// Copyright 2021 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package noder import ( "fmt" "os" "cmd/compile/internal/base" "cmd/compile/internal/dwarfgen" "cmd/compile/internal/ir" "cmd/compile/internal/syntax" "cmd/compile/internal/typecheck" "cmd/compile/internal/types" "cmd/compile/internal/types2" "cmd/internal/src" ) // checkFiles configures and runs the types2 checker on the given // parsed source files and then returns the result. func checkFiles(noders []*noder) (posMap, *types2.Package, *types2.Info) { if base.SyntaxErrors() != 0 { base.ErrorExit() } // setup and syntax error reporting var m posMap files := make([]*syntax.File, len(noders)) for i, p := range noders { m.join(&p.posMap) files[i] = p.file } // typechecking ctxt := types2.NewContext() importer := gcimports{ ctxt: ctxt, packages: map[string]*types2.Package{"unsafe": types2.Unsafe}, } conf := types2.Config{ Context: ctxt, GoVersion: base.Flag.Lang, IgnoreLabels: true, // parser already checked via syntax.CheckBranches mode CompilerErrorMessages: true, // use error strings matching existing compiler errors Error: func(err error) { terr := err.(types2.Error) base.ErrorfAt(m.makeXPos(terr.Pos), "%s", terr.Msg) }, Importer: &importer, Sizes: &gcSizes{}, } info := &types2.Info{ Types: make(map[syntax.Expr]types2.TypeAndValue), Defs: make(map[*syntax.Name]types2.Object), Uses: make(map[*syntax.Name]types2.Object), Selections: make(map[*syntax.SelectorExpr]*types2.Selection), Implicits: make(map[syntax.Node]types2.Object), Scopes: make(map[syntax.Node]*types2.Scope), Instances: make(map[*syntax.Name]types2.Instance), // expand as needed } pkg, err := conf.Check(base.Ctxt.Pkgpath, files, info) base.ExitIfErrors() if err != nil { base.FatalfAt(src.NoXPos, "conf.Check error: %v", err) } return m, pkg, info } // check2 type checks a Go package using types2, and then generates IR // using the results. func check2(noders []*noder) { m, pkg, info := checkFiles(noders) if base.Flag.G < 2 { os.Exit(0) } g := irgen{ target: typecheck.Target, self: pkg, info: info, posMap: m, objs: make(map[types2.Object]*ir.Name), typs: make(map[types2.Type]*types.Type), } g.generate(noders) if base.Flag.G < 3 { os.Exit(0) } } // Information about sub-dictionary entries in a dictionary type subDictInfo struct { // Call or XDOT node that requires a dictionary. callNode ir.Node // Saved CallExpr.X node (*ir.SelectorExpr or *InstExpr node) for a generic // method or function call, since this node will get dropped when the generic // method/function call is transformed to a call on the instantiated shape // function. Nil for other kinds of calls or XDOTs. savedXNode ir.Node } // dictInfo is the dictionary format for an instantiation of a generic function with // particular shapes. shapeParams, derivedTypes, subDictCalls, and itabConvs describe // the actual dictionary entries in order, and the remaining fields are other info // needed in doing dictionary processing during compilation. type dictInfo struct { // Types substituted for the type parameters, which are shape types. shapeParams []*types.Type // All types derived from those typeparams used in the instantiation. derivedTypes []*types.Type // Nodes in the instantiation that requires a subdictionary. Includes // method and function calls (OCALL), function values (OFUNCINST), method // values/expressions (OXDOT). subDictCalls []subDictInfo // Nodes in the instantiation that are a conversion from a typeparam/derived // type to a specific interface. itabConvs []ir.Node // Mapping from each shape type that substitutes a type param, to its // type bound (which is also substituted with shapes if it is parameterized) shapeToBound map[*types.Type]*types.Type // For type switches on nonempty interfaces, a map from OTYPE entries of // HasShape type, to the interface type we're switching from. type2switchType map[ir.Node]*types.Type startSubDict int // Start of dict entries for subdictionaries startItabConv int // Start of dict entries for itab conversions dictLen int // Total number of entries in dictionary } // instInfo is information gathered on an shape instantiation of a function. type instInfo struct { fun *ir.Func // The instantiated function (with body) dictParam *ir.Name // The node inside fun that refers to the dictionary param dictInfo *dictInfo } type irgen struct { target *ir.Package self *types2.Package info *types2.Info posMap objs map[types2.Object]*ir.Name typs map[types2.Type]*types.Type marker dwarfgen.ScopeMarker // laterFuncs records tasks that need to run after all declarations // are processed. laterFuncs []func() // haveEmbed indicates whether the current node belongs to file that // imports "embed" package. haveEmbed bool // exprStmtOK indicates whether it's safe to generate expressions or // statements yet. exprStmtOK bool // types which we need to finish, by doing g.fillinMethods. typesToFinalize []*typeDelayInfo // True when we are compiling a top-level generic function or method. Use to // avoid adding closures of generic functions/methods to the target.Decls // list. topFuncIsGeneric bool // The context during type/function/method declarations that is used to // uniquely name type parameters. We need unique names for type params so we // can be sure they match up correctly between types2-to-types1 translation // and types1 importing. curDecl string } // genInst has the information for creating needed instantiations and modifying // functions to use instantiations. type genInst struct { dnum int // for generating unique dictionary variables // Map from the names of all instantiations to information about the // instantiations. instInfoMap map[*types.Sym]*instInfo // Dictionary syms which we need to finish, by writing out any itabconv // entries. dictSymsToFinalize []*delayInfo // New instantiations created during this round of buildInstantiations(). newInsts []ir.Node } func (g *irgen) later(fn func()) { g.laterFuncs = append(g.laterFuncs, fn) } type delayInfo struct { gf *ir.Name targs []*types.Type sym *types.Sym off int isMeth bool } type typeDelayInfo struct { typ *types2.Named ntyp *types.Type } func (g *irgen) generate(noders []*noder) { types.LocalPkg.Name = g.self.Name() types.LocalPkg.Height = g.self.Height() typecheck.TypecheckAllowed = true // Prevent size calculations until we set the underlying type // for all package-block defined types. types.DeferCheckSize() // At this point, types2 has already handled name resolution and // type checking. We just need to map from its object and type // representations to those currently used by the rest of the // compiler. This happens in a few passes. // 1. Process all import declarations. We use the compiler's own // importer for this, rather than types2's gcimporter-derived one, // to handle extensions and inline function bodies correctly. // // Also, we need to do this in a separate pass, because mappings are // instantiated on demand. If we interleaved processing import // declarations with other declarations, it's likely we'd end up // wanting to map an object/type from another source file, but not // yet have the import data it relies on. declLists := make([][]syntax.Decl, len(noders)) Outer: for i, p := range noders { g.pragmaFlags(p.file.Pragma, ir.GoBuildPragma) for j, decl := range p.file.DeclList { switch decl := decl.(type) { case *syntax.ImportDecl: g.importDecl(p, decl) default: declLists[i] = p.file.DeclList[j:] continue Outer // no more ImportDecls } } } // 2. Process all package-block type declarations. As with imports, // we need to make sure all types are properly instantiated before // trying to map any expressions that utilize them. In particular, // we need to make sure type pragmas are already known (see comment // in irgen.typeDecl). // // We could perhaps instead defer processing of package-block // variable initializers and function bodies, like noder does, but // special-casing just package-block type declarations minimizes the // differences between processing package-block and function-scoped // declarations. for _, declList := range declLists { for _, decl := range declList { switch decl := decl.(type) { case *syntax.TypeDecl: g.typeDecl((*ir.Nodes)(&g.target.Decls), decl) } } } types.ResumeCheckSize() // 3. Process all remaining declarations. for i, declList := range declLists { old := g.haveEmbed g.haveEmbed = noders[i].importedEmbed g.decls((*ir.Nodes)(&g.target.Decls), declList) g.haveEmbed = old } g.exprStmtOK = true // 4. Run any "later" tasks. Avoid using 'range' so that tasks can // recursively queue further tasks. (Not currently utilized though.) for len(g.laterFuncs) > 0 { fn := g.laterFuncs[0] g.laterFuncs = g.laterFuncs[1:] fn() } if base.Flag.W > 1 { for _, n := range g.target.Decls { s := fmt.Sprintf("\nafter noder2 %v", n) ir.Dump(s, n) } } for _, p := range noders { // Process linkname and cgo pragmas. p.processPragmas() // Double check for any type-checking inconsistencies. This can be // removed once we're confident in IR generation results. syntax.Crawl(p.file, func(n syntax.Node) bool { g.validate(n) return false }) } if base.Flag.Complete { for _, n := range g.target.Decls { if fn, ok := n.(*ir.Func); ok { if fn.Body == nil && fn.Nname.Sym().Linkname == "" { base.ErrorfAt(fn.Pos(), "missing function body") } } } } // Check for unusual case where noder2 encounters a type error that types2 // doesn't check for (e.g. notinheap incompatibility). base.ExitIfErrors() typecheck.DeclareUniverse() // Create any needed instantiations of generic functions and transform // existing and new functions to use those instantiations. BuildInstantiations() // Remove all generic functions from g.target.Decl, since they have been // used for stenciling, but don't compile. Generic functions will already // have been marked for export as appropriate. j := 0 for i, decl := range g.target.Decls { if decl.Op() != ir.ODCLFUNC || !decl.Type().HasTParam() { g.target.Decls[j] = g.target.Decls[i] j++ } } g.target.Decls = g.target.Decls[:j] base.Assertf(len(g.laterFuncs) == 0, "still have %d later funcs", len(g.laterFuncs)) } func (g *irgen) unhandled(what string, p poser) { base.FatalfAt(g.pos(p), "unhandled %s: %T", what, p) panic("unreachable") } // delayTransform returns true if we should delay all transforms, because we are // creating the nodes for a generic function/method. func (g *irgen) delayTransform() bool { return g.topFuncIsGeneric }