// Copyright 2016 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package ssagen import ( "container/heap" "fmt" "cmd/compile/internal/ir" "cmd/compile/internal/ssa" "cmd/compile/internal/types" "cmd/internal/src" ) // This file contains the algorithm to place phi nodes in a function. // For small functions, we use Braun, Buchwald, Hack, Leißa, Mallon, and Zwinkau. // https://pp.info.uni-karlsruhe.de/uploads/publikationen/braun13cc.pdf // For large functions, we use Sreedhar & Gao: A Linear Time Algorithm for Placing Φ-Nodes. // http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.8.1979&rep=rep1&type=pdf const smallBlocks = 500 const debugPhi = false // fwdRefAux wraps an arbitrary ir.Node as an ssa.Aux for use with OpFwdref. type fwdRefAux struct { _ [0]func() // ensure ir.Node isn't compared for equality N ir.Node } func (fwdRefAux) CanBeAnSSAAux() {} // insertPhis finds all the places in the function where a phi is // necessary and inserts them. // Uses FwdRef ops to find all uses of variables, and s.defvars to find // all definitions. // Phi values are inserted, and all FwdRefs are changed to a Copy // of the appropriate phi or definition. // TODO: make this part of cmd/compile/internal/ssa somehow? func (s *state) insertPhis() { if len(s.f.Blocks) <= smallBlocks { sps := simplePhiState{s: s, f: s.f, defvars: s.defvars} sps.insertPhis() return } ps := phiState{s: s, f: s.f, defvars: s.defvars} ps.insertPhis() } type phiState struct { s *state // SSA state f *ssa.Func // function to work on defvars []map[ir.Node]*ssa.Value // defined variables at end of each block varnum map[ir.Node]int32 // variable numbering // properties of the dominator tree idom []*ssa.Block // dominator parents tree []domBlock // dominator child+sibling level []int32 // level in dominator tree (0 = root or unreachable, 1 = children of root, ...) // scratch locations priq blockHeap // priority queue of blocks, higher level (toward leaves) = higher priority q []*ssa.Block // inner loop queue queued *sparseSet // has been put in q hasPhi *sparseSet // has a phi hasDef *sparseSet // has a write of the variable we're processing // miscellaneous placeholder *ssa.Value // value to use as a "not set yet" placeholder. } func (s *phiState) insertPhis() { if debugPhi { fmt.Println(s.f.String()) } // Find all the variables for which we need to match up reads & writes. // This step prunes any basic-block-only variables from consideration. // Generate a numbering for these variables. s.varnum = map[ir.Node]int32{} var vars []ir.Node var vartypes []*types.Type for _, b := range s.f.Blocks { for _, v := range b.Values { if v.Op != ssa.OpFwdRef { continue } var_ := v.Aux.(fwdRefAux).N // Optimization: look back 1 block for the definition. if len(b.Preds) == 1 { c := b.Preds[0].Block() if w := s.defvars[c.ID][var_]; w != nil { v.Op = ssa.OpCopy v.Aux = nil v.AddArg(w) continue } } if _, ok := s.varnum[var_]; ok { continue } s.varnum[var_] = int32(len(vartypes)) if debugPhi { fmt.Printf("var%d = %v\n", len(vartypes), var_) } vars = append(vars, var_) vartypes = append(vartypes, v.Type) } } if len(vartypes) == 0 { return } // Find all definitions of the variables we need to process. // defs[n] contains all the blocks in which variable number n is assigned. defs := make([][]*ssa.Block, len(vartypes)) for _, b := range s.f.Blocks { for var_ := range s.defvars[b.ID] { // TODO: encode defvars some other way (explicit ops)? make defvars[n] a slice instead of a map. if n, ok := s.varnum[var_]; ok { defs[n] = append(defs[n], b) } } } // Make dominator tree. s.idom = s.f.Idom() s.tree = make([]domBlock, s.f.NumBlocks()) for _, b := range s.f.Blocks { p := s.idom[b.ID] if p != nil { s.tree[b.ID].sibling = s.tree[p.ID].firstChild s.tree[p.ID].firstChild = b } } // Compute levels in dominator tree. // With parent pointers we can do a depth-first walk without // any auxiliary storage. s.level = make([]int32, s.f.NumBlocks()) b := s.f.Entry levels: for { if p := s.idom[b.ID]; p != nil { s.level[b.ID] = s.level[p.ID] + 1 if debugPhi { fmt.Printf("level %s = %d\n", b, s.level[b.ID]) } } if c := s.tree[b.ID].firstChild; c != nil { b = c continue } for { if c := s.tree[b.ID].sibling; c != nil { b = c continue levels } b = s.idom[b.ID] if b == nil { break levels } } } // Allocate scratch locations. s.priq.level = s.level s.q = make([]*ssa.Block, 0, s.f.NumBlocks()) s.queued = newSparseSet(s.f.NumBlocks()) s.hasPhi = newSparseSet(s.f.NumBlocks()) s.hasDef = newSparseSet(s.f.NumBlocks()) s.placeholder = s.s.entryNewValue0(ssa.OpUnknown, types.TypeInvalid) // Generate phi ops for each variable. for n := range vartypes { s.insertVarPhis(n, vars[n], defs[n], vartypes[n]) } // Resolve FwdRefs to the correct write or phi. s.resolveFwdRefs() // Erase variable numbers stored in AuxInt fields of phi ops. They are no longer needed. for _, b := range s.f.Blocks { for _, v := range b.Values { if v.Op == ssa.OpPhi { v.AuxInt = 0 } // Any remaining FwdRefs are dead code. if v.Op == ssa.OpFwdRef { v.Op = ssa.OpUnknown v.Aux = nil } } } } func (s *phiState) insertVarPhis(n int, var_ ir.Node, defs []*ssa.Block, typ *types.Type) { priq := &s.priq q := s.q queued := s.queued queued.clear() hasPhi := s.hasPhi hasPhi.clear() hasDef := s.hasDef hasDef.clear() // Add defining blocks to priority queue. for _, b := range defs { priq.a = append(priq.a, b) hasDef.add(b.ID) if debugPhi { fmt.Printf("def of var%d in %s\n", n, b) } } heap.Init(priq) // Visit blocks defining variable n, from deepest to shallowest. for len(priq.a) > 0 { currentRoot := heap.Pop(priq).(*ssa.Block) if debugPhi { fmt.Printf("currentRoot %s\n", currentRoot) } // Walk subtree below definition. // Skip subtrees we've done in previous iterations. // Find edges exiting tree dominated by definition (the dominance frontier). // Insert phis at target blocks. if queued.contains(currentRoot.ID) { s.s.Fatalf("root already in queue") } q = append(q, currentRoot) queued.add(currentRoot.ID) for len(q) > 0 { b := q[len(q)-1] q = q[:len(q)-1] if debugPhi { fmt.Printf(" processing %s\n", b) } currentRootLevel := s.level[currentRoot.ID] for _, e := range b.Succs { c := e.Block() // TODO: if the variable is dead at c, skip it. if s.level[c.ID] > currentRootLevel { // a D-edge, or an edge whose target is in currentRoot's subtree. continue } if hasPhi.contains(c.ID) { continue } // Add a phi to block c for variable n. hasPhi.add(c.ID) v := c.NewValue0I(currentRoot.Pos, ssa.OpPhi, typ, int64(n)) // TODO: line number right? // Note: we store the variable number in the phi's AuxInt field. Used temporarily by phi building. if var_.Op() == ir.ONAME { s.s.addNamedValue(var_.(*ir.Name), v) } for range c.Preds { v.AddArg(s.placeholder) // Actual args will be filled in by resolveFwdRefs. } if debugPhi { fmt.Printf("new phi for var%d in %s: %s\n", n, c, v) } if !hasDef.contains(c.ID) { // There's now a new definition of this variable in block c. // Add it to the priority queue to explore. heap.Push(priq, c) hasDef.add(c.ID) } } // Visit children if they have not been visited yet. for c := s.tree[b.ID].firstChild; c != nil; c = s.tree[c.ID].sibling { if !queued.contains(c.ID) { q = append(q, c) queued.add(c.ID) } } } } } // resolveFwdRefs links all FwdRef uses up to their nearest dominating definition. func (s *phiState) resolveFwdRefs() { // Do a depth-first walk of the dominator tree, keeping track // of the most-recently-seen value for each variable. // Map from variable ID to SSA value at the current point of the walk. values := make([]*ssa.Value, len(s.varnum)) for i := range values { values[i] = s.placeholder } // Stack of work to do. type stackEntry struct { b *ssa.Block // block to explore // variable/value pair to reinstate on exit n int32 // variable ID v *ssa.Value // Note: only one of b or n,v will be set. } var stk []stackEntry stk = append(stk, stackEntry{b: s.f.Entry}) for len(stk) > 0 { work := stk[len(stk)-1] stk = stk[:len(stk)-1] b := work.b if b == nil { // On exit from a block, this case will undo any assignments done below. values[work.n] = work.v continue } // Process phis as new defs. They come before FwdRefs in this block. for _, v := range b.Values { if v.Op != ssa.OpPhi { continue } n := int32(v.AuxInt) // Remember the old assignment so we can undo it when we exit b. stk = append(stk, stackEntry{n: n, v: values[n]}) // Record the new assignment. values[n] = v } // Replace a FwdRef op with the current incoming value for its variable. for _, v := range b.Values { if v.Op != ssa.OpFwdRef { continue } n := s.varnum[v.Aux.(fwdRefAux).N] v.Op = ssa.OpCopy v.Aux = nil v.AddArg(values[n]) } // Establish values for variables defined in b. for var_, v := range s.defvars[b.ID] { n, ok := s.varnum[var_] if !ok { // some variable not live across a basic block boundary. continue } // Remember the old assignment so we can undo it when we exit b. stk = append(stk, stackEntry{n: n, v: values[n]}) // Record the new assignment. values[n] = v } // Replace phi args in successors with the current incoming value. for _, e := range b.Succs { c, i := e.Block(), e.Index() for j := len(c.Values) - 1; j >= 0; j-- { v := c.Values[j] if v.Op != ssa.OpPhi { break // All phis will be at the end of the block during phi building. } // Only set arguments that have been resolved. // For very wide CFGs, this significantly speeds up phi resolution. // See golang.org/issue/8225. if w := values[v.AuxInt]; w.Op != ssa.OpUnknown { v.SetArg(i, w) } } } // Walk children in dominator tree. for c := s.tree[b.ID].firstChild; c != nil; c = s.tree[c.ID].sibling { stk = append(stk, stackEntry{b: c}) } } } // domBlock contains extra per-block information to record the dominator tree. type domBlock struct { firstChild *ssa.Block // first child of block in dominator tree sibling *ssa.Block // next child of parent in dominator tree } // A block heap is used as a priority queue to implement the PiggyBank // from Sreedhar and Gao. That paper uses an array which is better // asymptotically but worse in the common case when the PiggyBank // holds a sparse set of blocks. type blockHeap struct { a []*ssa.Block // block IDs in heap level []int32 // depth in dominator tree (static, used for determining priority) } func (h *blockHeap) Len() int { return len(h.a) } func (h *blockHeap) Swap(i, j int) { a := h.a; a[i], a[j] = a[j], a[i] } func (h *blockHeap) Push(x interface{}) { v := x.(*ssa.Block) h.a = append(h.a, v) } func (h *blockHeap) Pop() interface{} { old := h.a n := len(old) x := old[n-1] h.a = old[:n-1] return x } func (h *blockHeap) Less(i, j int) bool { return h.level[h.a[i].ID] > h.level[h.a[j].ID] } // TODO: stop walking the iterated domininance frontier when // the variable is dead. Maybe detect that by checking if the // node we're on is reverse dominated by all the reads? // Reverse dominated by the highest common successor of all the reads? // copy of ../ssa/sparseset.go // TODO: move this file to ../ssa, then use sparseSet there. type sparseSet struct { dense []ssa.ID sparse []int32 } // newSparseSet returns a sparseSet that can represent // integers between 0 and n-1 func newSparseSet(n int) *sparseSet { return &sparseSet{dense: nil, sparse: make([]int32, n)} } func (s *sparseSet) contains(x ssa.ID) bool { i := s.sparse[x] return i < int32(len(s.dense)) && s.dense[i] == x } func (s *sparseSet) add(x ssa.ID) { i := s.sparse[x] if i < int32(len(s.dense)) && s.dense[i] == x { return } s.dense = append(s.dense, x) s.sparse[x] = int32(len(s.dense)) - 1 } func (s *sparseSet) clear() { s.dense = s.dense[:0] } // Variant to use for small functions. type simplePhiState struct { s *state // SSA state f *ssa.Func // function to work on fwdrefs []*ssa.Value // list of FwdRefs to be processed defvars []map[ir.Node]*ssa.Value // defined variables at end of each block reachable []bool // which blocks are reachable } func (s *simplePhiState) insertPhis() { s.reachable = ssa.ReachableBlocks(s.f) // Find FwdRef ops. for _, b := range s.f.Blocks { for _, v := range b.Values { if v.Op != ssa.OpFwdRef { continue } s.fwdrefs = append(s.fwdrefs, v) var_ := v.Aux.(fwdRefAux).N if _, ok := s.defvars[b.ID][var_]; !ok { s.defvars[b.ID][var_] = v // treat FwdDefs as definitions. } } } var args []*ssa.Value loop: for len(s.fwdrefs) > 0 { v := s.fwdrefs[len(s.fwdrefs)-1] s.fwdrefs = s.fwdrefs[:len(s.fwdrefs)-1] b := v.Block var_ := v.Aux.(fwdRefAux).N if b == s.f.Entry { // No variable should be live at entry. s.s.Fatalf("Value live at entry. It shouldn't be. func %s, node %v, value %v", s.f.Name, var_, v) } if !s.reachable[b.ID] { // This block is dead. // It doesn't matter what we use here as long as it is well-formed. v.Op = ssa.OpUnknown v.Aux = nil continue } // Find variable value on each predecessor. args = args[:0] for _, e := range b.Preds { args = append(args, s.lookupVarOutgoing(e.Block(), v.Type, var_, v.Pos)) } // Decide if we need a phi or not. We need a phi if there // are two different args (which are both not v). var w *ssa.Value for _, a := range args { if a == v { continue // self-reference } if a == w { continue // already have this witness } if w != nil { // two witnesses, need a phi value v.Op = ssa.OpPhi v.AddArgs(args...) v.Aux = nil continue loop } w = a // save witness } if w == nil { s.s.Fatalf("no witness for reachable phi %s", v) } // One witness. Make v a copy of w. v.Op = ssa.OpCopy v.Aux = nil v.AddArg(w) } } // lookupVarOutgoing finds the variable's value at the end of block b. func (s *simplePhiState) lookupVarOutgoing(b *ssa.Block, t *types.Type, var_ ir.Node, line src.XPos) *ssa.Value { for { if v := s.defvars[b.ID][var_]; v != nil { return v } // The variable is not defined by b and we haven't looked it up yet. // If b has exactly one predecessor, loop to look it up there. // Otherwise, give up and insert a new FwdRef and resolve it later. if len(b.Preds) != 1 { break } b = b.Preds[0].Block() if !s.reachable[b.ID] { // This is rare; it happens with oddly interleaved infinite loops in dead code. // See issue 19783. break } } // Generate a FwdRef for the variable and return that. v := b.NewValue0A(line, ssa.OpFwdRef, t, fwdRefAux{N: var_}) s.defvars[b.ID][var_] = v if var_.Op() == ir.ONAME { s.s.addNamedValue(var_.(*ir.Name), v) } s.fwdrefs = append(s.fwdrefs, v) return v }