Source file src/runtime/mwbbuf.go
1 // Copyright 2017 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // This implements the write barrier buffer. The write barrier itself 6 // is gcWriteBarrier and is implemented in assembly. 7 // 8 // See mbarrier.go for algorithmic details on the write barrier. This 9 // file deals only with the buffer. 10 // 11 // The write barrier has a fast path and a slow path. The fast path 12 // simply enqueues to a per-P write barrier buffer. It's written in 13 // assembly and doesn't clobber any general purpose registers, so it 14 // doesn't have the usual overheads of a Go call. 15 // 16 // When the buffer fills up, the write barrier invokes the slow path 17 // (wbBufFlush) to flush the buffer to the GC work queues. In this 18 // path, since the compiler didn't spill registers, we spill *all* 19 // registers and disallow any GC safe points that could observe the 20 // stack frame (since we don't know the types of the spilled 21 // registers). 22 23 package runtime 24 25 import ( 26 "internal/goarch" 27 "runtime/internal/atomic" 28 "unsafe" 29 ) 30 31 // testSmallBuf forces a small write barrier buffer to stress write 32 // barrier flushing. 33 const testSmallBuf = false 34 35 // wbBuf is a per-P buffer of pointers queued by the write barrier. 36 // This buffer is flushed to the GC workbufs when it fills up and on 37 // various GC transitions. 38 // 39 // This is closely related to a "sequential store buffer" (SSB), 40 // except that SSBs are usually used for maintaining remembered sets, 41 // while this is used for marking. 42 type wbBuf struct { 43 // next points to the next slot in buf. It must not be a 44 // pointer type because it can point past the end of buf and 45 // must be updated without write barriers. 46 // 47 // This is a pointer rather than an index to optimize the 48 // write barrier assembly. 49 next uintptr 50 51 // end points to just past the end of buf. It must not be a 52 // pointer type because it points past the end of buf and must 53 // be updated without write barriers. 54 end uintptr 55 56 // buf stores a series of pointers to execute write barriers 57 // on. This must be a multiple of wbBufEntryPointers because 58 // the write barrier only checks for overflow once per entry. 59 buf [wbBufEntryPointers * wbBufEntries]uintptr 60 } 61 62 const ( 63 // wbBufEntries is the number of write barriers between 64 // flushes of the write barrier buffer. 65 // 66 // This trades latency for throughput amortization. Higher 67 // values amortize flushing overhead more, but increase the 68 // latency of flushing. Higher values also increase the cache 69 // footprint of the buffer. 70 // 71 // TODO: What is the latency cost of this? Tune this value. 72 wbBufEntries = 256 73 74 // wbBufEntryPointers is the number of pointers added to the 75 // buffer by each write barrier. 76 wbBufEntryPointers = 2 77 ) 78 79 // reset empties b by resetting its next and end pointers. 80 func (b *wbBuf) reset() { 81 start := uintptr(unsafe.Pointer(&b.buf[0])) 82 b.next = start 83 if writeBarrier.cgo { 84 // Effectively disable the buffer by forcing a flush 85 // on every barrier. 86 b.end = uintptr(unsafe.Pointer(&b.buf[wbBufEntryPointers])) 87 } else if testSmallBuf { 88 // For testing, allow two barriers in the buffer. If 89 // we only did one, then barriers of non-heap pointers 90 // would be no-ops. This lets us combine a buffered 91 // barrier with a flush at a later time. 92 b.end = uintptr(unsafe.Pointer(&b.buf[2*wbBufEntryPointers])) 93 } else { 94 b.end = start + uintptr(len(b.buf))*unsafe.Sizeof(b.buf[0]) 95 } 96 97 if (b.end-b.next)%(wbBufEntryPointers*unsafe.Sizeof(b.buf[0])) != 0 { 98 throw("bad write barrier buffer bounds") 99 } 100 } 101 102 // discard resets b's next pointer, but not its end pointer. 103 // 104 // This must be nosplit because it's called by wbBufFlush. 105 // 106 //go:nosplit 107 func (b *wbBuf) discard() { 108 b.next = uintptr(unsafe.Pointer(&b.buf[0])) 109 } 110 111 // empty reports whether b contains no pointers. 112 func (b *wbBuf) empty() bool { 113 return b.next == uintptr(unsafe.Pointer(&b.buf[0])) 114 } 115 116 // putFast adds old and new to the write barrier buffer and returns 117 // false if a flush is necessary. Callers should use this as: 118 // 119 // buf := &getg().m.p.ptr().wbBuf 120 // if !buf.putFast(old, new) { 121 // wbBufFlush(...) 122 // } 123 // ... actual memory write ... 124 // 125 // The arguments to wbBufFlush depend on whether the caller is doing 126 // its own cgo pointer checks. If it is, then this can be 127 // wbBufFlush(nil, 0). Otherwise, it must pass the slot address and 128 // new. 129 // 130 // The caller must ensure there are no preemption points during the 131 // above sequence. There must be no preemption points while buf is in 132 // use because it is a per-P resource. There must be no preemption 133 // points between the buffer put and the write to memory because this 134 // could allow a GC phase change, which could result in missed write 135 // barriers. 136 // 137 // putFast must be nowritebarrierrec to because write barriers here would 138 // corrupt the write barrier buffer. It (and everything it calls, if 139 // it called anything) has to be nosplit to avoid scheduling on to a 140 // different P and a different buffer. 141 // 142 //go:nowritebarrierrec 143 //go:nosplit 144 func (b *wbBuf) putFast(old, new uintptr) bool { 145 p := (*[2]uintptr)(unsafe.Pointer(b.next)) 146 p[0] = old 147 p[1] = new 148 b.next += 2 * goarch.PtrSize 149 return b.next != b.end 150 } 151 152 // wbBufFlush flushes the current P's write barrier buffer to the GC 153 // workbufs. It is passed the slot and value of the write barrier that 154 // caused the flush so that it can implement cgocheck. 155 // 156 // This must not have write barriers because it is part of the write 157 // barrier implementation. 158 // 159 // This and everything it calls must be nosplit because 1) the stack 160 // contains untyped slots from gcWriteBarrier and 2) there must not be 161 // a GC safe point between the write barrier test in the caller and 162 // flushing the buffer. 163 // 164 // TODO: A "go:nosplitrec" annotation would be perfect for this. 165 // 166 //go:nowritebarrierrec 167 //go:nosplit 168 func wbBufFlush(dst *uintptr, src uintptr) { 169 // Note: Every possible return from this function must reset 170 // the buffer's next pointer to prevent buffer overflow. 171 172 // This *must not* modify its arguments because this 173 // function's argument slots do double duty in gcWriteBarrier 174 // as register spill slots. Currently, not modifying the 175 // arguments is sufficient to keep the spill slots unmodified 176 // (which seems unlikely to change since it costs little and 177 // helps with debugging). 178 179 if getg().m.dying > 0 { 180 // We're going down. Not much point in write barriers 181 // and this way we can allow write barriers in the 182 // panic path. 183 getg().m.p.ptr().wbBuf.discard() 184 return 185 } 186 187 if writeBarrier.cgo && dst != nil { 188 // This must be called from the stack that did the 189 // write. It's nosplit all the way down. 190 cgoCheckWriteBarrier(dst, src) 191 if !writeBarrier.needed { 192 // We were only called for cgocheck. 193 getg().m.p.ptr().wbBuf.discard() 194 return 195 } 196 } 197 198 // Switch to the system stack so we don't have to worry about 199 // the untyped stack slots or safe points. 200 systemstack(func() { 201 wbBufFlush1(getg().m.p.ptr()) 202 }) 203 } 204 205 // wbBufFlush1 flushes p's write barrier buffer to the GC work queue. 206 // 207 // This must not have write barriers because it is part of the write 208 // barrier implementation, so this may lead to infinite loops or 209 // buffer corruption. 210 // 211 // This must be non-preemptible because it uses the P's workbuf. 212 // 213 //go:nowritebarrierrec 214 //go:systemstack 215 func wbBufFlush1(_p_ *p) { 216 // Get the buffered pointers. 217 start := uintptr(unsafe.Pointer(&_p_.wbBuf.buf[0])) 218 n := (_p_.wbBuf.next - start) / unsafe.Sizeof(_p_.wbBuf.buf[0]) 219 ptrs := _p_.wbBuf.buf[:n] 220 221 // Poison the buffer to make extra sure nothing is enqueued 222 // while we're processing the buffer. 223 _p_.wbBuf.next = 0 224 225 if useCheckmark { 226 // Slow path for checkmark mode. 227 for _, ptr := range ptrs { 228 shade(ptr) 229 } 230 _p_.wbBuf.reset() 231 return 232 } 233 234 // Mark all of the pointers in the buffer and record only the 235 // pointers we greyed. We use the buffer itself to temporarily 236 // record greyed pointers. 237 // 238 // TODO: Should scanobject/scanblock just stuff pointers into 239 // the wbBuf? Then this would become the sole greying path. 240 // 241 // TODO: We could avoid shading any of the "new" pointers in 242 // the buffer if the stack has been shaded, or even avoid 243 // putting them in the buffer at all (which would double its 244 // capacity). This is slightly complicated with the buffer; we 245 // could track whether any un-shaded goroutine has used the 246 // buffer, or just track globally whether there are any 247 // un-shaded stacks and flush after each stack scan. 248 gcw := &_p_.gcw 249 pos := 0 250 for _, ptr := range ptrs { 251 if ptr < minLegalPointer { 252 // nil pointers are very common, especially 253 // for the "old" values. Filter out these and 254 // other "obvious" non-heap pointers ASAP. 255 // 256 // TODO: Should we filter out nils in the fast 257 // path to reduce the rate of flushes? 258 continue 259 } 260 obj, span, objIndex := findObject(ptr, 0, 0) 261 if obj == 0 { 262 continue 263 } 264 // TODO: Consider making two passes where the first 265 // just prefetches the mark bits. 266 mbits := span.markBitsForIndex(objIndex) 267 if mbits.isMarked() { 268 continue 269 } 270 mbits.setMarked() 271 272 // Mark span. 273 arena, pageIdx, pageMask := pageIndexOf(span.base()) 274 if arena.pageMarks[pageIdx]&pageMask == 0 { 275 atomic.Or8(&arena.pageMarks[pageIdx], pageMask) 276 } 277 278 if span.spanclass.noscan() { 279 gcw.bytesMarked += uint64(span.elemsize) 280 continue 281 } 282 ptrs[pos] = obj 283 pos++ 284 } 285 286 // Enqueue the greyed objects. 287 gcw.putBatch(ptrs[:pos]) 288 289 _p_.wbBuf.reset() 290 } 291