Source file src/runtime/traceback.go
1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package runtime 6 7 import ( 8 "internal/bytealg" 9 "internal/goarch" 10 "runtime/internal/atomic" 11 "runtime/internal/sys" 12 "unsafe" 13 ) 14 15 // The code in this file implements stack trace walking for all architectures. 16 // The most important fact about a given architecture is whether it uses a link register. 17 // On systems with link registers, the prologue for a non-leaf function stores the 18 // incoming value of LR at the bottom of the newly allocated stack frame. 19 // On systems without link registers (x86), the architecture pushes a return PC during 20 // the call instruction, so the return PC ends up above the stack frame. 21 // In this file, the return PC is always called LR, no matter how it was found. 22 23 const usesLR = sys.MinFrameSize > 0 24 25 // Generic traceback. Handles runtime stack prints (pcbuf == nil), 26 // the runtime.Callers function (pcbuf != nil), as well as the garbage 27 // collector (callback != nil). A little clunky to merge these, but avoids 28 // duplicating the code and all its subtlety. 29 // 30 // The skip argument is only valid with pcbuf != nil and counts the number 31 // of logical frames to skip rather than physical frames (with inlining, a 32 // PC in pcbuf can represent multiple calls). 33 func gentraceback(pc0, sp0, lr0 uintptr, gp *g, skip int, pcbuf *uintptr, max int, callback func(*stkframe, unsafe.Pointer) bool, v unsafe.Pointer, flags uint) int { 34 if skip > 0 && callback != nil { 35 throw("gentraceback callback cannot be used with non-zero skip") 36 } 37 38 // Don't call this "g"; it's too easy get "g" and "gp" confused. 39 if ourg := getg(); ourg == gp && ourg == ourg.m.curg { 40 // The starting sp has been passed in as a uintptr, and the caller may 41 // have other uintptr-typed stack references as well. 42 // If during one of the calls that got us here or during one of the 43 // callbacks below the stack must be grown, all these uintptr references 44 // to the stack will not be updated, and gentraceback will continue 45 // to inspect the old stack memory, which may no longer be valid. 46 // Even if all the variables were updated correctly, it is not clear that 47 // we want to expose a traceback that begins on one stack and ends 48 // on another stack. That could confuse callers quite a bit. 49 // Instead, we require that gentraceback and any other function that 50 // accepts an sp for the current goroutine (typically obtained by 51 // calling getcallersp) must not run on that goroutine's stack but 52 // instead on the g0 stack. 53 throw("gentraceback cannot trace user goroutine on its own stack") 54 } 55 level, _, _ := gotraceback() 56 57 var ctxt *funcval // Context pointer for unstarted goroutines. See issue #25897. 58 59 if pc0 == ^uintptr(0) && sp0 == ^uintptr(0) { // Signal to fetch saved values from gp. 60 if gp.syscallsp != 0 { 61 pc0 = gp.syscallpc 62 sp0 = gp.syscallsp 63 if usesLR { 64 lr0 = 0 65 } 66 } else { 67 pc0 = gp.sched.pc 68 sp0 = gp.sched.sp 69 if usesLR { 70 lr0 = gp.sched.lr 71 } 72 ctxt = (*funcval)(gp.sched.ctxt) 73 } 74 } 75 76 nprint := 0 77 var frame stkframe 78 frame.pc = pc0 79 frame.sp = sp0 80 if usesLR { 81 frame.lr = lr0 82 } 83 waspanic := false 84 cgoCtxt := gp.cgoCtxt 85 printing := pcbuf == nil && callback == nil 86 87 // If the PC is zero, it's likely a nil function call. 88 // Start in the caller's frame. 89 if frame.pc == 0 { 90 if usesLR { 91 frame.pc = *(*uintptr)(unsafe.Pointer(frame.sp)) 92 frame.lr = 0 93 } else { 94 frame.pc = uintptr(*(*uintptr)(unsafe.Pointer(frame.sp))) 95 frame.sp += goarch.PtrSize 96 } 97 } 98 99 // runtime/internal/atomic functions call into kernel helpers on 100 // arm < 7. See runtime/internal/atomic/sys_linux_arm.s. 101 // 102 // Start in the caller's frame. 103 if GOARCH == "arm" && goarm < 7 && GOOS == "linux" && frame.pc&0xffff0000 == 0xffff0000 { 104 // Note that the calls are simple BL without pushing the return 105 // address, so we use LR directly. 106 // 107 // The kernel helpers are frameless leaf functions, so SP and 108 // LR are not touched. 109 frame.pc = frame.lr 110 frame.lr = 0 111 } 112 113 f := findfunc(frame.pc) 114 if !f.valid() { 115 if callback != nil || printing { 116 print("runtime: unknown pc ", hex(frame.pc), "\n") 117 tracebackHexdump(gp.stack, &frame, 0) 118 } 119 if callback != nil { 120 throw("unknown pc") 121 } 122 return 0 123 } 124 frame.fn = f 125 126 var cache pcvalueCache 127 128 lastFuncID := funcID_normal 129 n := 0 130 for n < max { 131 // Typically: 132 // pc is the PC of the running function. 133 // sp is the stack pointer at that program counter. 134 // fp is the frame pointer (caller's stack pointer) at that program counter, or nil if unknown. 135 // stk is the stack containing sp. 136 // The caller's program counter is lr, unless lr is zero, in which case it is *(uintptr*)sp. 137 f = frame.fn 138 if f.pcsp == 0 { 139 // No frame information, must be external function, like race support. 140 // See golang.org/issue/13568. 141 break 142 } 143 144 // Compute function info flags. 145 flag := f.flag 146 if f.funcID == funcID_cgocallback { 147 // cgocallback does write SP to switch from the g0 to the curg stack, 148 // but it carefully arranges that during the transition BOTH stacks 149 // have cgocallback frame valid for unwinding through. 150 // So we don't need to exclude it with the other SP-writing functions. 151 flag &^= funcFlag_SPWRITE 152 } 153 if frame.pc == pc0 && frame.sp == sp0 && pc0 == gp.syscallpc && sp0 == gp.syscallsp { 154 // Some Syscall functions write to SP, but they do so only after 155 // saving the entry PC/SP using entersyscall. 156 // Since we are using the entry PC/SP, the later SP write doesn't matter. 157 flag &^= funcFlag_SPWRITE 158 } 159 160 // Found an actual function. 161 // Derive frame pointer and link register. 162 if frame.fp == 0 { 163 // Jump over system stack transitions. If we're on g0 and there's a user 164 // goroutine, try to jump. Otherwise this is a regular call. 165 if flags&_TraceJumpStack != 0 && gp == gp.m.g0 && gp.m.curg != nil { 166 switch f.funcID { 167 case funcID_morestack: 168 // morestack does not return normally -- newstack() 169 // gogo's to curg.sched. Match that. 170 // This keeps morestack() from showing up in the backtrace, 171 // but that makes some sense since it'll never be returned 172 // to. 173 frame.pc = gp.m.curg.sched.pc 174 frame.fn = findfunc(frame.pc) 175 f = frame.fn 176 flag = f.flag 177 frame.sp = gp.m.curg.sched.sp 178 cgoCtxt = gp.m.curg.cgoCtxt 179 case funcID_systemstack: 180 // systemstack returns normally, so just follow the 181 // stack transition. 182 frame.sp = gp.m.curg.sched.sp 183 cgoCtxt = gp.m.curg.cgoCtxt 184 flag &^= funcFlag_SPWRITE 185 } 186 } 187 frame.fp = frame.sp + uintptr(funcspdelta(f, frame.pc, &cache)) 188 if !usesLR { 189 // On x86, call instruction pushes return PC before entering new function. 190 frame.fp += goarch.PtrSize 191 } 192 } 193 var flr funcInfo 194 if flag&funcFlag_TOPFRAME != 0 { 195 // This function marks the top of the stack. Stop the traceback. 196 frame.lr = 0 197 flr = funcInfo{} 198 } else if flag&funcFlag_SPWRITE != 0 && (callback == nil || n > 0) { 199 // The function we are in does a write to SP that we don't know 200 // how to encode in the spdelta table. Examples include context 201 // switch routines like runtime.gogo but also any code that switches 202 // to the g0 stack to run host C code. Since we can't reliably unwind 203 // the SP (we might not even be on the stack we think we are), 204 // we stop the traceback here. 205 // This only applies for profiling signals (callback == nil). 206 // 207 // For a GC stack traversal (callback != nil), we should only see 208 // a function when it has voluntarily preempted itself on entry 209 // during the stack growth check. In that case, the function has 210 // not yet had a chance to do any writes to SP and is safe to unwind. 211 // isAsyncSafePoint does not allow assembly functions to be async preempted, 212 // and preemptPark double-checks that SPWRITE functions are not async preempted. 213 // So for GC stack traversal we leave things alone (this if body does not execute for n == 0) 214 // at the bottom frame of the stack. But farther up the stack we'd better not 215 // find any. 216 if callback != nil { 217 println("traceback: unexpected SPWRITE function", funcname(f)) 218 throw("traceback") 219 } 220 frame.lr = 0 221 flr = funcInfo{} 222 } else { 223 var lrPtr uintptr 224 if usesLR { 225 if n == 0 && frame.sp < frame.fp || frame.lr == 0 { 226 lrPtr = frame.sp 227 frame.lr = *(*uintptr)(unsafe.Pointer(lrPtr)) 228 } 229 } else { 230 if frame.lr == 0 { 231 lrPtr = frame.fp - goarch.PtrSize 232 frame.lr = uintptr(*(*uintptr)(unsafe.Pointer(lrPtr))) 233 } 234 } 235 flr = findfunc(frame.lr) 236 if !flr.valid() { 237 // This happens if you get a profiling interrupt at just the wrong time. 238 // In that context it is okay to stop early. 239 // But if callback is set, we're doing a garbage collection and must 240 // get everything, so crash loudly. 241 doPrint := printing 242 if doPrint && gp.m.incgo && f.funcID == funcID_sigpanic { 243 // We can inject sigpanic 244 // calls directly into C code, 245 // in which case we'll see a C 246 // return PC. Don't complain. 247 doPrint = false 248 } 249 if callback != nil || doPrint { 250 print("runtime: unexpected return pc for ", funcname(f), " called from ", hex(frame.lr), "\n") 251 tracebackHexdump(gp.stack, &frame, lrPtr) 252 } 253 if callback != nil { 254 throw("unknown caller pc") 255 } 256 } 257 } 258 259 frame.varp = frame.fp 260 if !usesLR { 261 // On x86, call instruction pushes return PC before entering new function. 262 frame.varp -= goarch.PtrSize 263 } 264 265 // For architectures with frame pointers, if there's 266 // a frame, then there's a saved frame pointer here. 267 // 268 // NOTE: This code is not as general as it looks. 269 // On x86, the ABI is to save the frame pointer word at the 270 // top of the stack frame, so we have to back down over it. 271 // On arm64, the frame pointer should be at the bottom of 272 // the stack (with R29 (aka FP) = RSP), in which case we would 273 // not want to do the subtraction here. But we started out without 274 // any frame pointer, and when we wanted to add it, we didn't 275 // want to break all the assembly doing direct writes to 8(RSP) 276 // to set the first parameter to a called function. 277 // So we decided to write the FP link *below* the stack pointer 278 // (with R29 = RSP - 8 in Go functions). 279 // This is technically ABI-compatible but not standard. 280 // And it happens to end up mimicking the x86 layout. 281 // Other architectures may make different decisions. 282 if frame.varp > frame.sp && framepointer_enabled { 283 frame.varp -= goarch.PtrSize 284 } 285 286 // Derive size of arguments. 287 // Most functions have a fixed-size argument block, 288 // so we can use metadata about the function f. 289 // Not all, though: there are some variadic functions 290 // in package runtime and reflect, and for those we use call-specific 291 // metadata recorded by f's caller. 292 if callback != nil || printing { 293 frame.argp = frame.fp + sys.MinFrameSize 294 var ok bool 295 frame.arglen, frame.argmap, ok = getArgInfoFast(f, callback != nil) 296 if !ok { 297 frame.arglen, frame.argmap = getArgInfo(&frame, f, callback != nil, ctxt) 298 } 299 } 300 ctxt = nil // ctxt is only needed to get arg maps for the topmost frame 301 302 // Determine frame's 'continuation PC', where it can continue. 303 // Normally this is the return address on the stack, but if sigpanic 304 // is immediately below this function on the stack, then the frame 305 // stopped executing due to a trap, and frame.pc is probably not 306 // a safe point for looking up liveness information. In this panicking case, 307 // the function either doesn't return at all (if it has no defers or if the 308 // defers do not recover) or it returns from one of the calls to 309 // deferproc a second time (if the corresponding deferred func recovers). 310 // In the latter case, use a deferreturn call site as the continuation pc. 311 frame.continpc = frame.pc 312 if waspanic { 313 if frame.fn.deferreturn != 0 { 314 frame.continpc = frame.fn.entry() + uintptr(frame.fn.deferreturn) + 1 315 // Note: this may perhaps keep return variables alive longer than 316 // strictly necessary, as we are using "function has a defer statement" 317 // as a proxy for "function actually deferred something". It seems 318 // to be a minor drawback. (We used to actually look through the 319 // gp._defer for a defer corresponding to this function, but that 320 // is hard to do with defer records on the stack during a stack copy.) 321 // Note: the +1 is to offset the -1 that 322 // stack.go:getStackMap does to back up a return 323 // address make sure the pc is in the CALL instruction. 324 } else { 325 frame.continpc = 0 326 } 327 } 328 329 if callback != nil { 330 if !callback((*stkframe)(noescape(unsafe.Pointer(&frame))), v) { 331 return n 332 } 333 } 334 335 if pcbuf != nil { 336 pc := frame.pc 337 // backup to CALL instruction to read inlining info (same logic as below) 338 tracepc := pc 339 // Normally, pc is a return address. In that case, we want to look up 340 // file/line information using pc-1, because that is the pc of the 341 // call instruction (more precisely, the last byte of the call instruction). 342 // Callers expect the pc buffer to contain return addresses and do the 343 // same -1 themselves, so we keep pc unchanged. 344 // When the pc is from a signal (e.g. profiler or segv) then we want 345 // to look up file/line information using pc, and we store pc+1 in the 346 // pc buffer so callers can unconditionally subtract 1 before looking up. 347 // See issue 34123. 348 // The pc can be at function entry when the frame is initialized without 349 // actually running code, like runtime.mstart. 350 if (n == 0 && flags&_TraceTrap != 0) || waspanic || pc == f.entry() { 351 pc++ 352 } else { 353 tracepc-- 354 } 355 356 // If there is inlining info, record the inner frames. 357 if inldata := funcdata(f, _FUNCDATA_InlTree); inldata != nil { 358 inltree := (*[1 << 20]inlinedCall)(inldata) 359 for { 360 ix := pcdatavalue(f, _PCDATA_InlTreeIndex, tracepc, &cache) 361 if ix < 0 { 362 break 363 } 364 if inltree[ix].funcID == funcID_wrapper && elideWrapperCalling(lastFuncID) { 365 // ignore wrappers 366 } else if skip > 0 { 367 skip-- 368 } else if n < max { 369 (*[1 << 20]uintptr)(unsafe.Pointer(pcbuf))[n] = pc 370 n++ 371 } 372 lastFuncID = inltree[ix].funcID 373 // Back up to an instruction in the "caller". 374 tracepc = frame.fn.entry() + uintptr(inltree[ix].parentPc) 375 pc = tracepc + 1 376 } 377 } 378 // Record the main frame. 379 if f.funcID == funcID_wrapper && elideWrapperCalling(lastFuncID) { 380 // Ignore wrapper functions (except when they trigger panics). 381 } else if skip > 0 { 382 skip-- 383 } else if n < max { 384 (*[1 << 20]uintptr)(unsafe.Pointer(pcbuf))[n] = pc 385 n++ 386 } 387 lastFuncID = f.funcID 388 n-- // offset n++ below 389 } 390 391 if printing { 392 // assume skip=0 for printing. 393 // 394 // Never elide wrappers if we haven't printed 395 // any frames. And don't elide wrappers that 396 // called panic rather than the wrapped 397 // function. Otherwise, leave them out. 398 399 // backup to CALL instruction to read inlining info (same logic as below) 400 tracepc := frame.pc 401 if (n > 0 || flags&_TraceTrap == 0) && frame.pc > f.entry() && !waspanic { 402 tracepc-- 403 } 404 // If there is inlining info, print the inner frames. 405 if inldata := funcdata(f, _FUNCDATA_InlTree); inldata != nil { 406 inltree := (*[1 << 20]inlinedCall)(inldata) 407 var inlFunc _func 408 inlFuncInfo := funcInfo{&inlFunc, f.datap} 409 for { 410 ix := pcdatavalue(f, _PCDATA_InlTreeIndex, tracepc, nil) 411 if ix < 0 { 412 break 413 } 414 415 // Create a fake _func for the 416 // inlined function. 417 inlFunc.nameoff = inltree[ix].func_ 418 inlFunc.funcID = inltree[ix].funcID 419 420 if (flags&_TraceRuntimeFrames) != 0 || showframe(inlFuncInfo, gp, nprint == 0, inlFuncInfo.funcID, lastFuncID) { 421 name := funcname(inlFuncInfo) 422 file, line := funcline(f, tracepc) 423 print(name, "(...)\n") 424 print("\t", file, ":", line, "\n") 425 nprint++ 426 } 427 lastFuncID = inltree[ix].funcID 428 // Back up to an instruction in the "caller". 429 tracepc = frame.fn.entry() + uintptr(inltree[ix].parentPc) 430 } 431 } 432 if (flags&_TraceRuntimeFrames) != 0 || showframe(f, gp, nprint == 0, f.funcID, lastFuncID) { 433 // Print during crash. 434 // main(0x1, 0x2, 0x3) 435 // /home/rsc/go/src/runtime/x.go:23 +0xf 436 // 437 name := funcname(f) 438 file, line := funcline(f, tracepc) 439 if name == "runtime.gopanic" { 440 name = "panic" 441 } 442 print(name, "(") 443 argp := unsafe.Pointer(frame.argp) 444 printArgs(f, argp, tracepc) 445 print(")\n") 446 print("\t", file, ":", line) 447 if frame.pc > f.entry() { 448 print(" +", hex(frame.pc-f.entry())) 449 } 450 if gp.m != nil && gp.m.throwing > 0 && gp == gp.m.curg || level >= 2 { 451 print(" fp=", hex(frame.fp), " sp=", hex(frame.sp), " pc=", hex(frame.pc)) 452 } 453 print("\n") 454 nprint++ 455 } 456 lastFuncID = f.funcID 457 } 458 n++ 459 460 if f.funcID == funcID_cgocallback && len(cgoCtxt) > 0 { 461 ctxt := cgoCtxt[len(cgoCtxt)-1] 462 cgoCtxt = cgoCtxt[:len(cgoCtxt)-1] 463 464 // skip only applies to Go frames. 465 // callback != nil only used when we only care 466 // about Go frames. 467 if skip == 0 && callback == nil { 468 n = tracebackCgoContext(pcbuf, printing, ctxt, n, max) 469 } 470 } 471 472 waspanic = f.funcID == funcID_sigpanic 473 injectedCall := waspanic || f.funcID == funcID_asyncPreempt || f.funcID == funcID_debugCallV2 474 475 // Do not unwind past the bottom of the stack. 476 if !flr.valid() { 477 break 478 } 479 480 // Unwind to next frame. 481 frame.fn = flr 482 frame.pc = frame.lr 483 frame.lr = 0 484 frame.sp = frame.fp 485 frame.fp = 0 486 frame.argmap = nil 487 488 // On link register architectures, sighandler saves the LR on stack 489 // before faking a call. 490 if usesLR && injectedCall { 491 x := *(*uintptr)(unsafe.Pointer(frame.sp)) 492 frame.sp += alignUp(sys.MinFrameSize, sys.StackAlign) 493 f = findfunc(frame.pc) 494 frame.fn = f 495 if !f.valid() { 496 frame.pc = x 497 } else if funcspdelta(f, frame.pc, &cache) == 0 { 498 frame.lr = x 499 } 500 } 501 } 502 503 if printing { 504 n = nprint 505 } 506 507 // Note that panic != nil is okay here: there can be leftover panics, 508 // because the defers on the panic stack do not nest in frame order as 509 // they do on the defer stack. If you have: 510 // 511 // frame 1 defers d1 512 // frame 2 defers d2 513 // frame 3 defers d3 514 // frame 4 panics 515 // frame 4's panic starts running defers 516 // frame 5, running d3, defers d4 517 // frame 5 panics 518 // frame 5's panic starts running defers 519 // frame 6, running d4, garbage collects 520 // frame 6, running d2, garbage collects 521 // 522 // During the execution of d4, the panic stack is d4 -> d3, which 523 // is nested properly, and we'll treat frame 3 as resumable, because we 524 // can find d3. (And in fact frame 3 is resumable. If d4 recovers 525 // and frame 5 continues running, d3, d3 can recover and we'll 526 // resume execution in (returning from) frame 3.) 527 // 528 // During the execution of d2, however, the panic stack is d2 -> d3, 529 // which is inverted. The scan will match d2 to frame 2 but having 530 // d2 on the stack until then means it will not match d3 to frame 3. 531 // This is okay: if we're running d2, then all the defers after d2 have 532 // completed and their corresponding frames are dead. Not finding d3 533 // for frame 3 means we'll set frame 3's continpc == 0, which is correct 534 // (frame 3 is dead). At the end of the walk the panic stack can thus 535 // contain defers (d3 in this case) for dead frames. The inversion here 536 // always indicates a dead frame, and the effect of the inversion on the 537 // scan is to hide those dead frames, so the scan is still okay: 538 // what's left on the panic stack are exactly (and only) the dead frames. 539 // 540 // We require callback != nil here because only when callback != nil 541 // do we know that gentraceback is being called in a "must be correct" 542 // context as opposed to a "best effort" context. The tracebacks with 543 // callbacks only happen when everything is stopped nicely. 544 // At other times, such as when gathering a stack for a profiling signal 545 // or when printing a traceback during a crash, everything may not be 546 // stopped nicely, and the stack walk may not be able to complete. 547 if callback != nil && n < max && frame.sp != gp.stktopsp { 548 print("runtime: g", gp.goid, ": frame.sp=", hex(frame.sp), " top=", hex(gp.stktopsp), "\n") 549 print("\tstack=[", hex(gp.stack.lo), "-", hex(gp.stack.hi), "] n=", n, " max=", max, "\n") 550 throw("traceback did not unwind completely") 551 } 552 553 return n 554 } 555 556 // printArgs prints function arguments in traceback. 557 func printArgs(f funcInfo, argp unsafe.Pointer, pc uintptr) { 558 // The "instruction" of argument printing is encoded in _FUNCDATA_ArgInfo. 559 // See cmd/compile/internal/ssagen.emitArgInfo for the description of the 560 // encoding. 561 // These constants need to be in sync with the compiler. 562 const ( 563 _endSeq = 0xff 564 _startAgg = 0xfe 565 _endAgg = 0xfd 566 _dotdotdot = 0xfc 567 _offsetTooLarge = 0xfb 568 ) 569 570 const ( 571 limit = 10 // print no more than 10 args/components 572 maxDepth = 5 // no more than 5 layers of nesting 573 maxLen = (maxDepth*3+2)*limit + 1 // max length of _FUNCDATA_ArgInfo (see the compiler side for reasoning) 574 ) 575 576 p := (*[maxLen]uint8)(funcdata(f, _FUNCDATA_ArgInfo)) 577 if p == nil { 578 return 579 } 580 581 liveInfo := funcdata(f, _FUNCDATA_ArgLiveInfo) 582 liveIdx := pcdatavalue(f, _PCDATA_ArgLiveIndex, pc, nil) 583 startOffset := uint8(0xff) // smallest offset that needs liveness info (slots with a lower offset is always live) 584 if liveInfo != nil { 585 startOffset = *(*uint8)(liveInfo) 586 } 587 588 isLive := func(off, slotIdx uint8) bool { 589 if liveInfo == nil || liveIdx <= 0 { 590 return true // no liveness info, always live 591 } 592 if off < startOffset { 593 return true 594 } 595 bits := *(*uint8)(add(liveInfo, uintptr(liveIdx)+uintptr(slotIdx/8))) 596 return bits&(1<<(slotIdx%8)) != 0 597 } 598 599 print1 := func(off, sz, slotIdx uint8) { 600 x := readUnaligned64(add(argp, uintptr(off))) 601 // mask out irrelevant bits 602 if sz < 8 { 603 shift := 64 - sz*8 604 if goarch.BigEndian { 605 x = x >> shift 606 } else { 607 x = x << shift >> shift 608 } 609 } 610 print(hex(x)) 611 if !isLive(off, slotIdx) { 612 print("?") 613 } 614 } 615 616 start := true 617 printcomma := func() { 618 if !start { 619 print(", ") 620 } 621 } 622 pi := 0 623 slotIdx := uint8(0) // register arg spill slot index 624 printloop: 625 for { 626 o := p[pi] 627 pi++ 628 switch o { 629 case _endSeq: 630 break printloop 631 case _startAgg: 632 printcomma() 633 print("{") 634 start = true 635 continue 636 case _endAgg: 637 print("}") 638 case _dotdotdot: 639 printcomma() 640 print("...") 641 case _offsetTooLarge: 642 printcomma() 643 print("_") 644 default: 645 printcomma() 646 sz := p[pi] 647 pi++ 648 print1(o, sz, slotIdx) 649 if o >= startOffset { 650 slotIdx++ 651 } 652 } 653 start = false 654 } 655 } 656 657 // reflectMethodValue is a partial duplicate of reflect.makeFuncImpl 658 // and reflect.methodValue. 659 type reflectMethodValue struct { 660 fn uintptr 661 stack *bitvector // ptrmap for both args and results 662 argLen uintptr // just args 663 } 664 665 // getArgInfoFast returns the argument frame information for a call to f. 666 // It is short and inlineable. However, it does not handle all functions. 667 // If ok reports false, you must call getArgInfo instead. 668 // TODO(josharian): once we do mid-stack inlining, 669 // call getArgInfo directly from getArgInfoFast and stop returning an ok bool. 670 func getArgInfoFast(f funcInfo, needArgMap bool) (arglen uintptr, argmap *bitvector, ok bool) { 671 return uintptr(f.args), nil, !(needArgMap && f.args == _ArgsSizeUnknown) 672 } 673 674 // getArgInfo returns the argument frame information for a call to f 675 // with call frame frame. 676 // 677 // This is used for both actual calls with active stack frames and for 678 // deferred calls or goroutines that are not yet executing. If this is an actual 679 // call, ctxt must be nil (getArgInfo will retrieve what it needs from 680 // the active stack frame). If this is a deferred call or unstarted goroutine, 681 // ctxt must be the function object that was deferred or go'd. 682 func getArgInfo(frame *stkframe, f funcInfo, needArgMap bool, ctxt *funcval) (arglen uintptr, argmap *bitvector) { 683 arglen = uintptr(f.args) 684 if needArgMap && f.args == _ArgsSizeUnknown { 685 // Extract argument bitmaps for reflect stubs from the calls they made to reflect. 686 switch funcname(f) { 687 case "reflect.makeFuncStub", "reflect.methodValueCall": 688 // These take a *reflect.methodValue as their 689 // context register. 690 var mv *reflectMethodValue 691 var retValid bool 692 if ctxt != nil { 693 // This is not an actual call, but a 694 // deferred call or an unstarted goroutine. 695 // The function value is itself the *reflect.methodValue. 696 mv = (*reflectMethodValue)(unsafe.Pointer(ctxt)) 697 } else { 698 // This is a real call that took the 699 // *reflect.methodValue as its context 700 // register and immediately saved it 701 // to 0(SP). Get the methodValue from 702 // 0(SP). 703 arg0 := frame.sp + sys.MinFrameSize 704 mv = *(**reflectMethodValue)(unsafe.Pointer(arg0)) 705 // Figure out whether the return values are valid. 706 // Reflect will update this value after it copies 707 // in the return values. 708 retValid = *(*bool)(unsafe.Pointer(arg0 + 4*goarch.PtrSize)) 709 } 710 if mv.fn != f.entry() { 711 print("runtime: confused by ", funcname(f), "\n") 712 throw("reflect mismatch") 713 } 714 bv := mv.stack 715 arglen = uintptr(bv.n * goarch.PtrSize) 716 if !retValid { 717 arglen = uintptr(mv.argLen) &^ (goarch.PtrSize - 1) 718 } 719 argmap = bv 720 } 721 } 722 return 723 } 724 725 // tracebackCgoContext handles tracing back a cgo context value, from 726 // the context argument to setCgoTraceback, for the gentraceback 727 // function. It returns the new value of n. 728 func tracebackCgoContext(pcbuf *uintptr, printing bool, ctxt uintptr, n, max int) int { 729 var cgoPCs [32]uintptr 730 cgoContextPCs(ctxt, cgoPCs[:]) 731 var arg cgoSymbolizerArg 732 anySymbolized := false 733 for _, pc := range cgoPCs { 734 if pc == 0 || n >= max { 735 break 736 } 737 if pcbuf != nil { 738 (*[1 << 20]uintptr)(unsafe.Pointer(pcbuf))[n] = pc 739 } 740 if printing { 741 if cgoSymbolizer == nil { 742 print("non-Go function at pc=", hex(pc), "\n") 743 } else { 744 c := printOneCgoTraceback(pc, max-n, &arg) 745 n += c - 1 // +1 a few lines down 746 anySymbolized = true 747 } 748 } 749 n++ 750 } 751 if anySymbolized { 752 arg.pc = 0 753 callCgoSymbolizer(&arg) 754 } 755 return n 756 } 757 758 func printcreatedby(gp *g) { 759 // Show what created goroutine, except main goroutine (goid 1). 760 pc := gp.gopc 761 f := findfunc(pc) 762 if f.valid() && showframe(f, gp, false, funcID_normal, funcID_normal) && gp.goid != 1 { 763 printcreatedby1(f, pc) 764 } 765 } 766 767 func printcreatedby1(f funcInfo, pc uintptr) { 768 print("created by ", funcname(f), "\n") 769 tracepc := pc // back up to CALL instruction for funcline. 770 if pc > f.entry() { 771 tracepc -= sys.PCQuantum 772 } 773 file, line := funcline(f, tracepc) 774 print("\t", file, ":", line) 775 if pc > f.entry() { 776 print(" +", hex(pc-f.entry())) 777 } 778 print("\n") 779 } 780 781 func traceback(pc, sp, lr uintptr, gp *g) { 782 traceback1(pc, sp, lr, gp, 0) 783 } 784 785 // tracebacktrap is like traceback but expects that the PC and SP were obtained 786 // from a trap, not from gp->sched or gp->syscallpc/gp->syscallsp or getcallerpc/getcallersp. 787 // Because they are from a trap instead of from a saved pair, 788 // the initial PC must not be rewound to the previous instruction. 789 // (All the saved pairs record a PC that is a return address, so we 790 // rewind it into the CALL instruction.) 791 // If gp.m.libcall{g,pc,sp} information is available, it uses that information in preference to 792 // the pc/sp/lr passed in. 793 func tracebacktrap(pc, sp, lr uintptr, gp *g) { 794 if gp.m.libcallsp != 0 { 795 // We're in C code somewhere, traceback from the saved position. 796 traceback1(gp.m.libcallpc, gp.m.libcallsp, 0, gp.m.libcallg.ptr(), 0) 797 return 798 } 799 traceback1(pc, sp, lr, gp, _TraceTrap) 800 } 801 802 func traceback1(pc, sp, lr uintptr, gp *g, flags uint) { 803 // If the goroutine is in cgo, and we have a cgo traceback, print that. 804 if iscgo && gp.m != nil && gp.m.ncgo > 0 && gp.syscallsp != 0 && gp.m.cgoCallers != nil && gp.m.cgoCallers[0] != 0 { 805 // Lock cgoCallers so that a signal handler won't 806 // change it, copy the array, reset it, unlock it. 807 // We are locked to the thread and are not running 808 // concurrently with a signal handler. 809 // We just have to stop a signal handler from interrupting 810 // in the middle of our copy. 811 atomic.Store(&gp.m.cgoCallersUse, 1) 812 cgoCallers := *gp.m.cgoCallers 813 gp.m.cgoCallers[0] = 0 814 atomic.Store(&gp.m.cgoCallersUse, 0) 815 816 printCgoTraceback(&cgoCallers) 817 } 818 819 if readgstatus(gp)&^_Gscan == _Gsyscall { 820 // Override registers if blocked in system call. 821 pc = gp.syscallpc 822 sp = gp.syscallsp 823 flags &^= _TraceTrap 824 } 825 if gp.m != nil && gp.m.vdsoSP != 0 { 826 // Override registers if running in VDSO. This comes after the 827 // _Gsyscall check to cover VDSO calls after entersyscall. 828 pc = gp.m.vdsoPC 829 sp = gp.m.vdsoSP 830 flags &^= _TraceTrap 831 } 832 833 // Print traceback. By default, omits runtime frames. 834 // If that means we print nothing at all, repeat forcing all frames printed. 835 n := gentraceback(pc, sp, lr, gp, 0, nil, _TracebackMaxFrames, nil, nil, flags) 836 if n == 0 && (flags&_TraceRuntimeFrames) == 0 { 837 n = gentraceback(pc, sp, lr, gp, 0, nil, _TracebackMaxFrames, nil, nil, flags|_TraceRuntimeFrames) 838 } 839 if n == _TracebackMaxFrames { 840 print("...additional frames elided...\n") 841 } 842 printcreatedby(gp) 843 844 if gp.ancestors == nil { 845 return 846 } 847 for _, ancestor := range *gp.ancestors { 848 printAncestorTraceback(ancestor) 849 } 850 } 851 852 // printAncestorTraceback prints the traceback of the given ancestor. 853 // TODO: Unify this with gentraceback and CallersFrames. 854 func printAncestorTraceback(ancestor ancestorInfo) { 855 print("[originating from goroutine ", ancestor.goid, "]:\n") 856 for fidx, pc := range ancestor.pcs { 857 f := findfunc(pc) // f previously validated 858 if showfuncinfo(f, fidx == 0, funcID_normal, funcID_normal) { 859 printAncestorTracebackFuncInfo(f, pc) 860 } 861 } 862 if len(ancestor.pcs) == _TracebackMaxFrames { 863 print("...additional frames elided...\n") 864 } 865 // Show what created goroutine, except main goroutine (goid 1). 866 f := findfunc(ancestor.gopc) 867 if f.valid() && showfuncinfo(f, false, funcID_normal, funcID_normal) && ancestor.goid != 1 { 868 printcreatedby1(f, ancestor.gopc) 869 } 870 } 871 872 // printAncestorTraceback prints the given function info at a given pc 873 // within an ancestor traceback. The precision of this info is reduced 874 // due to only have access to the pcs at the time of the caller 875 // goroutine being created. 876 func printAncestorTracebackFuncInfo(f funcInfo, pc uintptr) { 877 name := funcname(f) 878 if inldata := funcdata(f, _FUNCDATA_InlTree); inldata != nil { 879 inltree := (*[1 << 20]inlinedCall)(inldata) 880 ix := pcdatavalue(f, _PCDATA_InlTreeIndex, pc, nil) 881 if ix >= 0 { 882 name = funcnameFromNameoff(f, inltree[ix].func_) 883 } 884 } 885 file, line := funcline(f, pc) 886 if name == "runtime.gopanic" { 887 name = "panic" 888 } 889 print(name, "(...)\n") 890 print("\t", file, ":", line) 891 if pc > f.entry() { 892 print(" +", hex(pc-f.entry())) 893 } 894 print("\n") 895 } 896 897 func callers(skip int, pcbuf []uintptr) int { 898 sp := getcallersp() 899 pc := getcallerpc() 900 gp := getg() 901 var n int 902 systemstack(func() { 903 n = gentraceback(pc, sp, 0, gp, skip, &pcbuf[0], len(pcbuf), nil, nil, 0) 904 }) 905 return n 906 } 907 908 func gcallers(gp *g, skip int, pcbuf []uintptr) int { 909 return gentraceback(^uintptr(0), ^uintptr(0), 0, gp, skip, &pcbuf[0], len(pcbuf), nil, nil, 0) 910 } 911 912 // showframe reports whether the frame with the given characteristics should 913 // be printed during a traceback. 914 func showframe(f funcInfo, gp *g, firstFrame bool, funcID, childID funcID) bool { 915 g := getg() 916 if g.m.throwing > 0 && gp != nil && (gp == g.m.curg || gp == g.m.caughtsig.ptr()) { 917 return true 918 } 919 return showfuncinfo(f, firstFrame, funcID, childID) 920 } 921 922 // showfuncinfo reports whether a function with the given characteristics should 923 // be printed during a traceback. 924 func showfuncinfo(f funcInfo, firstFrame bool, funcID, childID funcID) bool { 925 // Note that f may be a synthesized funcInfo for an inlined 926 // function, in which case only nameoff and funcID are set. 927 928 level, _, _ := gotraceback() 929 if level > 1 { 930 // Show all frames. 931 return true 932 } 933 934 if !f.valid() { 935 return false 936 } 937 938 if funcID == funcID_wrapper && elideWrapperCalling(childID) { 939 return false 940 } 941 942 name := funcname(f) 943 944 // Special case: always show runtime.gopanic frame 945 // in the middle of a stack trace, so that we can 946 // see the boundary between ordinary code and 947 // panic-induced deferred code. 948 // See golang.org/issue/5832. 949 if name == "runtime.gopanic" && !firstFrame { 950 return true 951 } 952 953 return bytealg.IndexByteString(name, '.') >= 0 && (!hasPrefix(name, "runtime.") || isExportedRuntime(name)) 954 } 955 956 // isExportedRuntime reports whether name is an exported runtime function. 957 // It is only for runtime functions, so ASCII A-Z is fine. 958 func isExportedRuntime(name string) bool { 959 const n = len("runtime.") 960 return len(name) > n && name[:n] == "runtime." && 'A' <= name[n] && name[n] <= 'Z' 961 } 962 963 // elideWrapperCalling reports whether a wrapper function that called 964 // function id should be elided from stack traces. 965 func elideWrapperCalling(id funcID) bool { 966 // If the wrapper called a panic function instead of the 967 // wrapped function, we want to include it in stacks. 968 return !(id == funcID_gopanic || id == funcID_sigpanic || id == funcID_panicwrap) 969 } 970 971 var gStatusStrings = [...]string{ 972 _Gidle: "idle", 973 _Grunnable: "runnable", 974 _Grunning: "running", 975 _Gsyscall: "syscall", 976 _Gwaiting: "waiting", 977 _Gdead: "dead", 978 _Gcopystack: "copystack", 979 _Gpreempted: "preempted", 980 } 981 982 func goroutineheader(gp *g) { 983 gpstatus := readgstatus(gp) 984 985 isScan := gpstatus&_Gscan != 0 986 gpstatus &^= _Gscan // drop the scan bit 987 988 // Basic string status 989 var status string 990 if 0 <= gpstatus && gpstatus < uint32(len(gStatusStrings)) { 991 status = gStatusStrings[gpstatus] 992 } else { 993 status = "???" 994 } 995 996 // Override. 997 if gpstatus == _Gwaiting && gp.waitreason != waitReasonZero { 998 status = gp.waitreason.String() 999 } 1000 1001 // approx time the G is blocked, in minutes 1002 var waitfor int64 1003 if (gpstatus == _Gwaiting || gpstatus == _Gsyscall) && gp.waitsince != 0 { 1004 waitfor = (nanotime() - gp.waitsince) / 60e9 1005 } 1006 print("goroutine ", gp.goid, " [", status) 1007 if isScan { 1008 print(" (scan)") 1009 } 1010 if waitfor >= 1 { 1011 print(", ", waitfor, " minutes") 1012 } 1013 if gp.lockedm != 0 { 1014 print(", locked to thread") 1015 } 1016 print("]:\n") 1017 } 1018 1019 func tracebackothers(me *g) { 1020 level, _, _ := gotraceback() 1021 1022 // Show the current goroutine first, if we haven't already. 1023 curgp := getg().m.curg 1024 if curgp != nil && curgp != me { 1025 print("\n") 1026 goroutineheader(curgp) 1027 traceback(^uintptr(0), ^uintptr(0), 0, curgp) 1028 } 1029 1030 // We can't call locking forEachG here because this may be during fatal 1031 // throw/panic, where locking could be out-of-order or a direct 1032 // deadlock. 1033 // 1034 // Instead, use forEachGRace, which requires no locking. We don't lock 1035 // against concurrent creation of new Gs, but even with allglock we may 1036 // miss Gs created after this loop. 1037 forEachGRace(func(gp *g) { 1038 if gp == me || gp == curgp || readgstatus(gp) == _Gdead || isSystemGoroutine(gp, false) && level < 2 { 1039 return 1040 } 1041 print("\n") 1042 goroutineheader(gp) 1043 // Note: gp.m == g.m occurs when tracebackothers is 1044 // called from a signal handler initiated during a 1045 // systemstack call. The original G is still in the 1046 // running state, and we want to print its stack. 1047 if gp.m != getg().m && readgstatus(gp)&^_Gscan == _Grunning { 1048 print("\tgoroutine running on other thread; stack unavailable\n") 1049 printcreatedby(gp) 1050 } else { 1051 traceback(^uintptr(0), ^uintptr(0), 0, gp) 1052 } 1053 }) 1054 } 1055 1056 // tracebackHexdump hexdumps part of stk around frame.sp and frame.fp 1057 // for debugging purposes. If the address bad is included in the 1058 // hexdumped range, it will mark it as well. 1059 func tracebackHexdump(stk stack, frame *stkframe, bad uintptr) { 1060 const expand = 32 * goarch.PtrSize 1061 const maxExpand = 256 * goarch.PtrSize 1062 // Start around frame.sp. 1063 lo, hi := frame.sp, frame.sp 1064 // Expand to include frame.fp. 1065 if frame.fp != 0 && frame.fp < lo { 1066 lo = frame.fp 1067 } 1068 if frame.fp != 0 && frame.fp > hi { 1069 hi = frame.fp 1070 } 1071 // Expand a bit more. 1072 lo, hi = lo-expand, hi+expand 1073 // But don't go too far from frame.sp. 1074 if lo < frame.sp-maxExpand { 1075 lo = frame.sp - maxExpand 1076 } 1077 if hi > frame.sp+maxExpand { 1078 hi = frame.sp + maxExpand 1079 } 1080 // And don't go outside the stack bounds. 1081 if lo < stk.lo { 1082 lo = stk.lo 1083 } 1084 if hi > stk.hi { 1085 hi = stk.hi 1086 } 1087 1088 // Print the hex dump. 1089 print("stack: frame={sp:", hex(frame.sp), ", fp:", hex(frame.fp), "} stack=[", hex(stk.lo), ",", hex(stk.hi), ")\n") 1090 hexdumpWords(lo, hi, func(p uintptr) byte { 1091 switch p { 1092 case frame.fp: 1093 return '>' 1094 case frame.sp: 1095 return '<' 1096 case bad: 1097 return '!' 1098 } 1099 return 0 1100 }) 1101 } 1102 1103 // isSystemGoroutine reports whether the goroutine g must be omitted 1104 // in stack dumps and deadlock detector. This is any goroutine that 1105 // starts at a runtime.* entry point, except for runtime.main, 1106 // runtime.handleAsyncEvent (wasm only) and sometimes runtime.runfinq. 1107 // 1108 // If fixed is true, any goroutine that can vary between user and 1109 // system (that is, the finalizer goroutine) is considered a user 1110 // goroutine. 1111 func isSystemGoroutine(gp *g, fixed bool) bool { 1112 // Keep this in sync with cmd/trace/trace.go:isSystemGoroutine. 1113 f := findfunc(gp.startpc) 1114 if !f.valid() { 1115 return false 1116 } 1117 if f.funcID == funcID_runtime_main || f.funcID == funcID_handleAsyncEvent { 1118 return false 1119 } 1120 if f.funcID == funcID_runfinq { 1121 // We include the finalizer goroutine if it's calling 1122 // back into user code. 1123 if fixed { 1124 // This goroutine can vary. In fixed mode, 1125 // always consider it a user goroutine. 1126 return false 1127 } 1128 return !fingRunning 1129 } 1130 return hasPrefix(funcname(f), "runtime.") 1131 } 1132 1133 // SetCgoTraceback records three C functions to use to gather 1134 // traceback information from C code and to convert that traceback 1135 // information into symbolic information. These are used when printing 1136 // stack traces for a program that uses cgo. 1137 // 1138 // The traceback and context functions may be called from a signal 1139 // handler, and must therefore use only async-signal safe functions. 1140 // The symbolizer function may be called while the program is 1141 // crashing, and so must be cautious about using memory. None of the 1142 // functions may call back into Go. 1143 // 1144 // The context function will be called with a single argument, a 1145 // pointer to a struct: 1146 // 1147 // struct { 1148 // Context uintptr 1149 // } 1150 // 1151 // In C syntax, this struct will be 1152 // 1153 // struct { 1154 // uintptr_t Context; 1155 // }; 1156 // 1157 // If the Context field is 0, the context function is being called to 1158 // record the current traceback context. It should record in the 1159 // Context field whatever information is needed about the current 1160 // point of execution to later produce a stack trace, probably the 1161 // stack pointer and PC. In this case the context function will be 1162 // called from C code. 1163 // 1164 // If the Context field is not 0, then it is a value returned by a 1165 // previous call to the context function. This case is called when the 1166 // context is no longer needed; that is, when the Go code is returning 1167 // to its C code caller. This permits the context function to release 1168 // any associated resources. 1169 // 1170 // While it would be correct for the context function to record a 1171 // complete a stack trace whenever it is called, and simply copy that 1172 // out in the traceback function, in a typical program the context 1173 // function will be called many times without ever recording a 1174 // traceback for that context. Recording a complete stack trace in a 1175 // call to the context function is likely to be inefficient. 1176 // 1177 // The traceback function will be called with a single argument, a 1178 // pointer to a struct: 1179 // 1180 // struct { 1181 // Context uintptr 1182 // SigContext uintptr 1183 // Buf *uintptr 1184 // Max uintptr 1185 // } 1186 // 1187 // In C syntax, this struct will be 1188 // 1189 // struct { 1190 // uintptr_t Context; 1191 // uintptr_t SigContext; 1192 // uintptr_t* Buf; 1193 // uintptr_t Max; 1194 // }; 1195 // 1196 // The Context field will be zero to gather a traceback from the 1197 // current program execution point. In this case, the traceback 1198 // function will be called from C code. 1199 // 1200 // Otherwise Context will be a value previously returned by a call to 1201 // the context function. The traceback function should gather a stack 1202 // trace from that saved point in the program execution. The traceback 1203 // function may be called from an execution thread other than the one 1204 // that recorded the context, but only when the context is known to be 1205 // valid and unchanging. The traceback function may also be called 1206 // deeper in the call stack on the same thread that recorded the 1207 // context. The traceback function may be called multiple times with 1208 // the same Context value; it will usually be appropriate to cache the 1209 // result, if possible, the first time this is called for a specific 1210 // context value. 1211 // 1212 // If the traceback function is called from a signal handler on a Unix 1213 // system, SigContext will be the signal context argument passed to 1214 // the signal handler (a C ucontext_t* cast to uintptr_t). This may be 1215 // used to start tracing at the point where the signal occurred. If 1216 // the traceback function is not called from a signal handler, 1217 // SigContext will be zero. 1218 // 1219 // Buf is where the traceback information should be stored. It should 1220 // be PC values, such that Buf[0] is the PC of the caller, Buf[1] is 1221 // the PC of that function's caller, and so on. Max is the maximum 1222 // number of entries to store. The function should store a zero to 1223 // indicate the top of the stack, or that the caller is on a different 1224 // stack, presumably a Go stack. 1225 // 1226 // Unlike runtime.Callers, the PC values returned should, when passed 1227 // to the symbolizer function, return the file/line of the call 1228 // instruction. No additional subtraction is required or appropriate. 1229 // 1230 // On all platforms, the traceback function is invoked when a call from 1231 // Go to C to Go requests a stack trace. On linux/amd64, linux/ppc64le, 1232 // and freebsd/amd64, the traceback function is also invoked when a 1233 // signal is received by a thread that is executing a cgo call. The 1234 // traceback function should not make assumptions about when it is 1235 // called, as future versions of Go may make additional calls. 1236 // 1237 // The symbolizer function will be called with a single argument, a 1238 // pointer to a struct: 1239 // 1240 // struct { 1241 // PC uintptr // program counter to fetch information for 1242 // File *byte // file name (NUL terminated) 1243 // Lineno uintptr // line number 1244 // Func *byte // function name (NUL terminated) 1245 // Entry uintptr // function entry point 1246 // More uintptr // set non-zero if more info for this PC 1247 // Data uintptr // unused by runtime, available for function 1248 // } 1249 // 1250 // In C syntax, this struct will be 1251 // 1252 // struct { 1253 // uintptr_t PC; 1254 // char* File; 1255 // uintptr_t Lineno; 1256 // char* Func; 1257 // uintptr_t Entry; 1258 // uintptr_t More; 1259 // uintptr_t Data; 1260 // }; 1261 // 1262 // The PC field will be a value returned by a call to the traceback 1263 // function. 1264 // 1265 // The first time the function is called for a particular traceback, 1266 // all the fields except PC will be 0. The function should fill in the 1267 // other fields if possible, setting them to 0/nil if the information 1268 // is not available. The Data field may be used to store any useful 1269 // information across calls. The More field should be set to non-zero 1270 // if there is more information for this PC, zero otherwise. If More 1271 // is set non-zero, the function will be called again with the same 1272 // PC, and may return different information (this is intended for use 1273 // with inlined functions). If More is zero, the function will be 1274 // called with the next PC value in the traceback. When the traceback 1275 // is complete, the function will be called once more with PC set to 1276 // zero; this may be used to free any information. Each call will 1277 // leave the fields of the struct set to the same values they had upon 1278 // return, except for the PC field when the More field is zero. The 1279 // function must not keep a copy of the struct pointer between calls. 1280 // 1281 // When calling SetCgoTraceback, the version argument is the version 1282 // number of the structs that the functions expect to receive. 1283 // Currently this must be zero. 1284 // 1285 // The symbolizer function may be nil, in which case the results of 1286 // the traceback function will be displayed as numbers. If the 1287 // traceback function is nil, the symbolizer function will never be 1288 // called. The context function may be nil, in which case the 1289 // traceback function will only be called with the context field set 1290 // to zero. If the context function is nil, then calls from Go to C 1291 // to Go will not show a traceback for the C portion of the call stack. 1292 // 1293 // SetCgoTraceback should be called only once, ideally from an init function. 1294 func SetCgoTraceback(version int, traceback, context, symbolizer unsafe.Pointer) { 1295 if version != 0 { 1296 panic("unsupported version") 1297 } 1298 1299 if cgoTraceback != nil && cgoTraceback != traceback || 1300 cgoContext != nil && cgoContext != context || 1301 cgoSymbolizer != nil && cgoSymbolizer != symbolizer { 1302 panic("call SetCgoTraceback only once") 1303 } 1304 1305 cgoTraceback = traceback 1306 cgoContext = context 1307 cgoSymbolizer = symbolizer 1308 1309 // The context function is called when a C function calls a Go 1310 // function. As such it is only called by C code in runtime/cgo. 1311 if _cgo_set_context_function != nil { 1312 cgocall(_cgo_set_context_function, context) 1313 } 1314 } 1315 1316 var cgoTraceback unsafe.Pointer 1317 var cgoContext unsafe.Pointer 1318 var cgoSymbolizer unsafe.Pointer 1319 1320 // cgoTracebackArg is the type passed to cgoTraceback. 1321 type cgoTracebackArg struct { 1322 context uintptr 1323 sigContext uintptr 1324 buf *uintptr 1325 max uintptr 1326 } 1327 1328 // cgoContextArg is the type passed to the context function. 1329 type cgoContextArg struct { 1330 context uintptr 1331 } 1332 1333 // cgoSymbolizerArg is the type passed to cgoSymbolizer. 1334 type cgoSymbolizerArg struct { 1335 pc uintptr 1336 file *byte 1337 lineno uintptr 1338 funcName *byte 1339 entry uintptr 1340 more uintptr 1341 data uintptr 1342 } 1343 1344 // cgoTraceback prints a traceback of callers. 1345 func printCgoTraceback(callers *cgoCallers) { 1346 if cgoSymbolizer == nil { 1347 for _, c := range callers { 1348 if c == 0 { 1349 break 1350 } 1351 print("non-Go function at pc=", hex(c), "\n") 1352 } 1353 return 1354 } 1355 1356 var arg cgoSymbolizerArg 1357 for _, c := range callers { 1358 if c == 0 { 1359 break 1360 } 1361 printOneCgoTraceback(c, 0x7fffffff, &arg) 1362 } 1363 arg.pc = 0 1364 callCgoSymbolizer(&arg) 1365 } 1366 1367 // printOneCgoTraceback prints the traceback of a single cgo caller. 1368 // This can print more than one line because of inlining. 1369 // Returns the number of frames printed. 1370 func printOneCgoTraceback(pc uintptr, max int, arg *cgoSymbolizerArg) int { 1371 c := 0 1372 arg.pc = pc 1373 for c <= max { 1374 callCgoSymbolizer(arg) 1375 if arg.funcName != nil { 1376 // Note that we don't print any argument 1377 // information here, not even parentheses. 1378 // The symbolizer must add that if appropriate. 1379 println(gostringnocopy(arg.funcName)) 1380 } else { 1381 println("non-Go function") 1382 } 1383 print("\t") 1384 if arg.file != nil { 1385 print(gostringnocopy(arg.file), ":", arg.lineno, " ") 1386 } 1387 print("pc=", hex(pc), "\n") 1388 c++ 1389 if arg.more == 0 { 1390 break 1391 } 1392 } 1393 return c 1394 } 1395 1396 // callCgoSymbolizer calls the cgoSymbolizer function. 1397 func callCgoSymbolizer(arg *cgoSymbolizerArg) { 1398 call := cgocall 1399 if panicking > 0 || getg().m.curg != getg() { 1400 // We do not want to call into the scheduler when panicking 1401 // or when on the system stack. 1402 call = asmcgocall 1403 } 1404 if msanenabled { 1405 msanwrite(unsafe.Pointer(arg), unsafe.Sizeof(cgoSymbolizerArg{})) 1406 } 1407 if asanenabled { 1408 asanwrite(unsafe.Pointer(arg), unsafe.Sizeof(cgoSymbolizerArg{})) 1409 } 1410 call(cgoSymbolizer, noescape(unsafe.Pointer(arg))) 1411 } 1412 1413 // cgoContextPCs gets the PC values from a cgo traceback. 1414 func cgoContextPCs(ctxt uintptr, buf []uintptr) { 1415 if cgoTraceback == nil { 1416 return 1417 } 1418 call := cgocall 1419 if panicking > 0 || getg().m.curg != getg() { 1420 // We do not want to call into the scheduler when panicking 1421 // or when on the system stack. 1422 call = asmcgocall 1423 } 1424 arg := cgoTracebackArg{ 1425 context: ctxt, 1426 buf: (*uintptr)(noescape(unsafe.Pointer(&buf[0]))), 1427 max: uintptr(len(buf)), 1428 } 1429 if msanenabled { 1430 msanwrite(unsafe.Pointer(&arg), unsafe.Sizeof(arg)) 1431 } 1432 if asanenabled { 1433 asanwrite(unsafe.Pointer(&arg), unsafe.Sizeof(arg)) 1434 } 1435 call(cgoTraceback, noescape(unsafe.Pointer(&arg))) 1436 } 1437