// Copyright 2014 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package types2 import ( "cmd/compile/internal/syntax" "fmt" "go/constant" ) func (err *error_) recordAltDecl(obj Object) { if pos := obj.Pos(); pos.IsKnown() { // We use "other" rather than "previous" here because // the first declaration seen may not be textually // earlier in the source. err.errorf(pos, "other declaration of %s", obj.Name()) } } func (check *Checker) declare(scope *Scope, id *syntax.Name, obj Object, pos syntax.Pos) { // spec: "The blank identifier, represented by the underscore // character _, may be used in a declaration like any other // identifier but the declaration does not introduce a new // binding." if obj.Name() != "_" { if alt := scope.Insert(obj); alt != nil { var err error_ err.errorf(obj, "%s redeclared in this block", obj.Name()) err.recordAltDecl(alt) check.report(&err) return } obj.setScopePos(pos) } if id != nil { check.recordDef(id, obj) } } // pathString returns a string of the form a->b-> ... ->g for a path [a, b, ... g]. func pathString(path []Object) string { var s string for i, p := range path { if i > 0 { s += "->" } s += p.Name() } return s } // objDecl type-checks the declaration of obj in its respective (file) environment. // For the meaning of def, see Checker.definedType, in typexpr.go. func (check *Checker) objDecl(obj Object, def *Named) { if check.conf.Trace && obj.Type() == nil { if check.indent == 0 { fmt.Println() // empty line between top-level objects for readability } check.trace(obj.Pos(), "-- checking %s (%s, objPath = %s)", obj, obj.color(), pathString(check.objPath)) check.indent++ defer func() { check.indent-- check.trace(obj.Pos(), "=> %s (%s)", obj, obj.color()) }() } // Checking the declaration of obj means inferring its type // (and possibly its value, for constants). // An object's type (and thus the object) may be in one of // three states which are expressed by colors: // // - an object whose type is not yet known is painted white (initial color) // - an object whose type is in the process of being inferred is painted grey // - an object whose type is fully inferred is painted black // // During type inference, an object's color changes from white to grey // to black (pre-declared objects are painted black from the start). // A black object (i.e., its type) can only depend on (refer to) other black // ones. White and grey objects may depend on white and black objects. // A dependency on a grey object indicates a cycle which may or may not be // valid. // // When objects turn grey, they are pushed on the object path (a stack); // they are popped again when they turn black. Thus, if a grey object (a // cycle) is encountered, it is on the object path, and all the objects // it depends on are the remaining objects on that path. Color encoding // is such that the color value of a grey object indicates the index of // that object in the object path. // During type-checking, white objects may be assigned a type without // traversing through objDecl; e.g., when initializing constants and // variables. Update the colors of those objects here (rather than // everywhere where we set the type) to satisfy the color invariants. if obj.color() == white && obj.Type() != nil { obj.setColor(black) return } switch obj.color() { case white: assert(obj.Type() == nil) // All color values other than white and black are considered grey. // Because black and white are < grey, all values >= grey are grey. // Use those values to encode the object's index into the object path. obj.setColor(grey + color(check.push(obj))) defer func() { check.pop().setColor(black) }() case black: assert(obj.Type() != nil) return default: // Color values other than white or black are considered grey. fallthrough case grey: // We have a (possibly invalid) cycle. // In the existing code, this is marked by a non-nil type // for the object except for constants and variables whose // type may be non-nil (known), or nil if it depends on the // not-yet known initialization value. // In the former case, set the type to Typ[Invalid] because // we have an initialization cycle. The cycle error will be // reported later, when determining initialization order. // TODO(gri) Report cycle here and simplify initialization // order code. switch obj := obj.(type) { case *Const: if !check.validCycle(obj) || obj.typ == nil { obj.typ = Typ[Invalid] } case *Var: if !check.validCycle(obj) || obj.typ == nil { obj.typ = Typ[Invalid] } case *TypeName: if !check.validCycle(obj) { // break cycle // (without this, calling underlying() // below may lead to an endless loop // if we have a cycle for a defined // (*Named) type) obj.typ = Typ[Invalid] } case *Func: if !check.validCycle(obj) { // Don't set obj.typ to Typ[Invalid] here // because plenty of code type-asserts that // functions have a *Signature type. Grey // functions have their type set to an empty // signature which makes it impossible to // initialize a variable with the function. } default: unreachable() } assert(obj.Type() != nil) return } d := check.objMap[obj] if d == nil { check.dump("%v: %s should have been declared", obj.Pos(), obj) unreachable() } // save/restore current environment and set up object environment defer func(env environment) { check.environment = env }(check.environment) check.environment = environment{ scope: d.file, } // Const and var declarations must not have initialization // cycles. We track them by remembering the current declaration // in check.decl. Initialization expressions depending on other // consts, vars, or functions, add dependencies to the current // check.decl. switch obj := obj.(type) { case *Const: check.decl = d // new package-level const decl check.constDecl(obj, d.vtyp, d.init, d.inherited) case *Var: check.decl = d // new package-level var decl check.varDecl(obj, d.lhs, d.vtyp, d.init) case *TypeName: // invalid recursive types are detected via path check.typeDecl(obj, d.tdecl, def) check.collectMethods(obj) // methods can only be added to top-level types case *Func: // functions may be recursive - no need to track dependencies check.funcDecl(obj, d) default: unreachable() } } // validCycle reports whether the cycle starting with obj is valid and // reports an error if it is not. func (check *Checker) validCycle(obj Object) (valid bool) { // The object map contains the package scope objects and the non-interface methods. if debug { info := check.objMap[obj] inObjMap := info != nil && (info.fdecl == nil || info.fdecl.Recv == nil) // exclude methods isPkgObj := obj.Parent() == check.pkg.scope if isPkgObj != inObjMap { check.dump("%v: inconsistent object map for %s (isPkgObj = %v, inObjMap = %v)", obj.Pos(), obj, isPkgObj, inObjMap) unreachable() } } // Count cycle objects. assert(obj.color() >= grey) start := obj.color() - grey // index of obj in objPath cycle := check.objPath[start:] tparCycle := false // if set, the cycle is through a type parameter list nval := 0 // number of (constant or variable) values in the cycle; valid if !generic ndef := 0 // number of type definitions in the cycle; valid if !generic loop: for _, obj := range cycle { switch obj := obj.(type) { case *Const, *Var: nval++ case *TypeName: // If we reach a generic type that is part of a cycle // and we are in a type parameter list, we have a cycle // through a type parameter list, which is invalid. if check.inTParamList && isGeneric(obj.typ) { tparCycle = true break loop } // Determine if the type name is an alias or not. For // package-level objects, use the object map which // provides syntactic information (which doesn't rely // on the order in which the objects are set up). For // local objects, we can rely on the order, so use // the object's predicate. // TODO(gri) It would be less fragile to always access // the syntactic information. We should consider storing // this information explicitly in the object. var alias bool if d := check.objMap[obj]; d != nil { alias = d.tdecl.Alias // package-level object } else { alias = obj.IsAlias() // function local object } if !alias { ndef++ } case *Func: // ignored for now default: unreachable() } } if check.conf.Trace { check.trace(obj.Pos(), "## cycle detected: objPath = %s->%s (len = %d)", pathString(cycle), obj.Name(), len(cycle)) if tparCycle { check.trace(obj.Pos(), "## cycle contains: generic type in a type parameter list") } else { check.trace(obj.Pos(), "## cycle contains: %d values, %d type definitions", nval, ndef) } defer func() { if valid { check.trace(obj.Pos(), "=> cycle is valid") } else { check.trace(obj.Pos(), "=> error: cycle is invalid") } }() } if !tparCycle { // A cycle involving only constants and variables is invalid but we // ignore them here because they are reported via the initialization // cycle check. if nval == len(cycle) { return true } // A cycle involving only types (and possibly functions) must have at least // one type definition to be permitted: If there is no type definition, we // have a sequence of alias type names which will expand ad infinitum. if nval == 0 && ndef > 0 { return true } } check.cycleError(cycle) return false } // cycleError reports a declaration cycle starting with // the object in cycle that is "first" in the source. func (check *Checker) cycleError(cycle []Object) { // TODO(gri) Should we start with the last (rather than the first) object in the cycle // since that is the earliest point in the source where we start seeing the // cycle? That would be more consistent with other error messages. i := firstInSrc(cycle) obj := cycle[i] // If obj is a type alias, mark it as valid (not broken) in order to avoid follow-on errors. tname, _ := obj.(*TypeName) if tname != nil && tname.IsAlias() { check.validAlias(tname, Typ[Invalid]) } var err error_ if tname != nil && check.conf.CompilerErrorMessages { err.errorf(obj, "invalid recursive type %s", obj.Name()) } else { err.errorf(obj, "illegal cycle in declaration of %s", obj.Name()) } for range cycle { err.errorf(obj, "%s refers to", obj.Name()) i++ if i >= len(cycle) { i = 0 } obj = cycle[i] } err.errorf(obj, "%s", obj.Name()) check.report(&err) } // firstInSrc reports the index of the object with the "smallest" // source position in path. path must not be empty. func firstInSrc(path []Object) int { fst, pos := 0, path[0].Pos() for i, t := range path[1:] { if t.Pos().Cmp(pos) < 0 { fst, pos = i+1, t.Pos() } } return fst } func (check *Checker) constDecl(obj *Const, typ, init syntax.Expr, inherited bool) { assert(obj.typ == nil) // use the correct value of iota and errpos defer func(iota constant.Value, errpos syntax.Pos) { check.iota = iota check.errpos = errpos }(check.iota, check.errpos) check.iota = obj.val check.errpos = nopos // provide valid constant value under all circumstances obj.val = constant.MakeUnknown() // determine type, if any if typ != nil { t := check.typ(typ) if !isConstType(t) { // don't report an error if the type is an invalid C (defined) type // (issue #22090) if under(t) != Typ[Invalid] { check.errorf(typ, "invalid constant type %s", t) } obj.typ = Typ[Invalid] return } obj.typ = t } // check initialization var x operand if init != nil { if inherited { // The initialization expression is inherited from a previous // constant declaration, and (error) positions refer to that // expression and not the current constant declaration. Use // the constant identifier position for any errors during // init expression evaluation since that is all we have // (see issues #42991, #42992). check.errpos = obj.pos } check.expr(&x, init) } check.initConst(obj, &x) } func (check *Checker) varDecl(obj *Var, lhs []*Var, typ, init syntax.Expr) { assert(obj.typ == nil) // If we have undefined variable types due to errors, // mark variables as used to avoid follow-on errors. // Matches compiler behavior. defer func() { if obj.typ == Typ[Invalid] { obj.used = true } for _, lhs := range lhs { if lhs.typ == Typ[Invalid] { lhs.used = true } } }() // determine type, if any if typ != nil { obj.typ = check.varType(typ) // We cannot spread the type to all lhs variables if there // are more than one since that would mark them as checked // (see Checker.objDecl) and the assignment of init exprs, // if any, would not be checked. // // TODO(gri) If we have no init expr, we should distribute // a given type otherwise we need to re-evalate the type // expr for each lhs variable, leading to duplicate work. } // check initialization if init == nil { if typ == nil { // error reported before by arityMatch obj.typ = Typ[Invalid] } return } if lhs == nil || len(lhs) == 1 { assert(lhs == nil || lhs[0] == obj) var x operand check.expr(&x, init) check.initVar(obj, &x, "variable declaration") return } if debug { // obj must be one of lhs found := false for _, lhs := range lhs { if obj == lhs { found = true break } } if !found { panic("inconsistent lhs") } } // We have multiple variables on the lhs and one init expr. // Make sure all variables have been given the same type if // one was specified, otherwise they assume the type of the // init expression values (was issue #15755). if typ != nil { for _, lhs := range lhs { lhs.typ = obj.typ } } check.initVars(lhs, []syntax.Expr{init}, nil) } // isImportedConstraint reports whether typ is an imported type constraint. func (check *Checker) isImportedConstraint(typ Type) bool { named, _ := typ.(*Named) if named == nil || named.obj.pkg == check.pkg || named.obj.pkg == nil { return false } u, _ := named.under().(*Interface) return u != nil && !u.IsMethodSet() } func (check *Checker) typeDecl(obj *TypeName, tdecl *syntax.TypeDecl, def *Named) { assert(obj.typ == nil) var rhs Type check.later(func() { if t, _ := obj.typ.(*Named); t != nil { // type may be invalid check.validType(t) } // If typ is local, an error was already reported where typ is specified/defined. if check.isImportedConstraint(rhs) && !check.allowVersion(check.pkg, 1, 18) { check.versionErrorf(tdecl.Type, "go1.18", "using type constraint %s", rhs) } }).describef(obj, "validType(%s)", obj.Name()) alias := tdecl.Alias if alias && tdecl.TParamList != nil { // The parser will ensure this but we may still get an invalid AST. // Complain and continue as regular type definition. check.error(tdecl, "generic type cannot be alias") alias = false } // alias declaration if alias { if !check.allowVersion(check.pkg, 1, 9) { check.versionErrorf(tdecl, "go1.9", "type aliases") } check.brokenAlias(obj) rhs = check.varType(tdecl.Type) check.validAlias(obj, rhs) return } // type definition or generic type declaration named := check.newNamed(obj, nil, nil, nil, nil) def.setUnderlying(named) if tdecl.TParamList != nil { check.openScope(tdecl, "type parameters") defer check.closeScope() check.collectTypeParams(&named.tparams, tdecl.TParamList) } // determine underlying type of named rhs = check.definedType(tdecl.Type, named) assert(rhs != nil) named.fromRHS = rhs // If the underlying was not set while type-checking the right-hand side, it // is invalid and an error should have been reported elsewhere. if named.underlying == nil { named.underlying = Typ[Invalid] } // Disallow a lone type parameter as the RHS of a type declaration (issue #45639). // We don't need this restriction anymore if we make the underlying type of a type // parameter its constraint interface: if the RHS is a lone type parameter, we will // use its underlying type (like we do for any RHS in a type declaration), and its // underlying type is an interface and the type declaration is well defined. if isTypeParam(rhs) { check.error(tdecl.Type, "cannot use a type parameter as RHS in type declaration") named.underlying = Typ[Invalid] } } func (check *Checker) collectTypeParams(dst **TypeParamList, list []*syntax.Field) { tparams := make([]*TypeParam, len(list)) // Declare type parameters up-front. // The scope of type parameters starts at the beginning of the type parameter // list (so we can have mutually recursive parameterized type bounds). for i, f := range list { tparams[i] = check.declareTypeParam(f.Name) } // Set the type parameters before collecting the type constraints because // the parameterized type may be used by the constraints (issue #47887). // Example: type T[P T[P]] interface{} *dst = bindTParams(tparams) // Signal to cycle detection that we are in a type parameter list. // We can only be inside one type parameter list at any given time: // function closures may appear inside a type parameter list but they // cannot be generic, and their bodies are processed in delayed and // sequential fashion. Note that with each new declaration, we save // the existing environment and restore it when done; thus inTParamList // is true exactly only when we are in a specific type parameter list. assert(!check.inTParamList) check.inTParamList = true defer func() { check.inTParamList = false }() // Keep track of bounds for later validation. var bound Type for i, f := range list { // Optimization: Re-use the previous type bound if it hasn't changed. // This also preserves the grouped output of type parameter lists // when printing type strings. if i == 0 || f.Type != list[i-1].Type { bound = check.bound(f.Type) if isTypeParam(bound) { // We may be able to allow this since it is now well-defined what // the underlying type and thus type set of a type parameter is. // But we may need some additional form of cycle detection within // type parameter lists. check.error(f.Type, "cannot use a type parameter as constraint") bound = Typ[Invalid] } } tparams[i].bound = bound } } func (check *Checker) bound(x syntax.Expr) Type { // A type set literal of the form ~T and A|B may only appear as constraint; // embed it in an implicit interface so that only interface type-checking // needs to take care of such type expressions. if op, _ := x.(*syntax.Operation); op != nil && (op.Op == syntax.Tilde || op.Op == syntax.Or) { t := check.typ(&syntax.InterfaceType{MethodList: []*syntax.Field{{Type: x}}}) // mark t as implicit interface if all went well if t, _ := t.(*Interface); t != nil { t.implicit = true } return t } return check.typ(x) } func (check *Checker) declareTypeParam(name *syntax.Name) *TypeParam { // Use Typ[Invalid] for the type constraint to ensure that a type // is present even if the actual constraint has not been assigned // yet. // TODO(gri) Need to systematically review all uses of type parameter // constraints to make sure we don't rely on them if they // are not properly set yet. tname := NewTypeName(name.Pos(), check.pkg, name.Value, nil) tpar := check.newTypeParam(tname, Typ[Invalid]) // assigns type to tname as a side-effect check.declare(check.scope, name, tname, check.scope.pos) // TODO(gri) check scope position return tpar } func (check *Checker) collectMethods(obj *TypeName) { // get associated methods // (Checker.collectObjects only collects methods with non-blank names; // Checker.resolveBaseTypeName ensures that obj is not an alias name // if it has attached methods.) methods := check.methods[obj] if methods == nil { return } delete(check.methods, obj) assert(!check.objMap[obj].tdecl.Alias) // don't use TypeName.IsAlias (requires fully set up object) // use an objset to check for name conflicts var mset objset // spec: "If the base type is a struct type, the non-blank method // and field names must be distinct." base, _ := obj.typ.(*Named) // shouldn't fail but be conservative if base != nil { assert(base.targs.Len() == 0) // collectMethods should not be called on an instantiated type // See issue #52529: we must delay the expansion of underlying here, as // base may not be fully set-up. check.later(func() { check.checkFieldUniqueness(base) }).describef(obj, "verifying field uniqueness for %v", base) // Checker.Files may be called multiple times; additional package files // may add methods to already type-checked types. Add pre-existing methods // so that we can detect redeclarations. for i := 0; i < base.methods.Len(); i++ { m := base.methods.At(i, nil) assert(m.name != "_") assert(mset.insert(m) == nil) } } // add valid methods for _, m := range methods { // spec: "For a base type, the non-blank names of methods bound // to it must be unique." assert(m.name != "_") if alt := mset.insert(m); alt != nil { var err error_ if check.conf.CompilerErrorMessages { err.errorf(m.pos, "%s.%s redeclared in this block", obj.Name(), m.name) } else { err.errorf(m.pos, "method %s already declared for %s", m.name, obj) } err.recordAltDecl(alt) check.report(&err) continue } if base != nil { base.resolve(nil) // TODO(mdempsky): Probably unnecessary. base.AddMethod(m) } } } func (check *Checker) checkFieldUniqueness(base *Named) { if t, _ := base.under().(*Struct); t != nil { var mset objset for i := 0; i < base.methods.Len(); i++ { m := base.methods.At(i, nil) assert(m.name != "_") assert(mset.insert(m) == nil) } // Check that any non-blank field names of base are distinct from its // method names. for _, fld := range t.fields { if fld.name != "_" { if alt := mset.insert(fld); alt != nil { // Struct fields should already be unique, so we should only // encounter an alternate via collision with a method name. _ = alt.(*Func) // For historical consistency, we report the primary error on the // method, and the alt decl on the field. var err error_ err.errorf(alt, "field and method with the same name %s", fld.name) err.recordAltDecl(fld) check.report(&err) } } } } } func (check *Checker) funcDecl(obj *Func, decl *declInfo) { assert(obj.typ == nil) // func declarations cannot use iota assert(check.iota == nil) sig := new(Signature) obj.typ = sig // guard against cycles // Avoid cycle error when referring to method while type-checking the signature. // This avoids a nuisance in the best case (non-parameterized receiver type) and // since the method is not a type, we get an error. If we have a parameterized // receiver type, instantiating the receiver type leads to the instantiation of // its methods, and we don't want a cycle error in that case. // TODO(gri) review if this is correct and/or whether we still need this? saved := obj.color_ obj.color_ = black fdecl := decl.fdecl check.funcType(sig, fdecl.Recv, fdecl.TParamList, fdecl.Type) obj.color_ = saved if len(fdecl.TParamList) > 0 && fdecl.Body == nil { check.softErrorf(fdecl, "parameterized function is missing function body") } // function body must be type-checked after global declarations // (functions implemented elsewhere have no body) if !check.conf.IgnoreFuncBodies && fdecl.Body != nil { check.later(func() { check.funcBody(decl, obj.name, sig, fdecl.Body, nil) }) } } func (check *Checker) declStmt(list []syntax.Decl) { pkg := check.pkg first := -1 // index of first ConstDecl in the current group, or -1 var last *syntax.ConstDecl // last ConstDecl with init expressions, or nil for index, decl := range list { if _, ok := decl.(*syntax.ConstDecl); !ok { first = -1 // we're not in a constant declaration } switch s := decl.(type) { case *syntax.ConstDecl: top := len(check.delayed) // iota is the index of the current constDecl within the group if first < 0 || s.Group == nil || list[index-1].(*syntax.ConstDecl).Group != s.Group { first = index last = nil } iota := constant.MakeInt64(int64(index - first)) // determine which initialization expressions to use inherited := true switch { case s.Type != nil || s.Values != nil: last = s inherited = false case last == nil: last = new(syntax.ConstDecl) // make sure last exists inherited = false } // declare all constants lhs := make([]*Const, len(s.NameList)) values := unpackExpr(last.Values) for i, name := range s.NameList { obj := NewConst(name.Pos(), pkg, name.Value, nil, iota) lhs[i] = obj var init syntax.Expr if i < len(values) { init = values[i] } check.constDecl(obj, last.Type, init, inherited) } // Constants must always have init values. check.arity(s.Pos(), s.NameList, values, true, inherited) // process function literals in init expressions before scope changes check.processDelayed(top) // spec: "The scope of a constant or variable identifier declared // inside a function begins at the end of the ConstSpec or VarSpec // (ShortVarDecl for short variable declarations) and ends at the // end of the innermost containing block." scopePos := syntax.EndPos(s) for i, name := range s.NameList { check.declare(check.scope, name, lhs[i], scopePos) } case *syntax.VarDecl: top := len(check.delayed) lhs0 := make([]*Var, len(s.NameList)) for i, name := range s.NameList { lhs0[i] = NewVar(name.Pos(), pkg, name.Value, nil) } // initialize all variables values := unpackExpr(s.Values) for i, obj := range lhs0 { var lhs []*Var var init syntax.Expr switch len(values) { case len(s.NameList): // lhs and rhs match init = values[i] case 1: // rhs is expected to be a multi-valued expression lhs = lhs0 init = values[0] default: if i < len(values) { init = values[i] } } check.varDecl(obj, lhs, s.Type, init) if len(values) == 1 { // If we have a single lhs variable we are done either way. // If we have a single rhs expression, it must be a multi- // valued expression, in which case handling the first lhs // variable will cause all lhs variables to have a type // assigned, and we are done as well. if debug { for _, obj := range lhs0 { assert(obj.typ != nil) } } break } } // If we have no type, we must have values. if s.Type == nil || values != nil { check.arity(s.Pos(), s.NameList, values, false, false) } // process function literals in init expressions before scope changes check.processDelayed(top) // declare all variables // (only at this point are the variable scopes (parents) set) scopePos := syntax.EndPos(s) // see constant declarations for i, name := range s.NameList { // see constant declarations check.declare(check.scope, name, lhs0[i], scopePos) } case *syntax.TypeDecl: obj := NewTypeName(s.Name.Pos(), pkg, s.Name.Value, nil) // spec: "The scope of a type identifier declared inside a function // begins at the identifier in the TypeSpec and ends at the end of // the innermost containing block." scopePos := s.Name.Pos() check.declare(check.scope, s.Name, obj, scopePos) // mark and unmark type before calling typeDecl; its type is still nil (see Checker.objDecl) obj.setColor(grey + color(check.push(obj))) check.typeDecl(obj, s, nil) check.pop().setColor(black) default: check.errorf(s, invalidAST+"unknown syntax.Decl node %T", s) } } }