byte) uint32
    81  var castagnoliOnce sync.Once
    82  var haveCastagnoli uint32
    83  
    84  func castagnoliInit() {
    85  	castagnoliTable = simpleMakeTable(Castagnoli)
    86  	castagnoliArchImpl = archAvailableCastagnoli()
    87  
    88  	if castagnoliArchImpl {
    89  		archInitCastagnoli()
    90  		updateCastagnoli = archUpdateCastagnoli
    91  	} else {
    92  		// Initialize the slicing-by-8 table.
    93  		castagnoliTable8 = slicingMakeTable(Castagnoli)
    94  		updateCastagnoli = func(crc uint32, p []byte) uint32 {
    95  			return slicingUpdate(crc, castagnoliTable8, p)
    96  		}
    97  	}
    98  
    99  	atomic.StoreUint32(&haveCastagnoli, 1)
   100  }
   101  
   102  // IEEETable is the table for the IEEE polynomial.
   103  var IEEETable = simpleMakeTable(IEEE)
   104  
   105  // ieeeTable8 is the slicing8Table for IEEE
   106  var ieeeTable8 *slicing8Table
   107  var ieeeArchImpl bool
   108  var updateIEEE func(crc uint32, p []byte) uint32
   109  var ieeeOnce sync.Once
   110  
   111  func ieeeInit() {
   112  	ieeeArchImpl = archAvailableIEEE()
   113  
   114  	if ieeeArchImpl {
   115  		archInitIEEE()
   116  		updateIEEE = archUpdateIEEE
   117  	} else {
   118  		// Initialize the slicing-by-8 table.
   119  		ieeeTable8 = slicingMakeTable(IEEE)
   120  		updateIEEE = func(crc uint32, p []byte) uint32 {
   121  			return slicingUpdate(crc, ieeeTable8, p)
   122  		}
   123  	}
   124  }
   125  
   126  // MakeTable returns a Table constructed from the specified polynomial.
   127  // The contents of this Table must not be modified.
   128  func MakeTable(poly uint32) *Table {
   129  	switch poly {
   130  	case IEEE:
   131  		ieeeOnce.Do(ieeeInit)
   132  		return IEEETable
   133  	case Castagnoli:
   134  		castagnoliOnce.Do(castagnoliInit)
   135  		return castagnoliTable
   136  	}
   137  	return simpleMakeTable(poly)
   138  }
   139  
   140  // digest represents the partial evaluation of a checksum.
   141  type digest struct {
   142  	crc uint32
   143  	tab *Table
   144  }
   145  
   146  // New creates a new hash.Hash32 computing the CRC-32 checksum using the
   147  // polynomial represented by the Table. Its Sum method will lay the
   148  // value out in big-endian byte order. The returned Hash32 also
   149  // implements encoding.BinaryMarshaler and encoding.BinaryUnmarshaler to
   150  // marshal and unmarshal the internal state of the hash.
   151  func New(tab *Table) hash.Hash32 {
   152  	if tab == IEEETable {
   153  		ieeeOnce.Do(ieeeInit)
   154  	}
   155  	return &digest{0, tab}
   156  }
   157  
   158  // NewIEEE creates a new hash.Hash32 computing the CRC-32 checksum using
   159  // the IEEE polynomial. Its Sum method will lay the value out in
   160  // big-endian byte order. The returned Hash32 also implements
   161  // encoding.BinaryMarshaler and encoding.BinaryUnmarshaler to marshal
   162  // and unmarshal the internal state of the hash.
   163  func NewIEEE() hash.Hash32 { return New(IEEETable) }
   164  
   165  func (d *digest) Size() int { return Size }
   166  
   167  func (d *digest) BlockSize() int { return 1 }
   168  
   169  func (d *digest) Reset() { d.crc = 0 }
   170  
   171  const (
   172  	magic         = "crc\x01"
   173  	marshaledSize = len(magic) + 4 + 4
   174  )
   175  
   176  func (d *digest) MarshalBinary() ([]byte, error) {
   177  	b := make([]byte, 0, marshaledSize)
   178  	b = append(b, magic...)
   179  	b = appendUint32(b, tableSum(d.tab))
   180  	b = appendUint32(b, d.crc)
   181  	return b, nil
   182  }
   183  
   184  func (d *digest) UnmarshalBinary(b []byte) error {
   185  	if len(b) < len(magic) || string(b[:len(magic)]) != magic {
   186  		return errors.New("hash/crc32: invalid hash state identifier")
   187  	}
   188  	if len(b) != marshaledSize {
   189  		return errors.New("hash/crc32: invalid hash state size")
   190  	}
   191  	if tableSum(d.tab) != readUint32(b[4:]) {
   192  		return errors.New("hash/crc32: tables do not match")
   193  	}
   194  	d.crc = readUint32(b[8:])
   195  	return nil
   196  }
   197  
   198  func appendUint32(b []byte, x uint32) []byte {
   199  	a := [4]byte{
   200  		byte(x >> 24),
   201  		byte(x >> 16),
   202  		byte(x >> 8),
   203  		byte(x),
   204  	}
   205  	return append(b, a[:]...)
   206  }
   207  
   208  func readUint32(b []byte) uint32 {
   209  	_ = b[3]
   210  	return uint32(b[3]) | uint32(b[2])<<8 | uint32(b[1])<<16 | uint32(b[0])<<24
   211  }
   212  
   213  // Update returns the result of adding the bytes in p to the crc.
   214  func Update(crc uint32, tab *Table, p []byte) uint32 {
   215  	switch {
   216  	case atomic.LoadUint32(&haveCastagnoli) != 0 && tab == castagnoliTable:
   217  		return updateCastagnoli(crc, p)
   218  	case tab == IEEETable:
   219  		// Unfortunately, because IEEETable is exported, IEEE may be used without a
   220  		// call to MakeTable. We have to make sure it gets initialized in that case.
   221  		ieeeOnce.Do(ieeeInit)
   222  		return updateIEEE(crc, p)
   223  	default:
   224  		return simpleUpdate(crc, tab, p)
   225  	}
   226  }
   227  
   228  func (d *digest) Write(p []byte) (n int, err error) {
   229  	switch {
   230  	case atomic.LoadUint32(&haveCastagnoli) != 0 && d.tab == castagnoliTable:
   231  		d.crc = updateCastagnoli(d.crc, p)
   232  	case d.tab == IEEETable:
   233  		// We only create digest objects through New() which takes care of
   234  		// initialization in this case.
   235  		d.crc = updateIEEE(d.crc, p)
   236  	default:
   237  		d.crc = simpleUpdate(d.crc, d.tab, p)
   238  	}
   239  	return len(p), nil
   240  }
   241  
   242  func (d *digest) Sum32() uint32 { return d.crc }
   243  
   244  func (d *digest) Sum(in []byte) []byte {
   245  	s := d.Sum32()
   246  	return append(in, byte(s>>24), byte(s>>16), byte(s>>8), byte(s))
   247  }
   248  
   249  // Checksum returns the CRC-32 checksum of data
   250  // using the polynomial represented by the Table.
   251  func Checksum(data []byte, tab *Table) uint32 { return Update(0, tab, data) }
   252  
   253  // ChecksumIEEE returns the CRC-32 checksum of data
   254  // using the IEEE polynomial.
   255  func ChecksumIEEE(data []byte) uint32 {
   256  	ieeeOnce.Do(ieeeInit)
   257  	return updateIEEE(0, data)
   258  }
   259  
   260  // tableSum returns the IEEE checksum of table t.
   261  func tableSum(t *Table) uint32 {
   262  	var a [1024]byte
   263  	b := a[:0]
   264  	if t != nil {
   265  		for _, x := range t {
   266  			b = appendUint32(b, x)
   267  		}
   268  	}
   269  	return ChecksumIEEE(b)
   270  }
   271  

View as plain text