// Copyright 2012 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // This file implements typechecking of builtin function calls. package types2 import ( "cmd/compile/internal/syntax" "go/constant" "go/token" ) // builtin type-checks a call to the built-in specified by id and // reports whether the call is valid, with *x holding the result; // but x.expr is not set. If the call is invalid, the result is // false, and *x is undefined. // func (check *Checker) builtin(x *operand, call *syntax.CallExpr, id builtinId) (_ bool) { // append is the only built-in that permits the use of ... for the last argument bin := predeclaredFuncs[id] if call.HasDots && id != _Append { //check.errorf(call.Ellipsis, invalidOp + "invalid use of ... with built-in %s", bin.name) check.errorf(call, invalidOp+"invalid use of ... with built-in %s", bin.name) check.use(call.ArgList...) return } // For len(x) and cap(x) we need to know if x contains any function calls or // receive operations. Save/restore current setting and set hasCallOrRecv to // false for the evaluation of x so that we can check it afterwards. // Note: We must do this _before_ calling exprList because exprList evaluates // all arguments. if id == _Len || id == _Cap { defer func(b bool) { check.hasCallOrRecv = b }(check.hasCallOrRecv) check.hasCallOrRecv = false } // determine actual arguments var arg func(*operand, int) // TODO(gri) remove use of arg getter in favor of using xlist directly nargs := len(call.ArgList) switch id { default: // make argument getter xlist, _ := check.exprList(call.ArgList, false) arg = func(x *operand, i int) { *x = *xlist[i] } nargs = len(xlist) // evaluate first argument, if present if nargs > 0 { arg(x, 0) if x.mode == invalid { return } } case _Make, _New, _Offsetof, _Trace: // arguments require special handling } // check argument count { msg := "" if nargs < bin.nargs { msg = "not enough" } else if !bin.variadic && nargs > bin.nargs { msg = "too many" } if msg != "" { check.errorf(call, invalidOp+"%s arguments for %v (expected %d, found %d)", msg, call, bin.nargs, nargs) return } } switch id { case _Append: // append(s S, x ...T) S, where T is the element type of S // spec: "The variadic function append appends zero or more values x to s of type // S, which must be a slice type, and returns the resulting slice, also of type S. // The values x are passed to a parameter of type ...T where T is the element type // of S and the respective parameter passing rules apply." S := x.typ var T Type if s, _ := coreType(S).(*Slice); s != nil { T = s.elem } else { var cause string switch { case x.isNil(): cause = "have untyped nil" case isTypeParam(S): if u := coreType(S); u != nil { cause = check.sprintf("%s has core type %s", x, u) } else { cause = check.sprintf("%s has no core type", x) } default: cause = check.sprintf("have %s", x) } // don't use invalidArg prefix here as it would repeat "argument" in the error message check.errorf(x, "first argument to append must be a slice; %s", cause) return } // remember arguments that have been evaluated already alist := []operand{*x} // spec: "As a special case, append also accepts a first argument assignable // to type []byte with a second argument of string type followed by ... . // This form appends the bytes of the string. if nargs == 2 && call.HasDots { if ok, _ := x.assignableTo(check, NewSlice(universeByte), nil); ok { arg(x, 1) if x.mode == invalid { return } if t := coreString(x.typ); t != nil && isString(t) { if check.Types != nil { sig := makeSig(S, S, x.typ) sig.variadic = true check.recordBuiltinType(call.Fun, sig) } x.mode = value x.typ = S break } alist = append(alist, *x) // fallthrough } } // check general case by creating custom signature sig := makeSig(S, S, NewSlice(T)) // []T required for variadic signature sig.variadic = true var xlist []*operand // convert []operand to []*operand for i := range alist { xlist = append(xlist, &alist[i]) } for i := len(alist); i < nargs; i++ { var x operand arg(&x, i) xlist = append(xlist, &x) } check.arguments(call, sig, nil, xlist, nil) // discard result (we know the result type) // ok to continue even if check.arguments reported errors x.mode = value x.typ = S if check.Types != nil { check.recordBuiltinType(call.Fun, sig) } case _Cap, _Len: // cap(x) // len(x) mode := invalid var val constant.Value switch t := arrayPtrDeref(under(x.typ)).(type) { case *Basic: if isString(t) && id == _Len { if x.mode == constant_ { mode = constant_ val = constant.MakeInt64(int64(len(constant.StringVal(x.val)))) } else { mode = value } } case *Array: mode = value // spec: "The expressions len(s) and cap(s) are constants // if the type of s is an array or pointer to an array and // the expression s does not contain channel receives or // function calls; in this case s is not evaluated." if !check.hasCallOrRecv { mode = constant_ if t.len >= 0 { val = constant.MakeInt64(t.len) } else { val = constant.MakeUnknown() } } case *Slice, *Chan: mode = value case *Map: if id == _Len { mode = value } case *Interface: if !isTypeParam(x.typ) { break } if t.typeSet().underIs(func(t Type) bool { switch t := arrayPtrDeref(t).(type) { case *Basic: if isString(t) && id == _Len { return true } case *Array, *Slice, *Chan: return true case *Map: if id == _Len { return true } } return false }) { mode = value } } if mode == invalid && under(x.typ) != Typ[Invalid] { check.errorf(x, invalidArg+"%s for %s", x, bin.name) return } // record the signature before changing x.typ if check.Types != nil && mode != constant_ { check.recordBuiltinType(call.Fun, makeSig(Typ[Int], x.typ)) } x.mode = mode x.typ = Typ[Int] x.val = val case _Close: // close(c) if !underIs(x.typ, func(u Type) bool { uch, _ := u.(*Chan) if uch == nil { check.errorf(x, invalidOp+"cannot close non-channel %s", x) return false } if uch.dir == RecvOnly { check.errorf(x, invalidOp+"cannot close receive-only channel %s", x) return false } return true }) { return } x.mode = novalue if check.Types != nil { check.recordBuiltinType(call.Fun, makeSig(nil, x.typ)) } case _Complex: // complex(x, y floatT) complexT var y operand arg(&y, 1) if y.mode == invalid { return } // convert or check untyped arguments d := 0 if isUntyped(x.typ) { d |= 1 } if isUntyped(y.typ) { d |= 2 } switch d { case 0: // x and y are typed => nothing to do case 1: // only x is untyped => convert to type of y check.convertUntyped(x, y.typ) case 2: // only y is untyped => convert to type of x check.convertUntyped(&y, x.typ) case 3: // x and y are untyped => // 1) if both are constants, convert them to untyped // floating-point numbers if possible, // 2) if one of them is not constant (possible because // it contains a shift that is yet untyped), convert // both of them to float64 since they must have the // same type to succeed (this will result in an error // because shifts of floats are not permitted) if x.mode == constant_ && y.mode == constant_ { toFloat := func(x *operand) { if isNumeric(x.typ) && constant.Sign(constant.Imag(x.val)) == 0 { x.typ = Typ[UntypedFloat] } } toFloat(x) toFloat(&y) } else { check.convertUntyped(x, Typ[Float64]) check.convertUntyped(&y, Typ[Float64]) // x and y should be invalid now, but be conservative // and check below } } if x.mode == invalid || y.mode == invalid { return } // both argument types must be identical if !Identical(x.typ, y.typ) { check.errorf(x, invalidOp+"%v (mismatched types %s and %s)", call, x.typ, y.typ) return } // the argument types must be of floating-point type // (applyTypeFunc never calls f with a type parameter) f := func(typ Type) Type { assert(!isTypeParam(typ)) if t, _ := under(typ).(*Basic); t != nil { switch t.kind { case Float32: return Typ[Complex64] case Float64: return Typ[Complex128] case UntypedFloat: return Typ[UntypedComplex] } } return nil } resTyp := check.applyTypeFunc(f, x, id) if resTyp == nil { check.errorf(x, invalidArg+"arguments have type %s, expected floating-point", x.typ) return } // if both arguments are constants, the result is a constant if x.mode == constant_ && y.mode == constant_ { x.val = constant.BinaryOp(constant.ToFloat(x.val), token.ADD, constant.MakeImag(constant.ToFloat(y.val))) } else { x.mode = value } if check.Types != nil && x.mode != constant_ { check.recordBuiltinType(call.Fun, makeSig(resTyp, x.typ, x.typ)) } x.typ = resTyp case _Copy: // copy(x, y []T) int dst, _ := coreType(x.typ).(*Slice) var y operand arg(&y, 1) if y.mode == invalid { return } src0 := coreString(y.typ) if src0 != nil && isString(src0) { src0 = NewSlice(universeByte) } src, _ := src0.(*Slice) if dst == nil || src == nil { check.errorf(x, invalidArg+"copy expects slice arguments; found %s and %s", x, &y) return } if !Identical(dst.elem, src.elem) { check.errorf(x, invalidArg+"arguments to copy %s and %s have different element types %s and %s", x, &y, dst.elem, src.elem) return } if check.Types != nil { check.recordBuiltinType(call.Fun, makeSig(Typ[Int], x.typ, y.typ)) } x.mode = value x.typ = Typ[Int] case _Delete: // delete(map_, key) // map_ must be a map type or a type parameter describing map types. // The key cannot be a type parameter for now. map_ := x.typ var key Type if !underIs(map_, func(u Type) bool { map_, _ := u.(*Map) if map_ == nil { check.errorf(x, invalidArg+"%s is not a map", x) return false } if key != nil && !Identical(map_.key, key) { check.errorf(x, invalidArg+"maps of %s must have identical key types", x) return false } key = map_.key return true }) { return } arg(x, 1) // k if x.mode == invalid { return } check.assignment(x, key, "argument to delete") if x.mode == invalid { return } x.mode = novalue if check.Types != nil { check.recordBuiltinType(call.Fun, makeSig(nil, map_, key)) } case _Imag, _Real: // imag(complexT) floatT // real(complexT) floatT // convert or check untyped argument if isUntyped(x.typ) { if x.mode == constant_ { // an untyped constant number can always be considered // as a complex constant if isNumeric(x.typ) { x.typ = Typ[UntypedComplex] } } else { // an untyped non-constant argument may appear if // it contains a (yet untyped non-constant) shift // expression: convert it to complex128 which will // result in an error (shift of complex value) check.convertUntyped(x, Typ[Complex128]) // x should be invalid now, but be conservative and check if x.mode == invalid { return } } } // the argument must be of complex type // (applyTypeFunc never calls f with a type parameter) f := func(typ Type) Type { assert(!isTypeParam(typ)) if t, _ := under(typ).(*Basic); t != nil { switch t.kind { case Complex64: return Typ[Float32] case Complex128: return Typ[Float64] case UntypedComplex: return Typ[UntypedFloat] } } return nil } resTyp := check.applyTypeFunc(f, x, id) if resTyp == nil { check.errorf(x, invalidArg+"argument has type %s, expected complex type", x.typ) return } // if the argument is a constant, the result is a constant if x.mode == constant_ { if id == _Real { x.val = constant.Real(x.val) } else { x.val = constant.Imag(x.val) } } else { x.mode = value } if check.Types != nil && x.mode != constant_ { check.recordBuiltinType(call.Fun, makeSig(resTyp, x.typ)) } x.typ = resTyp case _Make: // make(T, n) // make(T, n, m) // (no argument evaluated yet) arg0 := call.ArgList[0] T := check.varType(arg0) if T == Typ[Invalid] { return } var min int // minimum number of arguments switch coreType(T).(type) { case *Slice: min = 2 case *Map, *Chan: min = 1 case nil: check.errorf(arg0, invalidArg+"cannot make %s: no core type", arg0) return default: check.errorf(arg0, invalidArg+"cannot make %s; type must be slice, map, or channel", arg0) return } if nargs < min || min+1 < nargs { check.errorf(call, invalidOp+"%v expects %d or %d arguments; found %d", call, min, min+1, nargs) return } types := []Type{T} var sizes []int64 // constant integer arguments, if any for _, arg := range call.ArgList[1:] { typ, size := check.index(arg, -1) // ok to continue with typ == Typ[Invalid] types = append(types, typ) if size >= 0 { sizes = append(sizes, size) } } if len(sizes) == 2 && sizes[0] > sizes[1] { check.error(call.ArgList[1], invalidArg+"length and capacity swapped") // safe to continue } x.mode = value x.typ = T if check.Types != nil { check.recordBuiltinType(call.Fun, makeSig(x.typ, types...)) } case _New: // new(T) // (no argument evaluated yet) T := check.varType(call.ArgList[0]) if T == Typ[Invalid] { return } x.mode = value x.typ = &Pointer{base: T} if check.Types != nil { check.recordBuiltinType(call.Fun, makeSig(x.typ, T)) } case _Panic: // panic(x) // record panic call if inside a function with result parameters // (for use in Checker.isTerminating) if check.sig != nil && check.sig.results.Len() > 0 { // function has result parameters p := check.isPanic if p == nil { // allocate lazily p = make(map[*syntax.CallExpr]bool) check.isPanic = p } p[call] = true } check.assignment(x, &emptyInterface, "argument to panic") if x.mode == invalid { return } x.mode = novalue if check.Types != nil { check.recordBuiltinType(call.Fun, makeSig(nil, &emptyInterface)) } case _Print, _Println: // print(x, y, ...) // println(x, y, ...) var params []Type if nargs > 0 { params = make([]Type, nargs) for i := 0; i < nargs; i++ { if i > 0 { arg(x, i) // first argument already evaluated } check.assignment(x, nil, "argument to "+predeclaredFuncs[id].name) if x.mode == invalid { // TODO(gri) "use" all arguments? return } params[i] = x.typ } } x.mode = novalue if check.Types != nil { check.recordBuiltinType(call.Fun, makeSig(nil, params...)) } case _Recover: // recover() interface{} x.mode = value x.typ = &emptyInterface if check.Types != nil { check.recordBuiltinType(call.Fun, makeSig(x.typ)) } case _Add: // unsafe.Add(ptr unsafe.Pointer, len IntegerType) unsafe.Pointer if !check.allowVersion(check.pkg, 1, 17) { check.versionErrorf(call.Fun, "go1.17", "unsafe.Add") return } check.assignment(x, Typ[UnsafePointer], "argument to unsafe.Add") if x.mode == invalid { return } var y operand arg(&y, 1) if !check.isValidIndex(&y, "length", true) { return } x.mode = value x.typ = Typ[UnsafePointer] if check.Types != nil { check.recordBuiltinType(call.Fun, makeSig(x.typ, x.typ, y.typ)) } case _Alignof: // unsafe.Alignof(x T) uintptr check.assignment(x, nil, "argument to unsafe.Alignof") if x.mode == invalid { return } if hasVarSize(x.typ) { x.mode = value if check.Types != nil { check.recordBuiltinType(call.Fun, makeSig(Typ[Uintptr], x.typ)) } } else { x.mode = constant_ x.val = constant.MakeInt64(check.conf.alignof(x.typ)) // result is constant - no need to record signature } x.typ = Typ[Uintptr] case _Offsetof: // unsafe.Offsetof(x T) uintptr, where x must be a selector // (no argument evaluated yet) arg0 := call.ArgList[0] selx, _ := unparen(arg0).(*syntax.SelectorExpr) if selx == nil { check.errorf(arg0, invalidArg+"%s is not a selector expression", arg0) check.use(arg0) return } check.expr(x, selx.X) if x.mode == invalid { return } base := derefStructPtr(x.typ) sel := selx.Sel.Value obj, index, indirect := LookupFieldOrMethod(base, false, check.pkg, sel) switch obj.(type) { case nil: check.errorf(x, invalidArg+"%s has no single field %s", base, sel) return case *Func: // TODO(gri) Using derefStructPtr may result in methods being found // that don't actually exist. An error either way, but the error // message is confusing. See: https://play.golang.org/p/al75v23kUy , // but go/types reports: "invalid argument: x.m is a method value". check.errorf(arg0, invalidArg+"%s is a method value", arg0) return } if indirect { check.errorf(x, invalidArg+"field %s is embedded via a pointer in %s", sel, base) return } // TODO(gri) Should we pass x.typ instead of base (and have indirect report if derefStructPtr indirected)? check.recordSelection(selx, FieldVal, base, obj, index, false) // record the selector expression (was bug - issue #47895) { mode := value if x.mode == variable || indirect { mode = variable } check.record(&operand{mode, selx, obj.Type(), nil, 0}) } // The field offset is considered a variable even if the field is declared before // the part of the struct which is variable-sized. This makes both the rules // simpler and also permits (or at least doesn't prevent) a compiler from re- // arranging struct fields if it wanted to. if hasVarSize(base) { x.mode = value if check.Types != nil { check.recordBuiltinType(call.Fun, makeSig(Typ[Uintptr], obj.Type())) } } else { x.mode = constant_ x.val = constant.MakeInt64(check.conf.offsetof(base, index)) // result is constant - no need to record signature } x.typ = Typ[Uintptr] case _Sizeof: // unsafe.Sizeof(x T) uintptr check.assignment(x, nil, "argument to unsafe.Sizeof") if x.mode == invalid { return } if hasVarSize(x.typ) { x.mode = value if check.Types != nil { check.recordBuiltinType(call.Fun, makeSig(Typ[Uintptr], x.typ)) } } else { x.mode = constant_ x.val = constant.MakeInt64(check.conf.sizeof(x.typ)) // result is constant - no need to record signature } x.typ = Typ[Uintptr] case _Slice: // unsafe.Slice(ptr *T, len IntegerType) []T if !check.allowVersion(check.pkg, 1, 17) { check.versionErrorf(call.Fun, "go1.17", "unsafe.Slice") return } typ, _ := under(x.typ).(*Pointer) if typ == nil { check.errorf(x, invalidArg+"%s is not a pointer", x) return } var y operand arg(&y, 1) if !check.isValidIndex(&y, "length", false) { return } x.mode = value x.typ = NewSlice(typ.base) if check.Types != nil { check.recordBuiltinType(call.Fun, makeSig(x.typ, typ, y.typ)) } case _Assert: // assert(pred) causes a typechecker error if pred is false. // The result of assert is the value of pred if there is no error. // Note: assert is only available in self-test mode. if x.mode != constant_ || !isBoolean(x.typ) { check.errorf(x, invalidArg+"%s is not a boolean constant", x) return } if x.val.Kind() != constant.Bool { check.errorf(x, "internal error: value of %s should be a boolean constant", x) return } if !constant.BoolVal(x.val) { check.errorf(call, "%v failed", call) // compile-time assertion failure - safe to continue } // result is constant - no need to record signature case _Trace: // trace(x, y, z, ...) dumps the positions, expressions, and // values of its arguments. The result of trace is the value // of the first argument. // Note: trace is only available in self-test mode. // (no argument evaluated yet) if nargs == 0 { check.dump("%v: trace() without arguments", posFor(call)) x.mode = novalue break } var t operand x1 := x for _, arg := range call.ArgList { check.rawExpr(x1, arg, nil, false) // permit trace for types, e.g.: new(trace(T)) check.dump("%v: %s", posFor(x1), x1) x1 = &t // use incoming x only for first argument } // trace is only available in test mode - no need to record signature default: unreachable() } return true } // hasVarSize reports if the size of type t is variable due to type parameters. func hasVarSize(t Type) bool { switch u := under(t).(type) { case *Array: return hasVarSize(u.elem) case *Struct: for _, f := range u.fields { if hasVarSize(f.typ) { return true } } case *Interface: return isTypeParam(t) case *Named, *Union: unreachable() } return false } // applyTypeFunc applies f to x. If x is a type parameter, // the result is a type parameter constrained by an new // interface bound. The type bounds for that interface // are computed by applying f to each of the type bounds // of x. If any of these applications of f return nil, // applyTypeFunc returns nil. // If x is not a type parameter, the result is f(x). func (check *Checker) applyTypeFunc(f func(Type) Type, x *operand, id builtinId) Type { if tp, _ := x.typ.(*TypeParam); tp != nil { // Test if t satisfies the requirements for the argument // type and collect possible result types at the same time. var terms []*Term if !tp.is(func(t *term) bool { if t == nil { return false } if r := f(t.typ); r != nil { terms = append(terms, NewTerm(t.tilde, r)) return true } return false }) { return nil } // We can type-check this fine but we're introducing a synthetic // type parameter for the result. It's not clear what the API // implications are here. Report an error for 1.18 but continue // type-checking. check.softErrorf(x, "%s not supported as argument to %s for go1.18 (see issue #50937)", x, predeclaredFuncs[id].name) // Construct a suitable new type parameter for the result type. // The type parameter is placed in the current package so export/import // works as expected. tpar := NewTypeName(nopos, check.pkg, tp.obj.name, nil) ptyp := check.newTypeParam(tpar, NewInterfaceType(nil, []Type{NewUnion(terms)})) // assigns type to tpar as a side-effect ptyp.index = tp.index return ptyp } return f(x.typ) } // makeSig makes a signature for the given argument and result types. // Default types are used for untyped arguments, and res may be nil. func makeSig(res Type, args ...Type) *Signature { list := make([]*Var, len(args)) for i, param := range args { list[i] = NewVar(nopos, nil, "", Default(param)) } params := NewTuple(list...) var result *Tuple if res != nil { assert(!isUntyped(res)) result = NewTuple(NewVar(nopos, nil, "", res)) } return &Signature{params: params, results: result} } // arrayPtrDeref returns A if typ is of the form *A and A is an array; // otherwise it returns typ. func arrayPtrDeref(typ Type) Type { if p, ok := typ.(*Pointer); ok { if a, _ := under(p.base).(*Array); a != nil { return a } } return typ } // unparen returns e with any enclosing parentheses stripped. func unparen(e syntax.Expr) syntax.Expr { for { p, ok := e.(*syntax.ParenExpr) if !ok { return e } e = p.X } }