// Copyright 2015 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package ssa import ( "cmd/compile/internal/abi" "cmd/compile/internal/ir" "cmd/compile/internal/types" "cmd/internal/obj" "fmt" "strings" ) // An Op encodes the specific operation that a Value performs. // Opcodes' semantics can be modified by the type and aux fields of the Value. // For instance, OpAdd can be 32 or 64 bit, signed or unsigned, float or complex, depending on Value.Type. // Semantics of each op are described in the opcode files in gen/*Ops.go. // There is one file for generic (architecture-independent) ops and one file // for each architecture. type Op int32 type opInfo struct { name string reg regInfo auxType auxType argLen int32 // the number of arguments, -1 if variable length asm obj.As generic bool // this is a generic (arch-independent) opcode rematerializeable bool // this op is rematerializeable commutative bool // this operation is commutative (e.g. addition) resultInArg0 bool // (first, if a tuple) output of v and v.Args[0] must be allocated to the same register resultNotInArgs bool // outputs must not be allocated to the same registers as inputs clobberFlags bool // this op clobbers flags register call bool // is a function call tailCall bool // is a tail call nilCheck bool // this op is a nil check on arg0 faultOnNilArg0 bool // this op will fault if arg0 is nil (and aux encodes a small offset) faultOnNilArg1 bool // this op will fault if arg1 is nil (and aux encodes a small offset) usesScratch bool // this op requires scratch memory space hasSideEffects bool // for "reasons", not to be eliminated. E.g., atomic store, #19182. zeroWidth bool // op never translates into any machine code. example: copy, which may sometimes translate to machine code, is not zero-width. unsafePoint bool // this op is an unsafe point, i.e. not safe for async preemption symEffect SymEffect // effect this op has on symbol in aux scale uint8 // amd64/386 indexed load scale } type inputInfo struct { idx int // index in Args array regs regMask // allowed input registers } type outputInfo struct { idx int // index in output tuple regs regMask // allowed output registers } type regInfo struct { // inputs encodes the register restrictions for an instruction's inputs. // Each entry specifies an allowed register set for a particular input. // They are listed in the order in which regalloc should pick a register // from the register set (most constrained first). // Inputs which do not need registers are not listed. inputs []inputInfo // clobbers encodes the set of registers that are overwritten by // the instruction (other than the output registers). clobbers regMask // outputs is the same as inputs, but for the outputs of the instruction. outputs []outputInfo } func (r *regInfo) String() string { s := "" s += "INS:\n" for _, i := range r.inputs { mask := fmt.Sprintf("%64b", i.regs) mask = strings.Replace(mask, "0", ".", -1) s += fmt.Sprintf("%2d |%s|\n", i.idx, mask) } s += "OUTS:\n" for _, i := range r.outputs { mask := fmt.Sprintf("%64b", i.regs) mask = strings.Replace(mask, "0", ".", -1) s += fmt.Sprintf("%2d |%s|\n", i.idx, mask) } s += "CLOBBERS:\n" mask := fmt.Sprintf("%64b", r.clobbers) mask = strings.Replace(mask, "0", ".", -1) s += fmt.Sprintf(" |%s|\n", mask) return s } type auxType int8 type AuxNameOffset struct { Name *ir.Name Offset int64 } func (a *AuxNameOffset) CanBeAnSSAAux() {} func (a *AuxNameOffset) String() string { return fmt.Sprintf("%s+%d", a.Name.Sym().Name, a.Offset) } func (a *AuxNameOffset) FrameOffset() int64 { return a.Name.FrameOffset() + a.Offset } type AuxCall struct { Fn *obj.LSym reg *regInfo // regInfo for this call abiInfo *abi.ABIParamResultInfo } // Reg returns the regInfo for a given call, combining the derived in/out register masks // with the machine-specific register information in the input i. (The machine-specific // regInfo is much handier at the call site than it is when the AuxCall is being constructed, // therefore do this lazily). // // TODO: there is a Clever Hack that allows pre-generation of a small-ish number of the slices // of inputInfo and outputInfo used here, provided that we are willing to reorder the inputs // and outputs from calls, so that all integer registers come first, then all floating registers. // At this point (active development of register ABI) that is very premature, // but if this turns out to be a cost, we could do it. func (a *AuxCall) Reg(i *regInfo, c *Config) *regInfo { if a.reg.clobbers != 0 { // Already updated return a.reg } if a.abiInfo.InRegistersUsed()+a.abiInfo.OutRegistersUsed() == 0 { // Shortcut for zero case, also handles old ABI. a.reg = i return a.reg } k := len(i.inputs) for _, p := range a.abiInfo.InParams() { for _, r := range p.Registers { m := archRegForAbiReg(r, c) a.reg.inputs = append(a.reg.inputs, inputInfo{idx: k, regs: (1 << m)}) k++ } } a.reg.inputs = append(a.reg.inputs, i.inputs...) // These are less constrained, thus should come last k = len(i.outputs) for _, p := range a.abiInfo.OutParams() { for _, r := range p.Registers { m := archRegForAbiReg(r, c) a.reg.outputs = append(a.reg.outputs, outputInfo{idx: k, regs: (1 << m)}) k++ } } a.reg.outputs = append(a.reg.outputs, i.outputs...) a.reg.clobbers = i.clobbers return a.reg } func (a *AuxCall) ABI() *abi.ABIConfig { return a.abiInfo.Config() } func (a *AuxCall) ABIInfo() *abi.ABIParamResultInfo { return a.abiInfo } func (a *AuxCall) ResultReg(c *Config) *regInfo { if a.abiInfo.OutRegistersUsed() == 0 { return a.reg } if len(a.reg.inputs) > 0 { return a.reg } k := 0 for _, p := range a.abiInfo.OutParams() { for _, r := range p.Registers { m := archRegForAbiReg(r, c) a.reg.inputs = append(a.reg.inputs, inputInfo{idx: k, regs: (1 << m)}) k++ } } return a.reg } // For ABI register index r, returns the (dense) register number used in // SSA backend. func archRegForAbiReg(r abi.RegIndex, c *Config) uint8 { var m int8 if int(r) < len(c.intParamRegs) { m = c.intParamRegs[r] } else { m = c.floatParamRegs[int(r)-len(c.intParamRegs)] } return uint8(m) } // For ABI register index r, returns the register number used in the obj // package (assembler). func ObjRegForAbiReg(r abi.RegIndex, c *Config) int16 { m := archRegForAbiReg(r, c) return c.registers[m].objNum } // ArgWidth returns the amount of stack needed for all the inputs // and outputs of a function or method, including ABI-defined parameter // slots and ABI-defined spill slots for register-resident parameters. // // The name is taken from the types package's ArgWidth(), // which predated changes to the ABI; this version handles those changes. func (a *AuxCall) ArgWidth() int64 { return a.abiInfo.ArgWidth() } // ParamAssignmentForResult returns the ABI Parameter assignment for result which (indexed 0, 1, etc). func (a *AuxCall) ParamAssignmentForResult(which int64) *abi.ABIParamAssignment { return a.abiInfo.OutParam(int(which)) } // OffsetOfResult returns the SP offset of result which (indexed 0, 1, etc). func (a *AuxCall) OffsetOfResult(which int64) int64 { n := int64(a.abiInfo.OutParam(int(which)).Offset()) return n } // OffsetOfArg returns the SP offset of argument which (indexed 0, 1, etc). // If the call is to a method, the receiver is the first argument (i.e., index 0) func (a *AuxCall) OffsetOfArg(which int64) int64 { n := int64(a.abiInfo.InParam(int(which)).Offset()) return n } // RegsOfResult returns the register(s) used for result which (indexed 0, 1, etc). func (a *AuxCall) RegsOfResult(which int64) []abi.RegIndex { return a.abiInfo.OutParam(int(which)).Registers } // RegsOfArg returns the register(s) used for argument which (indexed 0, 1, etc). // If the call is to a method, the receiver is the first argument (i.e., index 0) func (a *AuxCall) RegsOfArg(which int64) []abi.RegIndex { return a.abiInfo.InParam(int(which)).Registers } // NameOfResult returns the type of result which (indexed 0, 1, etc). func (a *AuxCall) NameOfResult(which int64) *ir.Name { name := a.abiInfo.OutParam(int(which)).Name if name == nil { return nil } return name.(*ir.Name) } // TypeOfResult returns the type of result which (indexed 0, 1, etc). func (a *AuxCall) TypeOfResult(which int64) *types.Type { return a.abiInfo.OutParam(int(which)).Type } // TypeOfArg returns the type of argument which (indexed 0, 1, etc). // If the call is to a method, the receiver is the first argument (i.e., index 0) func (a *AuxCall) TypeOfArg(which int64) *types.Type { return a.abiInfo.InParam(int(which)).Type } // SizeOfResult returns the size of result which (indexed 0, 1, etc). func (a *AuxCall) SizeOfResult(which int64) int64 { return a.TypeOfResult(which).Size() } // SizeOfArg returns the size of argument which (indexed 0, 1, etc). // If the call is to a method, the receiver is the first argument (i.e., index 0) func (a *AuxCall) SizeOfArg(which int64) int64 { return a.TypeOfArg(which).Size() } // NResults returns the number of results func (a *AuxCall) NResults() int64 { return int64(len(a.abiInfo.OutParams())) } // LateExpansionResultType returns the result type (including trailing mem) // for a call that will be expanded later in the SSA phase. func (a *AuxCall) LateExpansionResultType() *types.Type { var tys []*types.Type for i := int64(0); i < a.NResults(); i++ { tys = append(tys, a.TypeOfResult(i)) } tys = append(tys, types.TypeMem) return types.NewResults(tys) } // NArgs returns the number of arguments (including receiver, if there is one). func (a *AuxCall) NArgs() int64 { return int64(len(a.abiInfo.InParams())) } // String returns "AuxCall{}" func (a *AuxCall) String() string { var fn string if a.Fn == nil { fn = "AuxCall{nil" // could be interface/closure etc. } else { fn = fmt.Sprintf("AuxCall{%v", a.Fn) } // TODO how much of the ABI should be printed? return fn + "}" } // StaticAuxCall returns an AuxCall for a static call. func StaticAuxCall(sym *obj.LSym, paramResultInfo *abi.ABIParamResultInfo) *AuxCall { if paramResultInfo == nil { panic(fmt.Errorf("Nil paramResultInfo, sym=%v", sym)) } var reg *regInfo if paramResultInfo.InRegistersUsed()+paramResultInfo.OutRegistersUsed() > 0 { reg = ®Info{} } return &AuxCall{Fn: sym, abiInfo: paramResultInfo, reg: reg} } // InterfaceAuxCall returns an AuxCall for an interface call. func InterfaceAuxCall(paramResultInfo *abi.ABIParamResultInfo) *AuxCall { var reg *regInfo if paramResultInfo.InRegistersUsed()+paramResultInfo.OutRegistersUsed() > 0 { reg = ®Info{} } return &AuxCall{Fn: nil, abiInfo: paramResultInfo, reg: reg} } // ClosureAuxCall returns an AuxCall for a closure call. func ClosureAuxCall(paramResultInfo *abi.ABIParamResultInfo) *AuxCall { var reg *regInfo if paramResultInfo.InRegistersUsed()+paramResultInfo.OutRegistersUsed() > 0 { reg = ®Info{} } return &AuxCall{Fn: nil, abiInfo: paramResultInfo, reg: reg} } func (*AuxCall) CanBeAnSSAAux() {} // OwnAuxCall returns a function's own AuxCall func OwnAuxCall(fn *obj.LSym, paramResultInfo *abi.ABIParamResultInfo) *AuxCall { // TODO if this remains identical to ClosureAuxCall above after new ABI is done, should deduplicate. var reg *regInfo if paramResultInfo.InRegistersUsed()+paramResultInfo.OutRegistersUsed() > 0 { reg = ®Info{} } return &AuxCall{Fn: fn, abiInfo: paramResultInfo, reg: reg} } const ( auxNone auxType = iota auxBool // auxInt is 0/1 for false/true auxInt8 // auxInt is an 8-bit integer auxInt16 // auxInt is a 16-bit integer auxInt32 // auxInt is a 32-bit integer auxInt64 // auxInt is a 64-bit integer auxInt128 // auxInt represents a 128-bit integer. Always 0. auxUInt8 // auxInt is an 8-bit unsigned integer auxFloat32 // auxInt is a float32 (encoded with math.Float64bits) auxFloat64 // auxInt is a float64 (encoded with math.Float64bits) auxFlagConstant // auxInt is a flagConstant auxNameOffsetInt8 // aux is a &struct{Name ir.Name, Offset int64}; auxInt is index in parameter registers array auxString // aux is a string auxSym // aux is a symbol (a *gc.Node for locals, an *obj.LSym for globals, or nil for none) auxSymOff // aux is a symbol, auxInt is an offset auxSymValAndOff // aux is a symbol, auxInt is a ValAndOff auxTyp // aux is a type auxTypSize // aux is a type, auxInt is a size, must have Aux.(Type).Size() == AuxInt auxCCop // aux is a ssa.Op that represents a flags-to-bool conversion (e.g. LessThan) auxCall // aux is a *ssa.AuxCall auxCallOff // aux is a *ssa.AuxCall, AuxInt is int64 param (in+out) size // architecture specific aux types auxARM64BitField // aux is an arm64 bitfield lsb and width packed into auxInt auxS390XRotateParams // aux is a s390x rotate parameters object encoding start bit, end bit and rotate amount auxS390XCCMask // aux is a s390x 4-bit condition code mask auxS390XCCMaskInt8 // aux is a s390x 4-bit condition code mask, auxInt is a int8 immediate auxS390XCCMaskUint8 // aux is a s390x 4-bit condition code mask, auxInt is a uint8 immediate ) // A SymEffect describes the effect that an SSA Value has on the variable // identified by the symbol in its Aux field. type SymEffect int8 const ( SymRead SymEffect = 1 << iota SymWrite SymAddr SymRdWr = SymRead | SymWrite SymNone SymEffect = 0 ) // A Sym represents a symbolic offset from a base register. // Currently a Sym can be one of 3 things: // - a *gc.Node, for an offset from SP (the stack pointer) // - a *obj.LSym, for an offset from SB (the global pointer) // - nil, for no offset type Sym interface { CanBeAnSSASym() CanBeAnSSAAux() } // A ValAndOff is used by the several opcodes. It holds // both a value and a pointer offset. // A ValAndOff is intended to be encoded into an AuxInt field. // The zero ValAndOff encodes a value of 0 and an offset of 0. // The high 32 bits hold a value. // The low 32 bits hold a pointer offset. type ValAndOff int64 func (x ValAndOff) Val() int32 { return int32(int64(x) >> 32) } func (x ValAndOff) Val64() int64 { return int64(x) >> 32 } func (x ValAndOff) Val16() int16 { return int16(int64(x) >> 32) } func (x ValAndOff) Val8() int8 { return int8(int64(x) >> 32) } func (x ValAndOff) Off64() int64 { return int64(int32(x)) } func (x ValAndOff) Off() int32 { return int32(x) } func (x ValAndOff) String() string { return fmt.Sprintf("val=%d,off=%d", x.Val(), x.Off()) } // validVal reports whether the value can be used // as an argument to makeValAndOff. func validVal(val int64) bool { return val == int64(int32(val)) } func makeValAndOff(val, off int32) ValAndOff { return ValAndOff(int64(val)<<32 + int64(uint32(off))) } func (x ValAndOff) canAdd32(off int32) bool { newoff := x.Off64() + int64(off) return newoff == int64(int32(newoff)) } func (x ValAndOff) canAdd64(off int64) bool { newoff := x.Off64() + off return newoff == int64(int32(newoff)) } func (x ValAndOff) addOffset32(off int32) ValAndOff { if !x.canAdd32(off) { panic("invalid ValAndOff.addOffset32") } return makeValAndOff(x.Val(), x.Off()+off) } func (x ValAndOff) addOffset64(off int64) ValAndOff { if !x.canAdd64(off) { panic("invalid ValAndOff.addOffset64") } return makeValAndOff(x.Val(), x.Off()+int32(off)) } // int128 is a type that stores a 128-bit constant. // The only allowed constant right now is 0, so we can cheat quite a bit. type int128 int64 type BoundsKind uint8 const ( BoundsIndex BoundsKind = iota // indexing operation, 0 <= idx < len failed BoundsIndexU // ... with unsigned idx BoundsSliceAlen // 2-arg slicing operation, 0 <= high <= len failed BoundsSliceAlenU // ... with unsigned high BoundsSliceAcap // 2-arg slicing operation, 0 <= high <= cap failed BoundsSliceAcapU // ... with unsigned high BoundsSliceB // 2-arg slicing operation, 0 <= low <= high failed BoundsSliceBU // ... with unsigned low BoundsSlice3Alen // 3-arg slicing operation, 0 <= max <= len failed BoundsSlice3AlenU // ... with unsigned max BoundsSlice3Acap // 3-arg slicing operation, 0 <= max <= cap failed BoundsSlice3AcapU // ... with unsigned max BoundsSlice3B // 3-arg slicing operation, 0 <= high <= max failed BoundsSlice3BU // ... with unsigned high BoundsSlice3C // 3-arg slicing operation, 0 <= low <= high failed BoundsSlice3CU // ... with unsigned low BoundsConvert // conversion to array pointer failed BoundsKindCount ) // boundsAPI determines which register arguments a bounds check call should use. For an [a:b:c] slice, we do: // CMPQ c, cap // JA fail1 // CMPQ b, c // JA fail2 // CMPQ a, b // JA fail3 // // fail1: CALL panicSlice3Acap (c, cap) // fail2: CALL panicSlice3B (b, c) // fail3: CALL panicSlice3C (a, b) // // When we register allocate that code, we want the same register to be used for // the first arg of panicSlice3Acap and the second arg to panicSlice3B. That way, // initializing that register once will satisfy both calls. // That desire ends up dividing the set of bounds check calls into 3 sets. This function // determines which set to use for a given panic call. // The first arg for set 0 should be the second arg for set 1. // The first arg for set 1 should be the second arg for set 2. func boundsABI(b int64) int { switch BoundsKind(b) { case BoundsSlice3Alen, BoundsSlice3AlenU, BoundsSlice3Acap, BoundsSlice3AcapU, BoundsConvert: return 0 case BoundsSliceAlen, BoundsSliceAlenU, BoundsSliceAcap, BoundsSliceAcapU, BoundsSlice3B, BoundsSlice3BU: return 1 case BoundsIndex, BoundsIndexU, BoundsSliceB, BoundsSliceBU, BoundsSlice3C, BoundsSlice3CU: return 2 default: panic("bad BoundsKind") } } // arm64BitFileld is the GO type of ARM64BitField auxInt. // if x is an ARM64BitField, then width=x&0xff, lsb=(x>>8)&0xff, and // width+lsb<64 for 64-bit variant, width+lsb<32 for 32-bit variant. // the meaning of width and lsb are instruction-dependent. type arm64BitField int16