Source file src/runtime/preempt.go

     1  // Copyright 2019 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Goroutine preemption
     6  //
     7  // A goroutine can be preempted at any safe-point. Currently, there
     8  // are a few categories of safe-points:
     9  //
    10  // 1. A blocked safe-point occurs for the duration that a goroutine is
    11  //    descheduled, blocked on synchronization, or in a system call.
    12  //
    13  // 2. Synchronous safe-points occur when a running goroutine checks
    14  //    for a preemption request.
    15  //
    16  // 3. Asynchronous safe-points occur at any instruction in user code
    17  //    where the goroutine can be safely paused and a conservative
    18  //    stack and register scan can find stack roots. The runtime can
    19  //    stop a goroutine at an async safe-point using a signal.
    20  //
    21  // At both blocked and synchronous safe-points, a goroutine's CPU
    22  // state is minimal and the garbage collector has complete information
    23  // about its entire stack. This makes it possible to deschedule a
    24  // goroutine with minimal space, and to precisely scan a goroutine's
    25  // stack.
    26  //
    27  // Synchronous safe-points are implemented by overloading the stack
    28  // bound check in function prologues. To preempt a goroutine at the
    29  // next synchronous safe-point, the runtime poisons the goroutine's
    30  // stack bound to a value that will cause the next stack bound check
    31  // to fail and enter the stack growth implementation, which will
    32  // detect that it was actually a preemption and redirect to preemption
    33  // handling.
    34  //
    35  // Preemption at asynchronous safe-points is implemented by suspending
    36  // the thread using an OS mechanism (e.g., signals) and inspecting its
    37  // state to determine if the goroutine was at an asynchronous
    38  // safe-point. Since the thread suspension itself is generally
    39  // asynchronous, it also checks if the running goroutine wants to be
    40  // preempted, since this could have changed. If all conditions are
    41  // satisfied, it adjusts the signal context to make it look like the
    42  // signaled thread just called asyncPreempt and resumes the thread.
    43  // asyncPreempt spills all registers and enters the scheduler.
    44  //
    45  // (An alternative would be to preempt in the signal handler itself.
    46  // This would let the OS save and restore the register state and the
    47  // runtime would only need to know how to extract potentially
    48  // pointer-containing registers from the signal context. However, this
    49  // would consume an M for every preempted G, and the scheduler itself
    50  // is not designed to run from a signal handler, as it tends to
    51  // allocate memory and start threads in the preemption path.)
    52  
    53  package runtime
    54  
    55  import (
    56  	"internal/abi"
    57  	"internal/goarch"
    58  	"runtime/internal/atomic"
    59  )
    60  
    61  type suspendGState struct {
    62  	g *g
    63  
    64  	// dead indicates the goroutine was not suspended because it
    65  	// is dead. This goroutine could be reused after the dead
    66  	// state was observed, so the caller must not assume that it
    67  	// remains dead.
    68  	dead bool
    69  
    70  	// stopped indicates that this suspendG transitioned the G to
    71  	// _Gwaiting via g.preemptStop and thus is responsible for
    72  	// readying it when done.
    73  	stopped bool
    74  }
    75  
    76  // suspendG suspends goroutine gp at a safe-point and returns the
    77  // state of the suspended goroutine. The caller gets read access to
    78  // the goroutine until it calls resumeG.
    79  //
    80  // It is safe for multiple callers to attempt to suspend the same
    81  // goroutine at the same time. The goroutine may execute between
    82  // subsequent successful suspend operations. The current
    83  // implementation grants exclusive access to the goroutine, and hence
    84  // multiple callers will serialize. However, the intent is to grant
    85  // shared read access, so please don't depend on exclusive access.
    86  //
    87  // This must be called from the system stack and the user goroutine on
    88  // the current M (if any) must be in a preemptible state. This
    89  // prevents deadlocks where two goroutines attempt to suspend each
    90  // other and both are in non-preemptible states. There are other ways
    91  // to resolve this deadlock, but this seems simplest.
    92  //
    93  // TODO(austin): What if we instead required this to be called from a
    94  // user goroutine? Then we could deschedule the goroutine while
    95  // waiting instead of blocking the thread. If two goroutines tried to
    96  // suspend each other, one of them would win and the other wouldn't
    97  // complete the suspend until it was resumed. We would have to be
    98  // careful that they couldn't actually queue up suspend for each other
    99  // and then both be suspended. This would also avoid the need for a
   100  // kernel context switch in the synchronous case because we could just
   101  // directly schedule the waiter. The context switch is unavoidable in
   102  // the signal case.
   103  //
   104  //go:systemstack
   105  func suspendG(gp *g) suspendGState {
   106  	if mp := getg().m; mp.curg != nil && readgstatus(mp.curg) == _Grunning {
   107  		// Since we're on the system stack of this M, the user
   108  		// G is stuck at an unsafe point. If another goroutine
   109  		// were to try to preempt m.curg, it could deadlock.
   110  		throw("suspendG from non-preemptible goroutine")
   111  	}
   112  
   113  	// See https://golang.org/cl/21503 for justification of the yield delay.
   114  	const yieldDelay = 10 * 1000
   115  	var nextYield int64
   116  
   117  	// Drive the goroutine to a preemption point.
   118  	stopped := false
   119  	var asyncM *m
   120  	var asyncGen uint32
   121  	var nextPreemptM int64
   122  	for i := 0; ; i++ {
   123  		switch s := readgstatus(gp); s {
   124  		default:
   125  			if s&_Gscan != 0 {
   126  				// Someone else is suspending it. Wait
   127  				// for them to finish.
   128  				//
   129  				// TODO: It would be nicer if we could
   130  				// coalesce suspends.
   131  				break
   132  			}
   133  
   134  			dumpgstatus(gp)
   135  			throw("invalid g status")
   136  
   137  		case _Gdead:
   138  			// Nothing to suspend.
   139  			//
   140  			// preemptStop may need to be cleared, but
   141  			// doing that here could race with goroutine
   142  			// reuse. Instead, goexit0 clears it.
   143  			return suspendGState{dead: true}
   144  
   145  		case _Gcopystack:
   146  			// The stack is being copied. We need to wait
   147  			// until this is done.
   148  
   149  		case _Gpreempted:
   150  			// We (or someone else) suspended the G. Claim
   151  			// ownership of it by transitioning it to
   152  			// _Gwaiting.
   153  			if !casGFromPreempted(gp, _Gpreempted, _Gwaiting) {
   154  				break
   155  			}
   156  
   157  			// We stopped the G, so we have to ready it later.
   158  			stopped = true
   159  
   160  			s = _Gwaiting
   161  			fallthrough
   162  
   163  		case _Grunnable, _Gsyscall, _Gwaiting:
   164  			// Claim goroutine by setting scan bit.
   165  			// This may race with execution or readying of gp.
   166  			// The scan bit keeps it from transition state.
   167  			if !castogscanstatus(gp, s, s|_Gscan) {
   168  				break
   169  			}
   170  
   171  			// Clear the preemption request. It's safe to
   172  			// reset the stack guard because we hold the
   173  			// _Gscan bit and thus own the stack.
   174  			gp.preemptStop = false
   175  			gp.preempt = false
   176  			gp.stackguard0 = gp.stack.lo + _StackGuard
   177  
   178  			// The goroutine was already at a safe-point
   179  			// and we've now locked that in.
   180  			//
   181  			// TODO: It would be much better if we didn't
   182  			// leave it in _Gscan, but instead gently
   183  			// prevented its scheduling until resumption.
   184  			// Maybe we only use this to bump a suspended
   185  			// count and the scheduler skips suspended
   186  			// goroutines? That wouldn't be enough for
   187  			// {_Gsyscall,_Gwaiting} -> _Grunning. Maybe
   188  			// for all those transitions we need to check
   189  			// suspended and deschedule?
   190  			return suspendGState{g: gp, stopped: stopped}
   191  
   192  		case _Grunning:
   193  			// Optimization: if there is already a pending preemption request
   194  			// (from the previous loop iteration), don't bother with the atomics.
   195  			if gp.preemptStop && gp.preempt && gp.stackguard0 == stackPreempt && asyncM == gp.m && atomic.Load(&asyncM.preemptGen) == asyncGen {
   196  				break
   197  			}
   198  
   199  			// Temporarily block state transitions.
   200  			if !castogscanstatus(gp, _Grunning, _Gscanrunning) {
   201  				break
   202  			}
   203  
   204  			// Request synchronous preemption.
   205  			gp.preemptStop = true
   206  			gp.preempt = true
   207  			gp.stackguard0 = stackPreempt
   208  
   209  			// Prepare for asynchronous preemption.
   210  			asyncM2 := gp.m
   211  			asyncGen2 := atomic.Load(&asyncM2.preemptGen)
   212  			needAsync := asyncM != asyncM2 || asyncGen != asyncGen2
   213  			asyncM = asyncM2
   214  			asyncGen = asyncGen2
   215  
   216  			casfrom_Gscanstatus(gp, _Gscanrunning, _Grunning)
   217  
   218  			// Send asynchronous preemption. We do this
   219  			// after CASing the G back to _Grunning
   220  			// because preemptM may be synchronous and we
   221  			// don't want to catch the G just spinning on
   222  			// its status.
   223  			if preemptMSupported && debug.asyncpreemptoff == 0 && needAsync {
   224  				// Rate limit preemptM calls. This is
   225  				// particularly important on Windows
   226  				// where preemptM is actually
   227  				// synchronous and the spin loop here
   228  				// can lead to live-lock.
   229  				now := nanotime()
   230  				if now >= nextPreemptM {
   231  					nextPreemptM = now + yieldDelay/2
   232  					preemptM(asyncM)
   233  				}
   234  			}
   235  		}
   236  
   237  		// TODO: Don't busy wait. This loop should really only
   238  		// be a simple read/decide/CAS loop that only fails if
   239  		// there's an active race. Once the CAS succeeds, we
   240  		// should queue up the preemption (which will require
   241  		// it to be reliable in the _Grunning case, not
   242  		// best-effort) and then sleep until we're notified
   243  		// that the goroutine is suspended.
   244  		if i == 0 {
   245  			nextYield = nanotime() + yieldDelay
   246  		}
   247  		if nanotime() < nextYield {
   248  			procyield(10)
   249  		} else {
   250  			osyield()
   251  			nextYield = nanotime() + yieldDelay/2
   252  		}
   253  	}
   254  }
   255  
   256  // resumeG undoes the effects of suspendG, allowing the suspended
   257  // goroutine to continue from its current safe-point.
   258  func resumeG(state suspendGState) {
   259  	if state.dead {
   260  		// We didn't actually stop anything.
   261  		return
   262  	}
   263  
   264  	gp := state.g
   265  	switch s := readgstatus(gp); s {
   266  	default:
   267  		dumpgstatus(gp)
   268  		throw("unexpected g status")
   269  
   270  	case _Grunnable | _Gscan,
   271  		_Gwaiting | _Gscan,
   272  		_Gsyscall | _Gscan:
   273  		casfrom_Gscanstatus(gp, s, s&^_Gscan)
   274  	}
   275  
   276  	if state.stopped {
   277  		// We stopped it, so we need to re-schedule it.
   278  		ready(gp, 0, true)
   279  	}
   280  }
   281  
   282  // canPreemptM reports whether mp is in a state that is safe to preempt.
   283  //
   284  // It is nosplit because it has nosplit callers.
   285  //
   286  //go:nosplit
   287  func canPreemptM(mp *m) bool {
   288  	return mp.locks == 0 && mp.mallocing == 0 && mp.preemptoff == "" && mp.p.ptr().status == _Prunning
   289  }
   290  
   291  //go:generate go run mkpreempt.go
   292  
   293  // asyncPreempt saves all user registers and calls asyncPreempt2.
   294  //
   295  // When stack scanning encounters an asyncPreempt frame, it scans that
   296  // frame and its parent frame conservatively.
   297  //
   298  // asyncPreempt is implemented in assembly.
   299  func asyncPreempt()
   300  
   301  //go:nosplit
   302  func asyncPreempt2() {
   303  	gp := getg()
   304  	gp.asyncSafePoint = true
   305  	if gp.preemptStop {
   306  		mcall(preemptPark)
   307  	} else {
   308  		mcall(gopreempt_m)
   309  	}
   310  	gp.asyncSafePoint = false
   311  }
   312  
   313  // asyncPreemptStack is the bytes of stack space required to inject an
   314  // asyncPreempt call.
   315  var asyncPreemptStack = ^uintptr(0)
   316  
   317  func init() {
   318  	f := findfunc(abi.FuncPCABI0(asyncPreempt))
   319  	total := funcMaxSPDelta(f)
   320  	f = findfunc(abi.FuncPCABIInternal(asyncPreempt2))
   321  	total += funcMaxSPDelta(f)
   322  	// Add some overhead for return PCs, etc.
   323  	asyncPreemptStack = uintptr(total) + 8*goarch.PtrSize
   324  	if asyncPreemptStack > _StackLimit {
   325  		// We need more than the nosplit limit. This isn't
   326  		// unsafe, but it may limit asynchronous preemption.
   327  		//
   328  		// This may be a problem if we start using more
   329  		// registers. In that case, we should store registers
   330  		// in a context object. If we pre-allocate one per P,
   331  		// asyncPreempt can spill just a few registers to the
   332  		// stack, then grab its context object and spill into
   333  		// it. When it enters the runtime, it would allocate a
   334  		// new context for the P.
   335  		print("runtime: asyncPreemptStack=", asyncPreemptStack, "\n")
   336  		throw("async stack too large")
   337  	}
   338  }
   339  
   340  // wantAsyncPreempt returns whether an asynchronous preemption is
   341  // queued for gp.
   342  func wantAsyncPreempt(gp *g) bool {
   343  	// Check both the G and the P.
   344  	return (gp.preempt || gp.m.p != 0 && gp.m.p.ptr().preempt) && readgstatus(gp)&^_Gscan == _Grunning
   345  }
   346  
   347  // isAsyncSafePoint reports whether gp at instruction PC is an
   348  // asynchronous safe point. This indicates that:
   349  //
   350  // 1. It's safe to suspend gp and conservatively scan its stack and
   351  // registers. There are no potentially hidden pointer values and it's
   352  // not in the middle of an atomic sequence like a write barrier.
   353  //
   354  // 2. gp has enough stack space to inject the asyncPreempt call.
   355  //
   356  // 3. It's generally safe to interact with the runtime, even if we're
   357  // in a signal handler stopped here. For example, there are no runtime
   358  // locks held, so acquiring a runtime lock won't self-deadlock.
   359  //
   360  // In some cases the PC is safe for asynchronous preemption but it
   361  // also needs to adjust the resumption PC. The new PC is returned in
   362  // the second result.
   363  func isAsyncSafePoint(gp *g, pc, sp, lr uintptr) (bool, uintptr) {
   364  	mp := gp.m
   365  
   366  	// Only user Gs can have safe-points. We check this first
   367  	// because it's extremely common that we'll catch mp in the
   368  	// scheduler processing this G preemption.
   369  	if mp.curg != gp {
   370  		return false, 0
   371  	}
   372  
   373  	// Check M state.
   374  	if mp.p == 0 || !canPreemptM(mp) {
   375  		return false, 0
   376  	}
   377  
   378  	// Check stack space.
   379  	if sp < gp.stack.lo || sp-gp.stack.lo < asyncPreemptStack {
   380  		return false, 0
   381  	}
   382  
   383  	// Check if PC is an unsafe-point.
   384  	f := findfunc(pc)
   385  	if !f.valid() {
   386  		// Not Go code.
   387  		return false, 0
   388  	}
   389  	if (GOARCH == "mips" || GOARCH == "mipsle" || GOARCH == "mips64" || GOARCH == "mips64le") && lr == pc+8 && funcspdelta(f, pc, nil) == 0 {
   390  		// We probably stopped at a half-executed CALL instruction,
   391  		// where the LR is updated but the PC has not. If we preempt
   392  		// here we'll see a seemingly self-recursive call, which is in
   393  		// fact not.
   394  		// This is normally ok, as we use the return address saved on
   395  		// stack for unwinding, not the LR value. But if this is a
   396  		// call to morestack, we haven't created the frame, and we'll
   397  		// use the LR for unwinding, which will be bad.
   398  		return false, 0
   399  	}
   400  	up, startpc := pcdatavalue2(f, _PCDATA_UnsafePoint, pc)
   401  	if up == _PCDATA_UnsafePointUnsafe {
   402  		// Unsafe-point marked by compiler. This includes
   403  		// atomic sequences (e.g., write barrier) and nosplit
   404  		// functions (except at calls).
   405  		return false, 0
   406  	}
   407  	if fd := funcdata(f, _FUNCDATA_LocalsPointerMaps); fd == nil || f.flag&funcFlag_ASM != 0 {
   408  		// This is assembly code. Don't assume it's well-formed.
   409  		// TODO: Empirically we still need the fd == nil check. Why?
   410  		//
   411  		// TODO: Are there cases that are safe but don't have a
   412  		// locals pointer map, like empty frame functions?
   413  		// It might be possible to preempt any assembly functions
   414  		// except the ones that have funcFlag_SPWRITE set in f.flag.
   415  		return false, 0
   416  	}
   417  	name := funcname(f)
   418  	if inldata := funcdata(f, _FUNCDATA_InlTree); inldata != nil {
   419  		inltree := (*[1 << 20]inlinedCall)(inldata)
   420  		ix := pcdatavalue(f, _PCDATA_InlTreeIndex, pc, nil)
   421  		if ix >= 0 {
   422  			name = funcnameFromNameoff(f, inltree[ix].func_)
   423  		}
   424  	}
   425  	if hasPrefix(name, "runtime.") ||
   426  		hasPrefix(name, "runtime/internal/") ||
   427  		hasPrefix(name, "reflect.") {
   428  		// For now we never async preempt the runtime or
   429  		// anything closely tied to the runtime. Known issues
   430  		// include: various points in the scheduler ("don't
   431  		// preempt between here and here"), much of the defer
   432  		// implementation (untyped info on stack), bulk write
   433  		// barriers (write barrier check),
   434  		// reflect.{makeFuncStub,methodValueCall}.
   435  		//
   436  		// TODO(austin): We should improve this, or opt things
   437  		// in incrementally.
   438  		return false, 0
   439  	}
   440  	switch up {
   441  	case _PCDATA_Restart1, _PCDATA_Restart2:
   442  		// Restartable instruction sequence. Back off PC to
   443  		// the start PC.
   444  		if startpc == 0 || startpc > pc || pc-startpc > 20 {
   445  			throw("bad restart PC")
   446  		}
   447  		return true, startpc
   448  	case _PCDATA_RestartAtEntry:
   449  		// Restart from the function entry at resumption.
   450  		return true, f.entry()
   451  	}
   452  	return true, pc
   453  }
   454  

View as plain text