Source file src/runtime/signal_unix.go
1 // Copyright 2012 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 //go:build aix || darwin || dragonfly || freebsd || linux || netbsd || openbsd || solaris 6 7 package runtime 8 9 import ( 10 "internal/abi" 11 "runtime/internal/atomic" 12 "runtime/internal/sys" 13 "unsafe" 14 ) 15 16 // sigTabT is the type of an entry in the global sigtable array. 17 // sigtable is inherently system dependent, and appears in OS-specific files, 18 // but sigTabT is the same for all Unixy systems. 19 // The sigtable array is indexed by a system signal number to get the flags 20 // and printable name of each signal. 21 type sigTabT struct { 22 flags int32 23 name string 24 } 25 26 //go:linkname os_sigpipe os.sigpipe 27 func os_sigpipe() { 28 systemstack(sigpipe) 29 } 30 31 func signame(sig uint32) string { 32 if sig >= uint32(len(sigtable)) { 33 return "" 34 } 35 return sigtable[sig].name 36 } 37 38 const ( 39 _SIG_DFL uintptr = 0 40 _SIG_IGN uintptr = 1 41 ) 42 43 // sigPreempt is the signal used for non-cooperative preemption. 44 // 45 // There's no good way to choose this signal, but there are some 46 // heuristics: 47 // 48 // 1. It should be a signal that's passed-through by debuggers by 49 // default. On Linux, this is SIGALRM, SIGURG, SIGCHLD, SIGIO, 50 // SIGVTALRM, SIGPROF, and SIGWINCH, plus some glibc-internal signals. 51 // 52 // 2. It shouldn't be used internally by libc in mixed Go/C binaries 53 // because libc may assume it's the only thing that can handle these 54 // signals. For example SIGCANCEL or SIGSETXID. 55 // 56 // 3. It should be a signal that can happen spuriously without 57 // consequences. For example, SIGALRM is a bad choice because the 58 // signal handler can't tell if it was caused by the real process 59 // alarm or not (arguably this means the signal is broken, but I 60 // digress). SIGUSR1 and SIGUSR2 are also bad because those are often 61 // used in meaningful ways by applications. 62 // 63 // 4. We need to deal with platforms without real-time signals (like 64 // macOS), so those are out. 65 // 66 // We use SIGURG because it meets all of these criteria, is extremely 67 // unlikely to be used by an application for its "real" meaning (both 68 // because out-of-band data is basically unused and because SIGURG 69 // doesn't report which socket has the condition, making it pretty 70 // useless), and even if it is, the application has to be ready for 71 // spurious SIGURG. SIGIO wouldn't be a bad choice either, but is more 72 // likely to be used for real. 73 const sigPreempt = _SIGURG 74 75 // Stores the signal handlers registered before Go installed its own. 76 // These signal handlers will be invoked in cases where Go doesn't want to 77 // handle a particular signal (e.g., signal occurred on a non-Go thread). 78 // See sigfwdgo for more information on when the signals are forwarded. 79 // 80 // This is read by the signal handler; accesses should use 81 // atomic.Loaduintptr and atomic.Storeuintptr. 82 var fwdSig [_NSIG]uintptr 83 84 // handlingSig is indexed by signal number and is non-zero if we are 85 // currently handling the signal. Or, to put it another way, whether 86 // the signal handler is currently set to the Go signal handler or not. 87 // This is uint32 rather than bool so that we can use atomic instructions. 88 var handlingSig [_NSIG]uint32 89 90 // channels for synchronizing signal mask updates with the signal mask 91 // thread 92 var ( 93 disableSigChan chan uint32 94 enableSigChan chan uint32 95 maskUpdatedChan chan struct{} 96 ) 97 98 func init() { 99 // _NSIG is the number of signals on this operating system. 100 // sigtable should describe what to do for all the possible signals. 101 if len(sigtable) != _NSIG { 102 print("runtime: len(sigtable)=", len(sigtable), " _NSIG=", _NSIG, "\n") 103 throw("bad sigtable len") 104 } 105 } 106 107 var signalsOK bool 108 109 // Initialize signals. 110 // Called by libpreinit so runtime may not be initialized. 111 //go:nosplit 112 //go:nowritebarrierrec 113 func initsig(preinit bool) { 114 if !preinit { 115 // It's now OK for signal handlers to run. 116 signalsOK = true 117 } 118 119 // For c-archive/c-shared this is called by libpreinit with 120 // preinit == true. 121 if (isarchive || islibrary) && !preinit { 122 return 123 } 124 125 for i := uint32(0); i < _NSIG; i++ { 126 t := &sigtable[i] 127 if t.flags == 0 || t.flags&_SigDefault != 0 { 128 continue 129 } 130 131 // We don't need to use atomic operations here because 132 // there shouldn't be any other goroutines running yet. 133 fwdSig[i] = getsig(i) 134 135 if !sigInstallGoHandler(i) { 136 // Even if we are not installing a signal handler, 137 // set SA_ONSTACK if necessary. 138 if fwdSig[i] != _SIG_DFL && fwdSig[i] != _SIG_IGN { 139 setsigstack(i) 140 } else if fwdSig[i] == _SIG_IGN { 141 sigInitIgnored(i) 142 } 143 continue 144 } 145 146 handlingSig[i] = 1 147 setsig(i, abi.FuncPCABIInternal(sighandler)) 148 } 149 } 150 151 //go:nosplit 152 //go:nowritebarrierrec 153 func sigInstallGoHandler(sig uint32) bool { 154 // For some signals, we respect an inherited SIG_IGN handler 155 // rather than insist on installing our own default handler. 156 // Even these signals can be fetched using the os/signal package. 157 switch sig { 158 case _SIGHUP, _SIGINT: 159 if atomic.Loaduintptr(&fwdSig[sig]) == _SIG_IGN { 160 return false 161 } 162 } 163 164 if (GOOS == "linux" || GOOS == "android") && !iscgo && sig == sigPerThreadSyscall { 165 // sigPerThreadSyscall is the same signal used by glibc for 166 // per-thread syscalls on Linux. We use it for the same purpose 167 // in non-cgo binaries. 168 return true 169 } 170 171 t := &sigtable[sig] 172 if t.flags&_SigSetStack != 0 { 173 return false 174 } 175 176 // When built using c-archive or c-shared, only install signal 177 // handlers for synchronous signals and SIGPIPE and sigPreempt. 178 if (isarchive || islibrary) && t.flags&_SigPanic == 0 && sig != _SIGPIPE && sig != sigPreempt { 179 return false 180 } 181 182 return true 183 } 184 185 // sigenable enables the Go signal handler to catch the signal sig. 186 // It is only called while holding the os/signal.handlers lock, 187 // via os/signal.enableSignal and signal_enable. 188 func sigenable(sig uint32) { 189 if sig >= uint32(len(sigtable)) { 190 return 191 } 192 193 // SIGPROF is handled specially for profiling. 194 if sig == _SIGPROF { 195 return 196 } 197 198 t := &sigtable[sig] 199 if t.flags&_SigNotify != 0 { 200 ensureSigM() 201 enableSigChan <- sig 202 <-maskUpdatedChan 203 if atomic.Cas(&handlingSig[sig], 0, 1) { 204 atomic.Storeuintptr(&fwdSig[sig], getsig(sig)) 205 setsig(sig, abi.FuncPCABIInternal(sighandler)) 206 } 207 } 208 } 209 210 // sigdisable disables the Go signal handler for the signal sig. 211 // It is only called while holding the os/signal.handlers lock, 212 // via os/signal.disableSignal and signal_disable. 213 func sigdisable(sig uint32) { 214 if sig >= uint32(len(sigtable)) { 215 return 216 } 217 218 // SIGPROF is handled specially for profiling. 219 if sig == _SIGPROF { 220 return 221 } 222 223 t := &sigtable[sig] 224 if t.flags&_SigNotify != 0 { 225 ensureSigM() 226 disableSigChan <- sig 227 <-maskUpdatedChan 228 229 // If initsig does not install a signal handler for a 230 // signal, then to go back to the state before Notify 231 // we should remove the one we installed. 232 if !sigInstallGoHandler(sig) { 233 atomic.Store(&handlingSig[sig], 0) 234 setsig(sig, atomic.Loaduintptr(&fwdSig[sig])) 235 } 236 } 237 } 238 239 // sigignore ignores the signal sig. 240 // It is only called while holding the os/signal.handlers lock, 241 // via os/signal.ignoreSignal and signal_ignore. 242 func sigignore(sig uint32) { 243 if sig >= uint32(len(sigtable)) { 244 return 245 } 246 247 // SIGPROF is handled specially for profiling. 248 if sig == _SIGPROF { 249 return 250 } 251 252 t := &sigtable[sig] 253 if t.flags&_SigNotify != 0 { 254 atomic.Store(&handlingSig[sig], 0) 255 setsig(sig, _SIG_IGN) 256 } 257 } 258 259 // clearSignalHandlers clears all signal handlers that are not ignored 260 // back to the default. This is called by the child after a fork, so that 261 // we can enable the signal mask for the exec without worrying about 262 // running a signal handler in the child. 263 //go:nosplit 264 //go:nowritebarrierrec 265 func clearSignalHandlers() { 266 for i := uint32(0); i < _NSIG; i++ { 267 if atomic.Load(&handlingSig[i]) != 0 { 268 setsig(i, _SIG_DFL) 269 } 270 } 271 } 272 273 // setProcessCPUProfilerTimer is called when the profiling timer changes. 274 // It is called with prof.signalLock held. hz is the new timer, and is 0 if 275 // profiling is being disabled. Enable or disable the signal as 276 // required for -buildmode=c-archive. 277 func setProcessCPUProfilerTimer(hz int32) { 278 if hz != 0 { 279 // Enable the Go signal handler if not enabled. 280 if atomic.Cas(&handlingSig[_SIGPROF], 0, 1) { 281 h := getsig(_SIGPROF) 282 // If no signal handler was installed before, then we record 283 // _SIG_IGN here. When we turn off profiling (below) we'll start 284 // ignoring SIGPROF signals. We do this, rather than change 285 // to SIG_DFL, because there may be a pending SIGPROF 286 // signal that has not yet been delivered to some other thread. 287 // If we change to SIG_DFL when turning off profiling, the 288 // program will crash when that SIGPROF is delivered. We assume 289 // that programs that use profiling don't want to crash on a 290 // stray SIGPROF. See issue 19320. 291 // We do the change here instead of when turning off profiling, 292 // because there we may race with a signal handler running 293 // concurrently, in particular, sigfwdgo may observe _SIG_DFL and 294 // die. See issue 43828. 295 if h == _SIG_DFL { 296 h = _SIG_IGN 297 } 298 atomic.Storeuintptr(&fwdSig[_SIGPROF], h) 299 setsig(_SIGPROF, abi.FuncPCABIInternal(sighandler)) 300 } 301 302 var it itimerval 303 it.it_interval.tv_sec = 0 304 it.it_interval.set_usec(1000000 / hz) 305 it.it_value = it.it_interval 306 setitimer(_ITIMER_PROF, &it, nil) 307 } else { 308 setitimer(_ITIMER_PROF, &itimerval{}, nil) 309 310 // If the Go signal handler should be disabled by default, 311 // switch back to the signal handler that was installed 312 // when we enabled profiling. We don't try to handle the case 313 // of a program that changes the SIGPROF handler while Go 314 // profiling is enabled. 315 if !sigInstallGoHandler(_SIGPROF) { 316 if atomic.Cas(&handlingSig[_SIGPROF], 1, 0) { 317 h := atomic.Loaduintptr(&fwdSig[_SIGPROF]) 318 setsig(_SIGPROF, h) 319 } 320 } 321 } 322 } 323 324 // setThreadCPUProfilerHz makes any thread-specific changes required to 325 // implement profiling at a rate of hz. 326 // No changes required on Unix systems when using setitimer. 327 func setThreadCPUProfilerHz(hz int32) { 328 getg().m.profilehz = hz 329 } 330 331 func sigpipe() { 332 if signal_ignored(_SIGPIPE) || sigsend(_SIGPIPE) { 333 return 334 } 335 dieFromSignal(_SIGPIPE) 336 } 337 338 // doSigPreempt handles a preemption signal on gp. 339 func doSigPreempt(gp *g, ctxt *sigctxt) { 340 // Check if this G wants to be preempted and is safe to 341 // preempt. 342 if wantAsyncPreempt(gp) { 343 if ok, newpc := isAsyncSafePoint(gp, ctxt.sigpc(), ctxt.sigsp(), ctxt.siglr()); ok { 344 // Adjust the PC and inject a call to asyncPreempt. 345 ctxt.pushCall(abi.FuncPCABI0(asyncPreempt), newpc) 346 } 347 } 348 349 // Acknowledge the preemption. 350 atomic.Xadd(&gp.m.preemptGen, 1) 351 atomic.Store(&gp.m.signalPending, 0) 352 353 if GOOS == "darwin" || GOOS == "ios" { 354 atomic.Xadd(&pendingPreemptSignals, -1) 355 } 356 } 357 358 const preemptMSupported = true 359 360 // preemptM sends a preemption request to mp. This request may be 361 // handled asynchronously and may be coalesced with other requests to 362 // the M. When the request is received, if the running G or P are 363 // marked for preemption and the goroutine is at an asynchronous 364 // safe-point, it will preempt the goroutine. It always atomically 365 // increments mp.preemptGen after handling a preemption request. 366 func preemptM(mp *m) { 367 // On Darwin, don't try to preempt threads during exec. 368 // Issue #41702. 369 if GOOS == "darwin" || GOOS == "ios" { 370 execLock.rlock() 371 } 372 373 if atomic.Cas(&mp.signalPending, 0, 1) { 374 if GOOS == "darwin" || GOOS == "ios" { 375 atomic.Xadd(&pendingPreemptSignals, 1) 376 } 377 378 // If multiple threads are preempting the same M, it may send many 379 // signals to the same M such that it hardly make progress, causing 380 // live-lock problem. Apparently this could happen on darwin. See 381 // issue #37741. 382 // Only send a signal if there isn't already one pending. 383 signalM(mp, sigPreempt) 384 } 385 386 if GOOS == "darwin" || GOOS == "ios" { 387 execLock.runlock() 388 } 389 } 390 391 // sigFetchG fetches the value of G safely when running in a signal handler. 392 // On some architectures, the g value may be clobbered when running in a VDSO. 393 // See issue #32912. 394 // 395 //go:nosplit 396 func sigFetchG(c *sigctxt) *g { 397 switch GOARCH { 398 case "arm", "arm64", "ppc64", "ppc64le", "riscv64": 399 if !iscgo && inVDSOPage(c.sigpc()) { 400 // When using cgo, we save the g on TLS and load it from there 401 // in sigtramp. Just use that. 402 // Otherwise, before making a VDSO call we save the g to the 403 // bottom of the signal stack. Fetch from there. 404 // TODO: in efence mode, stack is sysAlloc'd, so this wouldn't 405 // work. 406 sp := getcallersp() 407 s := spanOf(sp) 408 if s != nil && s.state.get() == mSpanManual && s.base() < sp && sp < s.limit { 409 gp := *(**g)(unsafe.Pointer(s.base())) 410 return gp 411 } 412 return nil 413 } 414 } 415 return getg() 416 } 417 418 // sigtrampgo is called from the signal handler function, sigtramp, 419 // written in assembly code. 420 // This is called by the signal handler, and the world may be stopped. 421 // 422 // It must be nosplit because getg() is still the G that was running 423 // (if any) when the signal was delivered, but it's (usually) called 424 // on the gsignal stack. Until this switches the G to gsignal, the 425 // stack bounds check won't work. 426 // 427 //go:nosplit 428 //go:nowritebarrierrec 429 func sigtrampgo(sig uint32, info *siginfo, ctx unsafe.Pointer) { 430 if sigfwdgo(sig, info, ctx) { 431 return 432 } 433 c := &sigctxt{info, ctx} 434 g := sigFetchG(c) 435 setg(g) 436 if g == nil { 437 if sig == _SIGPROF { 438 // Some platforms (Linux) have per-thread timers, which we use in 439 // combination with the process-wide timer. Avoid double-counting. 440 if validSIGPROF(nil, c) { 441 sigprofNonGoPC(c.sigpc()) 442 } 443 return 444 } 445 if sig == sigPreempt && preemptMSupported && debug.asyncpreemptoff == 0 { 446 // This is probably a signal from preemptM sent 447 // while executing Go code but received while 448 // executing non-Go code. 449 // We got past sigfwdgo, so we know that there is 450 // no non-Go signal handler for sigPreempt. 451 // The default behavior for sigPreempt is to ignore 452 // the signal, so badsignal will be a no-op anyway. 453 if GOOS == "darwin" || GOOS == "ios" { 454 atomic.Xadd(&pendingPreemptSignals, -1) 455 } 456 return 457 } 458 c.fixsigcode(sig) 459 badsignal(uintptr(sig), c) 460 return 461 } 462 463 setg(g.m.gsignal) 464 465 // If some non-Go code called sigaltstack, adjust. 466 var gsignalStack gsignalStack 467 setStack := adjustSignalStack(sig, g.m, &gsignalStack) 468 if setStack { 469 g.m.gsignal.stktopsp = getcallersp() 470 } 471 472 if g.stackguard0 == stackFork { 473 signalDuringFork(sig) 474 } 475 476 c.fixsigcode(sig) 477 sighandler(sig, info, ctx, g) 478 setg(g) 479 if setStack { 480 restoreGsignalStack(&gsignalStack) 481 } 482 } 483 484 // If the signal handler receives a SIGPROF signal on a non-Go thread, 485 // it tries to collect a traceback into sigprofCallers. 486 // sigprofCallersUse is set to non-zero while sigprofCallers holds a traceback. 487 var sigprofCallers cgoCallers 488 var sigprofCallersUse uint32 489 490 // sigprofNonGo is called if we receive a SIGPROF signal on a non-Go thread, 491 // and the signal handler collected a stack trace in sigprofCallers. 492 // When this is called, sigprofCallersUse will be non-zero. 493 // g is nil, and what we can do is very limited. 494 // 495 // It is called from the signal handling functions written in assembly code that 496 // are active for cgo programs, cgoSigtramp and sigprofNonGoWrapper, which have 497 // not verified that the SIGPROF delivery corresponds to the best available 498 // profiling source for this thread. 499 // 500 //go:nosplit 501 //go:nowritebarrierrec 502 func sigprofNonGo(sig uint32, info *siginfo, ctx unsafe.Pointer) { 503 if prof.hz != 0 { 504 c := &sigctxt{info, ctx} 505 // Some platforms (Linux) have per-thread timers, which we use in 506 // combination with the process-wide timer. Avoid double-counting. 507 if validSIGPROF(nil, c) { 508 n := 0 509 for n < len(sigprofCallers) && sigprofCallers[n] != 0 { 510 n++ 511 } 512 cpuprof.addNonGo(sigprofCallers[:n]) 513 } 514 } 515 516 atomic.Store(&sigprofCallersUse, 0) 517 } 518 519 // sigprofNonGoPC is called when a profiling signal arrived on a 520 // non-Go thread and we have a single PC value, not a stack trace. 521 // g is nil, and what we can do is very limited. 522 //go:nosplit 523 //go:nowritebarrierrec 524 func sigprofNonGoPC(pc uintptr) { 525 if prof.hz != 0 { 526 stk := []uintptr{ 527 pc, 528 abi.FuncPCABIInternal(_ExternalCode) + sys.PCQuantum, 529 } 530 cpuprof.addNonGo(stk) 531 } 532 } 533 534 // adjustSignalStack adjusts the current stack guard based on the 535 // stack pointer that is actually in use while handling a signal. 536 // We do this in case some non-Go code called sigaltstack. 537 // This reports whether the stack was adjusted, and if so stores the old 538 // signal stack in *gsigstack. 539 //go:nosplit 540 func adjustSignalStack(sig uint32, mp *m, gsigStack *gsignalStack) bool { 541 sp := uintptr(unsafe.Pointer(&sig)) 542 if sp >= mp.gsignal.stack.lo && sp < mp.gsignal.stack.hi { 543 return false 544 } 545 546 var st stackt 547 sigaltstack(nil, &st) 548 stsp := uintptr(unsafe.Pointer(st.ss_sp)) 549 if st.ss_flags&_SS_DISABLE == 0 && sp >= stsp && sp < stsp+st.ss_size { 550 setGsignalStack(&st, gsigStack) 551 return true 552 } 553 554 if sp >= mp.g0.stack.lo && sp < mp.g0.stack.hi { 555 // The signal was delivered on the g0 stack. 556 // This can happen when linked with C code 557 // using the thread sanitizer, which collects 558 // signals then delivers them itself by calling 559 // the signal handler directly when C code, 560 // including C code called via cgo, calls a 561 // TSAN-intercepted function such as malloc. 562 // 563 // We check this condition last as g0.stack.lo 564 // may be not very accurate (see mstart). 565 st := stackt{ss_size: mp.g0.stack.hi - mp.g0.stack.lo} 566 setSignalstackSP(&st, mp.g0.stack.lo) 567 setGsignalStack(&st, gsigStack) 568 return true 569 } 570 571 // sp is not within gsignal stack, g0 stack, or sigaltstack. Bad. 572 setg(nil) 573 needm() 574 if st.ss_flags&_SS_DISABLE != 0 { 575 noSignalStack(sig) 576 } else { 577 sigNotOnStack(sig) 578 } 579 dropm() 580 return false 581 } 582 583 // crashing is the number of m's we have waited for when implementing 584 // GOTRACEBACK=crash when a signal is received. 585 var crashing int32 586 587 // testSigtrap and testSigusr1 are used by the runtime tests. If 588 // non-nil, it is called on SIGTRAP/SIGUSR1. If it returns true, the 589 // normal behavior on this signal is suppressed. 590 var testSigtrap func(info *siginfo, ctxt *sigctxt, gp *g) bool 591 var testSigusr1 func(gp *g) bool 592 593 // sighandler is invoked when a signal occurs. The global g will be 594 // set to a gsignal goroutine and we will be running on the alternate 595 // signal stack. The parameter g will be the value of the global g 596 // when the signal occurred. The sig, info, and ctxt parameters are 597 // from the system signal handler: they are the parameters passed when 598 // the SA is passed to the sigaction system call. 599 // 600 // The garbage collector may have stopped the world, so write barriers 601 // are not allowed. 602 // 603 //go:nowritebarrierrec 604 func sighandler(sig uint32, info *siginfo, ctxt unsafe.Pointer, gp *g) { 605 _g_ := getg() 606 c := &sigctxt{info, ctxt} 607 608 if sig == _SIGPROF { 609 mp := _g_.m 610 // Some platforms (Linux) have per-thread timers, which we use in 611 // combination with the process-wide timer. Avoid double-counting. 612 if validSIGPROF(mp, c) { 613 sigprof(c.sigpc(), c.sigsp(), c.siglr(), gp, mp) 614 } 615 return 616 } 617 618 if sig == _SIGTRAP && testSigtrap != nil && testSigtrap(info, (*sigctxt)(noescape(unsafe.Pointer(c))), gp) { 619 return 620 } 621 622 if sig == _SIGUSR1 && testSigusr1 != nil && testSigusr1(gp) { 623 return 624 } 625 626 if (GOOS == "linux" || GOOS == "android") && sig == sigPerThreadSyscall { 627 // sigPerThreadSyscall is the same signal used by glibc for 628 // per-thread syscalls on Linux. We use it for the same purpose 629 // in non-cgo binaries. Since this signal is not _SigNotify, 630 // there is nothing more to do once we run the syscall. 631 runPerThreadSyscall() 632 return 633 } 634 635 if sig == sigPreempt && debug.asyncpreemptoff == 0 { 636 // Might be a preemption signal. 637 doSigPreempt(gp, c) 638 // Even if this was definitely a preemption signal, it 639 // may have been coalesced with another signal, so we 640 // still let it through to the application. 641 } 642 643 flags := int32(_SigThrow) 644 if sig < uint32(len(sigtable)) { 645 flags = sigtable[sig].flags 646 } 647 if c.sigcode() != _SI_USER && flags&_SigPanic != 0 && gp.throwsplit { 648 // We can't safely sigpanic because it may grow the 649 // stack. Abort in the signal handler instead. 650 flags = _SigThrow 651 } 652 if isAbortPC(c.sigpc()) { 653 // On many architectures, the abort function just 654 // causes a memory fault. Don't turn that into a panic. 655 flags = _SigThrow 656 } 657 if c.sigcode() != _SI_USER && flags&_SigPanic != 0 { 658 // The signal is going to cause a panic. 659 // Arrange the stack so that it looks like the point 660 // where the signal occurred made a call to the 661 // function sigpanic. Then set the PC to sigpanic. 662 663 // Have to pass arguments out of band since 664 // augmenting the stack frame would break 665 // the unwinding code. 666 gp.sig = sig 667 gp.sigcode0 = uintptr(c.sigcode()) 668 gp.sigcode1 = uintptr(c.fault()) 669 gp.sigpc = c.sigpc() 670 671 c.preparePanic(sig, gp) 672 return 673 } 674 675 if c.sigcode() == _SI_USER || flags&_SigNotify != 0 { 676 if sigsend(sig) { 677 return 678 } 679 } 680 681 if c.sigcode() == _SI_USER && signal_ignored(sig) { 682 return 683 } 684 685 if flags&_SigKill != 0 { 686 dieFromSignal(sig) 687 } 688 689 // _SigThrow means that we should exit now. 690 // If we get here with _SigPanic, it means that the signal 691 // was sent to us by a program (c.sigcode() == _SI_USER); 692 // in that case, if we didn't handle it in sigsend, we exit now. 693 if flags&(_SigThrow|_SigPanic) == 0 { 694 return 695 } 696 697 _g_.m.throwing = 1 698 _g_.m.caughtsig.set(gp) 699 700 if crashing == 0 { 701 startpanic_m() 702 } 703 704 if sig < uint32(len(sigtable)) { 705 print(sigtable[sig].name, "\n") 706 } else { 707 print("Signal ", sig, "\n") 708 } 709 710 print("PC=", hex(c.sigpc()), " m=", _g_.m.id, " sigcode=", c.sigcode(), "\n") 711 if _g_.m.incgo && gp == _g_.m.g0 && _g_.m.curg != nil { 712 print("signal arrived during cgo execution\n") 713 // Switch to curg so that we get a traceback of the Go code 714 // leading up to the cgocall, which switched from curg to g0. 715 gp = _g_.m.curg 716 } 717 if sig == _SIGILL || sig == _SIGFPE { 718 // It would be nice to know how long the instruction is. 719 // Unfortunately, that's complicated to do in general (mostly for x86 720 // and s930x, but other archs have non-standard instruction lengths also). 721 // Opt to print 16 bytes, which covers most instructions. 722 const maxN = 16 723 n := uintptr(maxN) 724 // We have to be careful, though. If we're near the end of 725 // a page and the following page isn't mapped, we could 726 // segfault. So make sure we don't straddle a page (even though 727 // that could lead to printing an incomplete instruction). 728 // We're assuming here we can read at least the page containing the PC. 729 // I suppose it is possible that the page is mapped executable but not readable? 730 pc := c.sigpc() 731 if n > physPageSize-pc%physPageSize { 732 n = physPageSize - pc%physPageSize 733 } 734 print("instruction bytes:") 735 b := (*[maxN]byte)(unsafe.Pointer(pc)) 736 for i := uintptr(0); i < n; i++ { 737 print(" ", hex(b[i])) 738 } 739 println() 740 } 741 print("\n") 742 743 level, _, docrash := gotraceback() 744 if level > 0 { 745 goroutineheader(gp) 746 tracebacktrap(c.sigpc(), c.sigsp(), c.siglr(), gp) 747 if crashing > 0 && gp != _g_.m.curg && _g_.m.curg != nil && readgstatus(_g_.m.curg)&^_Gscan == _Grunning { 748 // tracebackothers on original m skipped this one; trace it now. 749 goroutineheader(_g_.m.curg) 750 traceback(^uintptr(0), ^uintptr(0), 0, _g_.m.curg) 751 } else if crashing == 0 { 752 tracebackothers(gp) 753 print("\n") 754 } 755 dumpregs(c) 756 } 757 758 if docrash { 759 crashing++ 760 if crashing < mcount()-int32(extraMCount) { 761 // There are other m's that need to dump their stacks. 762 // Relay SIGQUIT to the next m by sending it to the current process. 763 // All m's that have already received SIGQUIT have signal masks blocking 764 // receipt of any signals, so the SIGQUIT will go to an m that hasn't seen it yet. 765 // When the last m receives the SIGQUIT, it will fall through to the call to 766 // crash below. Just in case the relaying gets botched, each m involved in 767 // the relay sleeps for 5 seconds and then does the crash/exit itself. 768 // In expected operation, the last m has received the SIGQUIT and run 769 // crash/exit and the process is gone, all long before any of the 770 // 5-second sleeps have finished. 771 print("\n-----\n\n") 772 raiseproc(_SIGQUIT) 773 usleep(5 * 1000 * 1000) 774 } 775 crash() 776 } 777 778 printDebugLog() 779 780 exit(2) 781 } 782 783 // sigpanic turns a synchronous signal into a run-time panic. 784 // If the signal handler sees a synchronous panic, it arranges the 785 // stack to look like the function where the signal occurred called 786 // sigpanic, sets the signal's PC value to sigpanic, and returns from 787 // the signal handler. The effect is that the program will act as 788 // though the function that got the signal simply called sigpanic 789 // instead. 790 // 791 // This must NOT be nosplit because the linker doesn't know where 792 // sigpanic calls can be injected. 793 // 794 // The signal handler must not inject a call to sigpanic if 795 // getg().throwsplit, since sigpanic may need to grow the stack. 796 // 797 // This is exported via linkname to assembly in runtime/cgo. 798 //go:linkname sigpanic 799 func sigpanic() { 800 g := getg() 801 if !canpanic(g) { 802 throw("unexpected signal during runtime execution") 803 } 804 805 switch g.sig { 806 case _SIGBUS: 807 if g.sigcode0 == _BUS_ADRERR && g.sigcode1 < 0x1000 { 808 panicmem() 809 } 810 // Support runtime/debug.SetPanicOnFault. 811 if g.paniconfault { 812 panicmemAddr(g.sigcode1) 813 } 814 print("unexpected fault address ", hex(g.sigcode1), "\n") 815 throw("fault") 816 case _SIGSEGV: 817 if (g.sigcode0 == 0 || g.sigcode0 == _SEGV_MAPERR || g.sigcode0 == _SEGV_ACCERR) && g.sigcode1 < 0x1000 { 818 panicmem() 819 } 820 // Support runtime/debug.SetPanicOnFault. 821 if g.paniconfault { 822 panicmemAddr(g.sigcode1) 823 } 824 print("unexpected fault address ", hex(g.sigcode1), "\n") 825 throw("fault") 826 case _SIGFPE: 827 switch g.sigcode0 { 828 case _FPE_INTDIV: 829 panicdivide() 830 case _FPE_INTOVF: 831 panicoverflow() 832 } 833 panicfloat() 834 } 835 836 if g.sig >= uint32(len(sigtable)) { 837 // can't happen: we looked up g.sig in sigtable to decide to call sigpanic 838 throw("unexpected signal value") 839 } 840 panic(errorString(sigtable[g.sig].name)) 841 } 842 843 // dieFromSignal kills the program with a signal. 844 // This provides the expected exit status for the shell. 845 // This is only called with fatal signals expected to kill the process. 846 //go:nosplit 847 //go:nowritebarrierrec 848 func dieFromSignal(sig uint32) { 849 unblocksig(sig) 850 // Mark the signal as unhandled to ensure it is forwarded. 851 atomic.Store(&handlingSig[sig], 0) 852 raise(sig) 853 854 // That should have killed us. On some systems, though, raise 855 // sends the signal to the whole process rather than to just 856 // the current thread, which means that the signal may not yet 857 // have been delivered. Give other threads a chance to run and 858 // pick up the signal. 859 osyield() 860 osyield() 861 osyield() 862 863 // If that didn't work, try _SIG_DFL. 864 setsig(sig, _SIG_DFL) 865 raise(sig) 866 867 osyield() 868 osyield() 869 osyield() 870 871 // If we are still somehow running, just exit with the wrong status. 872 exit(2) 873 } 874 875 // raisebadsignal is called when a signal is received on a non-Go 876 // thread, and the Go program does not want to handle it (that is, the 877 // program has not called os/signal.Notify for the signal). 878 func raisebadsignal(sig uint32, c *sigctxt) { 879 if sig == _SIGPROF { 880 // Ignore profiling signals that arrive on non-Go threads. 881 return 882 } 883 884 var handler uintptr 885 if sig >= _NSIG { 886 handler = _SIG_DFL 887 } else { 888 handler = atomic.Loaduintptr(&fwdSig[sig]) 889 } 890 891 // Reset the signal handler and raise the signal. 892 // We are currently running inside a signal handler, so the 893 // signal is blocked. We need to unblock it before raising the 894 // signal, or the signal we raise will be ignored until we return 895 // from the signal handler. We know that the signal was unblocked 896 // before entering the handler, or else we would not have received 897 // it. That means that we don't have to worry about blocking it 898 // again. 899 unblocksig(sig) 900 setsig(sig, handler) 901 902 // If we're linked into a non-Go program we want to try to 903 // avoid modifying the original context in which the signal 904 // was raised. If the handler is the default, we know it 905 // is non-recoverable, so we don't have to worry about 906 // re-installing sighandler. At this point we can just 907 // return and the signal will be re-raised and caught by 908 // the default handler with the correct context. 909 // 910 // On FreeBSD, the libthr sigaction code prevents 911 // this from working so we fall through to raise. 912 if GOOS != "freebsd" && (isarchive || islibrary) && handler == _SIG_DFL && c.sigcode() != _SI_USER { 913 return 914 } 915 916 raise(sig) 917 918 // Give the signal a chance to be delivered. 919 // In almost all real cases the program is about to crash, 920 // so sleeping here is not a waste of time. 921 usleep(1000) 922 923 // If the signal didn't cause the program to exit, restore the 924 // Go signal handler and carry on. 925 // 926 // We may receive another instance of the signal before we 927 // restore the Go handler, but that is not so bad: we know 928 // that the Go program has been ignoring the signal. 929 setsig(sig, abi.FuncPCABIInternal(sighandler)) 930 } 931 932 //go:nosplit 933 func crash() { 934 // OS X core dumps are linear dumps of the mapped memory, 935 // from the first virtual byte to the last, with zeros in the gaps. 936 // Because of the way we arrange the address space on 64-bit systems, 937 // this means the OS X core file will be >128 GB and even on a zippy 938 // workstation can take OS X well over an hour to write (uninterruptible). 939 // Save users from making that mistake. 940 if GOOS == "darwin" && GOARCH == "amd64" { 941 return 942 } 943 944 dieFromSignal(_SIGABRT) 945 } 946 947 // ensureSigM starts one global, sleeping thread to make sure at least one thread 948 // is available to catch signals enabled for os/signal. 949 func ensureSigM() { 950 if maskUpdatedChan != nil { 951 return 952 } 953 maskUpdatedChan = make(chan struct{}) 954 disableSigChan = make(chan uint32) 955 enableSigChan = make(chan uint32) 956 go func() { 957 // Signal masks are per-thread, so make sure this goroutine stays on one 958 // thread. 959 LockOSThread() 960 defer UnlockOSThread() 961 // The sigBlocked mask contains the signals not active for os/signal, 962 // initially all signals except the essential. When signal.Notify()/Stop is called, 963 // sigenable/sigdisable in turn notify this thread to update its signal 964 // mask accordingly. 965 sigBlocked := sigset_all 966 for i := range sigtable { 967 if !blockableSig(uint32(i)) { 968 sigdelset(&sigBlocked, i) 969 } 970 } 971 sigprocmask(_SIG_SETMASK, &sigBlocked, nil) 972 for { 973 select { 974 case sig := <-enableSigChan: 975 if sig > 0 { 976 sigdelset(&sigBlocked, int(sig)) 977 } 978 case sig := <-disableSigChan: 979 if sig > 0 && blockableSig(sig) { 980 sigaddset(&sigBlocked, int(sig)) 981 } 982 } 983 sigprocmask(_SIG_SETMASK, &sigBlocked, nil) 984 maskUpdatedChan <- struct{}{} 985 } 986 }() 987 } 988 989 // This is called when we receive a signal when there is no signal stack. 990 // This can only happen if non-Go code calls sigaltstack to disable the 991 // signal stack. 992 func noSignalStack(sig uint32) { 993 println("signal", sig, "received on thread with no signal stack") 994 throw("non-Go code disabled sigaltstack") 995 } 996 997 // This is called if we receive a signal when there is a signal stack 998 // but we are not on it. This can only happen if non-Go code called 999 // sigaction without setting the SS_ONSTACK flag. 1000 func sigNotOnStack(sig uint32) { 1001 println("signal", sig, "received but handler not on signal stack") 1002 throw("non-Go code set up signal handler without SA_ONSTACK flag") 1003 } 1004 1005 // signalDuringFork is called if we receive a signal while doing a fork. 1006 // We do not want signals at that time, as a signal sent to the process 1007 // group may be delivered to the child process, causing confusion. 1008 // This should never be called, because we block signals across the fork; 1009 // this function is just a safety check. See issue 18600 for background. 1010 func signalDuringFork(sig uint32) { 1011 println("signal", sig, "received during fork") 1012 throw("signal received during fork") 1013 } 1014 1015 var badginsignalMsg = "fatal: bad g in signal handler\n" 1016 1017 // This runs on a foreign stack, without an m or a g. No stack split. 1018 //go:nosplit 1019 //go:norace 1020 //go:nowritebarrierrec 1021 func badsignal(sig uintptr, c *sigctxt) { 1022 if !iscgo && !cgoHasExtraM { 1023 // There is no extra M. needm will not be able to grab 1024 // an M. Instead of hanging, just crash. 1025 // Cannot call split-stack function as there is no G. 1026 s := stringStructOf(&badginsignalMsg) 1027 write(2, s.str, int32(s.len)) 1028 exit(2) 1029 *(*uintptr)(unsafe.Pointer(uintptr(123))) = 2 1030 } 1031 needm() 1032 if !sigsend(uint32(sig)) { 1033 // A foreign thread received the signal sig, and the 1034 // Go code does not want to handle it. 1035 raisebadsignal(uint32(sig), c) 1036 } 1037 dropm() 1038 } 1039 1040 //go:noescape 1041 func sigfwd(fn uintptr, sig uint32, info *siginfo, ctx unsafe.Pointer) 1042 1043 // Determines if the signal should be handled by Go and if not, forwards the 1044 // signal to the handler that was installed before Go's. Returns whether the 1045 // signal was forwarded. 1046 // This is called by the signal handler, and the world may be stopped. 1047 //go:nosplit 1048 //go:nowritebarrierrec 1049 func sigfwdgo(sig uint32, info *siginfo, ctx unsafe.Pointer) bool { 1050 if sig >= uint32(len(sigtable)) { 1051 return false 1052 } 1053 fwdFn := atomic.Loaduintptr(&fwdSig[sig]) 1054 flags := sigtable[sig].flags 1055 1056 // If we aren't handling the signal, forward it. 1057 if atomic.Load(&handlingSig[sig]) == 0 || !signalsOK { 1058 // If the signal is ignored, doing nothing is the same as forwarding. 1059 if fwdFn == _SIG_IGN || (fwdFn == _SIG_DFL && flags&_SigIgn != 0) { 1060 return true 1061 } 1062 // We are not handling the signal and there is no other handler to forward to. 1063 // Crash with the default behavior. 1064 if fwdFn == _SIG_DFL { 1065 setsig(sig, _SIG_DFL) 1066 dieFromSignal(sig) 1067 return false 1068 } 1069 1070 sigfwd(fwdFn, sig, info, ctx) 1071 return true 1072 } 1073 1074 // This function and its caller sigtrampgo assumes SIGPIPE is delivered on the 1075 // originating thread. This property does not hold on macOS (golang.org/issue/33384), 1076 // so we have no choice but to ignore SIGPIPE. 1077 if (GOOS == "darwin" || GOOS == "ios") && sig == _SIGPIPE { 1078 return true 1079 } 1080 1081 // If there is no handler to forward to, no need to forward. 1082 if fwdFn == _SIG_DFL { 1083 return false 1084 } 1085 1086 c := &sigctxt{info, ctx} 1087 // Only forward synchronous signals and SIGPIPE. 1088 // Unfortunately, user generated SIGPIPEs will also be forwarded, because si_code 1089 // is set to _SI_USER even for a SIGPIPE raised from a write to a closed socket 1090 // or pipe. 1091 if (c.sigcode() == _SI_USER || flags&_SigPanic == 0) && sig != _SIGPIPE { 1092 return false 1093 } 1094 // Determine if the signal occurred inside Go code. We test that: 1095 // (1) we weren't in VDSO page, 1096 // (2) we were in a goroutine (i.e., m.curg != nil), and 1097 // (3) we weren't in CGO. 1098 g := sigFetchG(c) 1099 if g != nil && g.m != nil && g.m.curg != nil && !g.m.incgo { 1100 return false 1101 } 1102 1103 // Signal not handled by Go, forward it. 1104 if fwdFn != _SIG_IGN { 1105 sigfwd(fwdFn, sig, info, ctx) 1106 } 1107 1108 return true 1109 } 1110 1111 // sigsave saves the current thread's signal mask into *p. 1112 // This is used to preserve the non-Go signal mask when a non-Go 1113 // thread calls a Go function. 1114 // This is nosplit and nowritebarrierrec because it is called by needm 1115 // which may be called on a non-Go thread with no g available. 1116 //go:nosplit 1117 //go:nowritebarrierrec 1118 func sigsave(p *sigset) { 1119 sigprocmask(_SIG_SETMASK, nil, p) 1120 } 1121 1122 // msigrestore sets the current thread's signal mask to sigmask. 1123 // This is used to restore the non-Go signal mask when a non-Go thread 1124 // calls a Go function. 1125 // This is nosplit and nowritebarrierrec because it is called by dropm 1126 // after g has been cleared. 1127 //go:nosplit 1128 //go:nowritebarrierrec 1129 func msigrestore(sigmask sigset) { 1130 sigprocmask(_SIG_SETMASK, &sigmask, nil) 1131 } 1132 1133 // sigsetAllExiting is used by sigblock(true) when a thread is 1134 // exiting. sigset_all is defined in OS specific code, and per GOOS 1135 // behavior may override this default for sigsetAllExiting: see 1136 // osinit(). 1137 var sigsetAllExiting = sigset_all 1138 1139 // sigblock blocks signals in the current thread's signal mask. 1140 // This is used to block signals while setting up and tearing down g 1141 // when a non-Go thread calls a Go function. When a thread is exiting 1142 // we use the sigsetAllExiting value, otherwise the OS specific 1143 // definition of sigset_all is used. 1144 // This is nosplit and nowritebarrierrec because it is called by needm 1145 // which may be called on a non-Go thread with no g available. 1146 //go:nosplit 1147 //go:nowritebarrierrec 1148 func sigblock(exiting bool) { 1149 if exiting { 1150 sigprocmask(_SIG_SETMASK, &sigsetAllExiting, nil) 1151 return 1152 } 1153 sigprocmask(_SIG_SETMASK, &sigset_all, nil) 1154 } 1155 1156 // unblocksig removes sig from the current thread's signal mask. 1157 // This is nosplit and nowritebarrierrec because it is called from 1158 // dieFromSignal, which can be called by sigfwdgo while running in the 1159 // signal handler, on the signal stack, with no g available. 1160 //go:nosplit 1161 //go:nowritebarrierrec 1162 func unblocksig(sig uint32) { 1163 var set sigset 1164 sigaddset(&set, int(sig)) 1165 sigprocmask(_SIG_UNBLOCK, &set, nil) 1166 } 1167 1168 // minitSignals is called when initializing a new m to set the 1169 // thread's alternate signal stack and signal mask. 1170 func minitSignals() { 1171 minitSignalStack() 1172 minitSignalMask() 1173 } 1174 1175 // minitSignalStack is called when initializing a new m to set the 1176 // alternate signal stack. If the alternate signal stack is not set 1177 // for the thread (the normal case) then set the alternate signal 1178 // stack to the gsignal stack. If the alternate signal stack is set 1179 // for the thread (the case when a non-Go thread sets the alternate 1180 // signal stack and then calls a Go function) then set the gsignal 1181 // stack to the alternate signal stack. We also set the alternate 1182 // signal stack to the gsignal stack if cgo is not used (regardless 1183 // of whether it is already set). Record which choice was made in 1184 // newSigstack, so that it can be undone in unminit. 1185 func minitSignalStack() { 1186 _g_ := getg() 1187 var st stackt 1188 sigaltstack(nil, &st) 1189 if st.ss_flags&_SS_DISABLE != 0 || !iscgo { 1190 signalstack(&_g_.m.gsignal.stack) 1191 _g_.m.newSigstack = true 1192 } else { 1193 setGsignalStack(&st, &_g_.m.goSigStack) 1194 _g_.m.newSigstack = false 1195 } 1196 } 1197 1198 // minitSignalMask is called when initializing a new m to set the 1199 // thread's signal mask. When this is called all signals have been 1200 // blocked for the thread. This starts with m.sigmask, which was set 1201 // either from initSigmask for a newly created thread or by calling 1202 // sigsave if this is a non-Go thread calling a Go function. It 1203 // removes all essential signals from the mask, thus causing those 1204 // signals to not be blocked. Then it sets the thread's signal mask. 1205 // After this is called the thread can receive signals. 1206 func minitSignalMask() { 1207 nmask := getg().m.sigmask 1208 for i := range sigtable { 1209 if !blockableSig(uint32(i)) { 1210 sigdelset(&nmask, i) 1211 } 1212 } 1213 sigprocmask(_SIG_SETMASK, &nmask, nil) 1214 } 1215 1216 // unminitSignals is called from dropm, via unminit, to undo the 1217 // effect of calling minit on a non-Go thread. 1218 //go:nosplit 1219 func unminitSignals() { 1220 if getg().m.newSigstack { 1221 st := stackt{ss_flags: _SS_DISABLE} 1222 sigaltstack(&st, nil) 1223 } else { 1224 // We got the signal stack from someone else. Restore 1225 // the Go-allocated stack in case this M gets reused 1226 // for another thread (e.g., it's an extram). Also, on 1227 // Android, libc allocates a signal stack for all 1228 // threads, so it's important to restore the Go stack 1229 // even on Go-created threads so we can free it. 1230 restoreGsignalStack(&getg().m.goSigStack) 1231 } 1232 } 1233 1234 // blockableSig reports whether sig may be blocked by the signal mask. 1235 // We never want to block the signals marked _SigUnblock; 1236 // these are the synchronous signals that turn into a Go panic. 1237 // We never want to block the preemption signal if it is being used. 1238 // In a Go program--not a c-archive/c-shared--we never want to block 1239 // the signals marked _SigKill or _SigThrow, as otherwise it's possible 1240 // for all running threads to block them and delay their delivery until 1241 // we start a new thread. When linked into a C program we let the C code 1242 // decide on the disposition of those signals. 1243 func blockableSig(sig uint32) bool { 1244 flags := sigtable[sig].flags 1245 if flags&_SigUnblock != 0 { 1246 return false 1247 } 1248 if sig == sigPreempt && preemptMSupported && debug.asyncpreemptoff == 0 { 1249 return false 1250 } 1251 if isarchive || islibrary { 1252 return true 1253 } 1254 return flags&(_SigKill|_SigThrow) == 0 1255 } 1256 1257 // gsignalStack saves the fields of the gsignal stack changed by 1258 // setGsignalStack. 1259 type gsignalStack struct { 1260 stack stack 1261 stackguard0 uintptr 1262 stackguard1 uintptr 1263 stktopsp uintptr 1264 } 1265 1266 // setGsignalStack sets the gsignal stack of the current m to an 1267 // alternate signal stack returned from the sigaltstack system call. 1268 // It saves the old values in *old for use by restoreGsignalStack. 1269 // This is used when handling a signal if non-Go code has set the 1270 // alternate signal stack. 1271 //go:nosplit 1272 //go:nowritebarrierrec 1273 func setGsignalStack(st *stackt, old *gsignalStack) { 1274 g := getg() 1275 if old != nil { 1276 old.stack = g.m.gsignal.stack 1277 old.stackguard0 = g.m.gsignal.stackguard0 1278 old.stackguard1 = g.m.gsignal.stackguard1 1279 old.stktopsp = g.m.gsignal.stktopsp 1280 } 1281 stsp := uintptr(unsafe.Pointer(st.ss_sp)) 1282 g.m.gsignal.stack.lo = stsp 1283 g.m.gsignal.stack.hi = stsp + st.ss_size 1284 g.m.gsignal.stackguard0 = stsp + _StackGuard 1285 g.m.gsignal.stackguard1 = stsp + _StackGuard 1286 } 1287 1288 // restoreGsignalStack restores the gsignal stack to the value it had 1289 // before entering the signal handler. 1290 //go:nosplit 1291 //go:nowritebarrierrec 1292 func restoreGsignalStack(st *gsignalStack) { 1293 gp := getg().m.gsignal 1294 gp.stack = st.stack 1295 gp.stackguard0 = st.stackguard0 1296 gp.stackguard1 = st.stackguard1 1297 gp.stktopsp = st.stktopsp 1298 } 1299 1300 // signalstack sets the current thread's alternate signal stack to s. 1301 //go:nosplit 1302 func signalstack(s *stack) { 1303 st := stackt{ss_size: s.hi - s.lo} 1304 setSignalstackSP(&st, s.lo) 1305 sigaltstack(&st, nil) 1306 } 1307 1308 // setsigsegv is used on darwin/arm64 to fake a segmentation fault. 1309 // 1310 // This is exported via linkname to assembly in runtime/cgo. 1311 // 1312 //go:nosplit 1313 //go:linkname setsigsegv 1314 func setsigsegv(pc uintptr) { 1315 g := getg() 1316 g.sig = _SIGSEGV 1317 g.sigpc = pc 1318 g.sigcode0 = _SEGV_MAPERR 1319 g.sigcode1 = 0 // TODO: emulate si_addr 1320 } 1321