// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package walk import ( "cmd/compile/internal/base" "cmd/compile/internal/ir" "cmd/compile/internal/ssagen" "cmd/compile/internal/staticdata" "cmd/compile/internal/staticinit" "cmd/compile/internal/typecheck" "cmd/compile/internal/types" "cmd/internal/obj" ) // walkCompLit walks a composite literal node: // OARRAYLIT, OSLICELIT, OMAPLIT, OSTRUCTLIT (all CompLitExpr), or OPTRLIT (AddrExpr). func walkCompLit(n ir.Node, init *ir.Nodes) ir.Node { if isStaticCompositeLiteral(n) && !ssagen.TypeOK(n.Type()) { n := n.(*ir.CompLitExpr) // not OPTRLIT // n can be directly represented in the read-only data section. // Make direct reference to the static data. See issue 12841. vstat := readonlystaticname(n.Type()) fixedlit(inInitFunction, initKindStatic, n, vstat, init) return typecheck.Expr(vstat) } var_ := typecheck.Temp(n.Type()) anylit(n, var_, init) return var_ } // initContext is the context in which static data is populated. // It is either in an init function or in any other function. // Static data populated in an init function will be written either // zero times (as a readonly, static data symbol) or // one time (during init function execution). // Either way, there is no opportunity for races or further modification, // so the data can be written to a (possibly readonly) data symbol. // Static data populated in any other function needs to be local to // that function to allow multiple instances of that function // to execute concurrently without clobbering each others' data. type initContext uint8 const ( inInitFunction initContext = iota inNonInitFunction ) func (c initContext) String() string { if c == inInitFunction { return "inInitFunction" } return "inNonInitFunction" } // readonlystaticname returns a name backed by a read-only static data symbol. func readonlystaticname(t *types.Type) *ir.Name { n := staticinit.StaticName(t) n.MarkReadonly() n.Linksym().Set(obj.AttrContentAddressable, true) n.Linksym().Set(obj.AttrLocal, true) return n } func isSimpleName(nn ir.Node) bool { if nn.Op() != ir.ONAME || ir.IsBlank(nn) { return false } n := nn.(*ir.Name) return n.OnStack() } func litas(l ir.Node, r ir.Node, init *ir.Nodes) { appendWalkStmt(init, ir.NewAssignStmt(base.Pos, l, r)) } // initGenType is a bitmap indicating the types of generation that will occur for a static value. type initGenType uint8 const ( initDynamic initGenType = 1 << iota // contains some dynamic values, for which init code will be generated initConst // contains some constant values, which may be written into data symbols ) // getdyn calculates the initGenType for n. // If top is false, getdyn is recursing. func getdyn(n ir.Node, top bool) initGenType { switch n.Op() { default: if ir.IsConstNode(n) { return initConst } return initDynamic case ir.OSLICELIT: n := n.(*ir.CompLitExpr) if !top { return initDynamic } if n.Len/4 > int64(len(n.List)) { // <25% of entries have explicit values. // Very rough estimation, it takes 4 bytes of instructions // to initialize 1 byte of result. So don't use a static // initializer if the dynamic initialization code would be // smaller than the static value. // See issue 23780. return initDynamic } case ir.OARRAYLIT, ir.OSTRUCTLIT: } lit := n.(*ir.CompLitExpr) var mode initGenType for _, n1 := range lit.List { switch n1.Op() { case ir.OKEY: n1 = n1.(*ir.KeyExpr).Value case ir.OSTRUCTKEY: n1 = n1.(*ir.StructKeyExpr).Value } mode |= getdyn(n1, false) if mode == initDynamic|initConst { break } } return mode } // isStaticCompositeLiteral reports whether n is a compile-time constant. func isStaticCompositeLiteral(n ir.Node) bool { switch n.Op() { case ir.OSLICELIT: return false case ir.OARRAYLIT: n := n.(*ir.CompLitExpr) for _, r := range n.List { if r.Op() == ir.OKEY { r = r.(*ir.KeyExpr).Value } if !isStaticCompositeLiteral(r) { return false } } return true case ir.OSTRUCTLIT: n := n.(*ir.CompLitExpr) for _, r := range n.List { r := r.(*ir.StructKeyExpr) if !isStaticCompositeLiteral(r.Value) { return false } } return true case ir.OLITERAL, ir.ONIL: return true case ir.OCONVIFACE: // See staticassign's OCONVIFACE case for comments. n := n.(*ir.ConvExpr) val := ir.Node(n) for val.Op() == ir.OCONVIFACE { val = val.(*ir.ConvExpr).X } if val.Type().IsInterface() { return val.Op() == ir.ONIL } if types.IsDirectIface(val.Type()) && val.Op() == ir.ONIL { return true } return isStaticCompositeLiteral(val) } return false } // initKind is a kind of static initialization: static, dynamic, or local. // Static initialization represents literals and // literal components of composite literals. // Dynamic initialization represents non-literals and // non-literal components of composite literals. // LocalCode initialization represents initialization // that occurs purely in generated code local to the function of use. // Initialization code is sometimes generated in passes, // first static then dynamic. type initKind uint8 const ( initKindStatic initKind = iota + 1 initKindDynamic initKindLocalCode ) // fixedlit handles struct, array, and slice literals. // TODO: expand documentation. func fixedlit(ctxt initContext, kind initKind, n *ir.CompLitExpr, var_ ir.Node, init *ir.Nodes) { isBlank := var_ == ir.BlankNode var splitnode func(ir.Node) (a ir.Node, value ir.Node) switch n.Op() { case ir.OARRAYLIT, ir.OSLICELIT: var k int64 splitnode = func(r ir.Node) (ir.Node, ir.Node) { if r.Op() == ir.OKEY { kv := r.(*ir.KeyExpr) k = typecheck.IndexConst(kv.Key) if k < 0 { base.Fatalf("fixedlit: invalid index %v", kv.Key) } r = kv.Value } a := ir.NewIndexExpr(base.Pos, var_, ir.NewInt(k)) k++ if isBlank { return ir.BlankNode, r } return a, r } case ir.OSTRUCTLIT: splitnode = func(rn ir.Node) (ir.Node, ir.Node) { r := rn.(*ir.StructKeyExpr) if r.Sym().IsBlank() || isBlank { return ir.BlankNode, r.Value } ir.SetPos(r) return ir.NewSelectorExpr(base.Pos, ir.ODOT, var_, r.Sym()), r.Value } default: base.Fatalf("fixedlit bad op: %v", n.Op()) } for _, r := range n.List { a, value := splitnode(r) if a == ir.BlankNode && !staticinit.AnySideEffects(value) { // Discard. continue } switch value.Op() { case ir.OSLICELIT: value := value.(*ir.CompLitExpr) if (kind == initKindStatic && ctxt == inNonInitFunction) || (kind == initKindDynamic && ctxt == inInitFunction) { slicelit(ctxt, value, a, init) continue } case ir.OARRAYLIT, ir.OSTRUCTLIT: value := value.(*ir.CompLitExpr) fixedlit(ctxt, kind, value, a, init) continue } islit := ir.IsConstNode(value) if (kind == initKindStatic && !islit) || (kind == initKindDynamic && islit) { continue } // build list of assignments: var[index] = expr ir.SetPos(a) as := ir.NewAssignStmt(base.Pos, a, value) as = typecheck.Stmt(as).(*ir.AssignStmt) switch kind { case initKindStatic: genAsStatic(as) case initKindDynamic, initKindLocalCode: a = orderStmtInPlace(as, map[string][]*ir.Name{}) a = walkStmt(a) init.Append(a) default: base.Fatalf("fixedlit: bad kind %d", kind) } } } func isSmallSliceLit(n *ir.CompLitExpr) bool { if n.Op() != ir.OSLICELIT { return false } return n.Type().Elem().Size() == 0 || n.Len <= ir.MaxSmallArraySize/n.Type().Elem().Size() } func slicelit(ctxt initContext, n *ir.CompLitExpr, var_ ir.Node, init *ir.Nodes) { // make an array type corresponding the number of elements we have t := types.NewArray(n.Type().Elem(), n.Len) types.CalcSize(t) if ctxt == inNonInitFunction { // put everything into static array vstat := staticinit.StaticName(t) fixedlit(ctxt, initKindStatic, n, vstat, init) fixedlit(ctxt, initKindDynamic, n, vstat, init) // copy static to slice var_ = typecheck.AssignExpr(var_) name, offset, ok := staticinit.StaticLoc(var_) if !ok || name.Class != ir.PEXTERN { base.Fatalf("slicelit: %v", var_) } staticdata.InitSlice(name, offset, vstat.Linksym(), t.NumElem()) return } // recipe for var = []t{...} // 1. make a static array // var vstat [...]t // 2. assign (data statements) the constant part // vstat = constpart{} // 3. make an auto pointer to array and allocate heap to it // var vauto *[...]t = new([...]t) // 4. copy the static array to the auto array // *vauto = vstat // 5. for each dynamic part assign to the array // vauto[i] = dynamic part // 6. assign slice of allocated heap to var // var = vauto[:] // // an optimization is done if there is no constant part // 3. var vauto *[...]t = new([...]t) // 5. vauto[i] = dynamic part // 6. var = vauto[:] // if the literal contains constants, // make static initialized array (1),(2) var vstat ir.Node mode := getdyn(n, true) if mode&initConst != 0 && !isSmallSliceLit(n) { if ctxt == inInitFunction { vstat = readonlystaticname(t) } else { vstat = staticinit.StaticName(t) } fixedlit(ctxt, initKindStatic, n, vstat, init) } // make new auto *array (3 declare) vauto := typecheck.Temp(types.NewPtr(t)) // set auto to point at new temp or heap (3 assign) var a ir.Node if x := n.Prealloc; x != nil { // temp allocated during order.go for dddarg if !types.Identical(t, x.Type()) { panic("dotdotdot base type does not match order's assigned type") } a = initStackTemp(init, x, vstat) } else if n.Esc() == ir.EscNone { a = initStackTemp(init, typecheck.Temp(t), vstat) } else { a = ir.NewUnaryExpr(base.Pos, ir.ONEW, ir.TypeNode(t)) } appendWalkStmt(init, ir.NewAssignStmt(base.Pos, vauto, a)) if vstat != nil && n.Prealloc == nil && n.Esc() != ir.EscNone { // If we allocated on the heap with ONEW, copy the static to the // heap (4). We skip this for stack temporaries, because // initStackTemp already handled the copy. a = ir.NewStarExpr(base.Pos, vauto) appendWalkStmt(init, ir.NewAssignStmt(base.Pos, a, vstat)) } // put dynamics into array (5) var index int64 for _, value := range n.List { if value.Op() == ir.OKEY { kv := value.(*ir.KeyExpr) index = typecheck.IndexConst(kv.Key) if index < 0 { base.Fatalf("slicelit: invalid index %v", kv.Key) } value = kv.Value } a := ir.NewIndexExpr(base.Pos, vauto, ir.NewInt(index)) a.SetBounded(true) index++ // TODO need to check bounds? switch value.Op() { case ir.OSLICELIT: break case ir.OARRAYLIT, ir.OSTRUCTLIT: value := value.(*ir.CompLitExpr) k := initKindDynamic if vstat == nil { // Generate both static and dynamic initializations. // See issue #31987. k = initKindLocalCode } fixedlit(ctxt, k, value, a, init) continue } if vstat != nil && ir.IsConstNode(value) { // already set by copy from static value continue } // build list of vauto[c] = expr ir.SetPos(value) as := typecheck.Stmt(ir.NewAssignStmt(base.Pos, a, value)) as = orderStmtInPlace(as, map[string][]*ir.Name{}) as = walkStmt(as) init.Append(as) } // make slice out of heap (6) a = ir.NewAssignStmt(base.Pos, var_, ir.NewSliceExpr(base.Pos, ir.OSLICE, vauto, nil, nil, nil)) a = typecheck.Stmt(a) a = orderStmtInPlace(a, map[string][]*ir.Name{}) a = walkStmt(a) init.Append(a) } func maplit(n *ir.CompLitExpr, m ir.Node, init *ir.Nodes) { // make the map var a := ir.NewCallExpr(base.Pos, ir.OMAKE, nil, nil) a.SetEsc(n.Esc()) a.Args = []ir.Node{ir.TypeNode(n.Type()), ir.NewInt(int64(len(n.List)))} litas(m, a, init) entries := n.List // The order pass already removed any dynamic (runtime-computed) entries. // All remaining entries are static. Double-check that. for _, r := range entries { r := r.(*ir.KeyExpr) if !isStaticCompositeLiteral(r.Key) || !isStaticCompositeLiteral(r.Value) { base.Fatalf("maplit: entry is not a literal: %v", r) } } if len(entries) > 25 { // For a large number of entries, put them in an array and loop. // build types [count]Tindex and [count]Tvalue tk := types.NewArray(n.Type().Key(), int64(len(entries))) te := types.NewArray(n.Type().Elem(), int64(len(entries))) // TODO(#47904): mark tk and te NoAlg here once the // compiler/linker can handle NoAlg types correctly. types.CalcSize(tk) types.CalcSize(te) // make and initialize static arrays vstatk := readonlystaticname(tk) vstate := readonlystaticname(te) datak := ir.NewCompLitExpr(base.Pos, ir.OARRAYLIT, nil, nil) datae := ir.NewCompLitExpr(base.Pos, ir.OARRAYLIT, nil, nil) for _, r := range entries { r := r.(*ir.KeyExpr) datak.List.Append(r.Key) datae.List.Append(r.Value) } fixedlit(inInitFunction, initKindStatic, datak, vstatk, init) fixedlit(inInitFunction, initKindStatic, datae, vstate, init) // loop adding structure elements to map // for i = 0; i < len(vstatk); i++ { // map[vstatk[i]] = vstate[i] // } i := typecheck.Temp(types.Types[types.TINT]) rhs := ir.NewIndexExpr(base.Pos, vstate, i) rhs.SetBounded(true) kidx := ir.NewIndexExpr(base.Pos, vstatk, i) kidx.SetBounded(true) lhs := ir.NewIndexExpr(base.Pos, m, kidx) zero := ir.NewAssignStmt(base.Pos, i, ir.NewInt(0)) cond := ir.NewBinaryExpr(base.Pos, ir.OLT, i, ir.NewInt(tk.NumElem())) incr := ir.NewAssignStmt(base.Pos, i, ir.NewBinaryExpr(base.Pos, ir.OADD, i, ir.NewInt(1))) var body ir.Node = ir.NewAssignStmt(base.Pos, lhs, rhs) body = typecheck.Stmt(body) // typechecker rewrites OINDEX to OINDEXMAP body = orderStmtInPlace(body, map[string][]*ir.Name{}) loop := ir.NewForStmt(base.Pos, nil, cond, incr, nil) loop.Body = []ir.Node{body} loop.SetInit([]ir.Node{zero}) appendWalkStmt(init, loop) return } // For a small number of entries, just add them directly. // Build list of var[c] = expr. // Use temporaries so that mapassign1 can have addressable key, elem. // TODO(josharian): avoid map key temporaries for mapfast_* assignments with literal keys. tmpkey := typecheck.Temp(m.Type().Key()) tmpelem := typecheck.Temp(m.Type().Elem()) for _, r := range entries { r := r.(*ir.KeyExpr) index, elem := r.Key, r.Value ir.SetPos(index) appendWalkStmt(init, ir.NewAssignStmt(base.Pos, tmpkey, index)) ir.SetPos(elem) appendWalkStmt(init, ir.NewAssignStmt(base.Pos, tmpelem, elem)) ir.SetPos(tmpelem) var a ir.Node = ir.NewAssignStmt(base.Pos, ir.NewIndexExpr(base.Pos, m, tmpkey), tmpelem) a = typecheck.Stmt(a) // typechecker rewrites OINDEX to OINDEXMAP a = orderStmtInPlace(a, map[string][]*ir.Name{}) appendWalkStmt(init, a) } appendWalkStmt(init, ir.NewUnaryExpr(base.Pos, ir.OVARKILL, tmpkey)) appendWalkStmt(init, ir.NewUnaryExpr(base.Pos, ir.OVARKILL, tmpelem)) } func anylit(n ir.Node, var_ ir.Node, init *ir.Nodes) { t := n.Type() switch n.Op() { default: base.Fatalf("anylit: not lit, op=%v node=%v", n.Op(), n) case ir.ONAME: n := n.(*ir.Name) appendWalkStmt(init, ir.NewAssignStmt(base.Pos, var_, n)) case ir.OMETHEXPR: n := n.(*ir.SelectorExpr) anylit(n.FuncName(), var_, init) case ir.OPTRLIT: n := n.(*ir.AddrExpr) if !t.IsPtr() { base.Fatalf("anylit: not ptr") } var r ir.Node if n.Prealloc != nil { // n.Prealloc is stack temporary used as backing store. r = initStackTemp(init, n.Prealloc, nil) } else { r = ir.NewUnaryExpr(base.Pos, ir.ONEW, ir.TypeNode(n.X.Type())) r.SetEsc(n.Esc()) } appendWalkStmt(init, ir.NewAssignStmt(base.Pos, var_, r)) var_ = ir.NewStarExpr(base.Pos, var_) var_ = typecheck.AssignExpr(var_) anylit(n.X, var_, init) case ir.OSTRUCTLIT, ir.OARRAYLIT: n := n.(*ir.CompLitExpr) if !t.IsStruct() && !t.IsArray() { base.Fatalf("anylit: not struct/array") } if isSimpleName(var_) && len(n.List) > 4 { // lay out static data vstat := readonlystaticname(t) ctxt := inInitFunction if n.Op() == ir.OARRAYLIT { ctxt = inNonInitFunction } fixedlit(ctxt, initKindStatic, n, vstat, init) // copy static to var appendWalkStmt(init, ir.NewAssignStmt(base.Pos, var_, vstat)) // add expressions to automatic fixedlit(inInitFunction, initKindDynamic, n, var_, init) break } var components int64 if n.Op() == ir.OARRAYLIT { components = t.NumElem() } else { components = int64(t.NumFields()) } // initialization of an array or struct with unspecified components (missing fields or arrays) if isSimpleName(var_) || int64(len(n.List)) < components { appendWalkStmt(init, ir.NewAssignStmt(base.Pos, var_, nil)) } fixedlit(inInitFunction, initKindLocalCode, n, var_, init) case ir.OSLICELIT: n := n.(*ir.CompLitExpr) slicelit(inInitFunction, n, var_, init) case ir.OMAPLIT: n := n.(*ir.CompLitExpr) if !t.IsMap() { base.Fatalf("anylit: not map") } maplit(n, var_, init) } } // oaslit handles special composite literal assignments. // It returns true if n's effects have been added to init, // in which case n should be dropped from the program by the caller. func oaslit(n *ir.AssignStmt, init *ir.Nodes) bool { if n.X == nil || n.Y == nil { // not a special composite literal assignment return false } if n.X.Type() == nil || n.Y.Type() == nil { // not a special composite literal assignment return false } if !isSimpleName(n.X) { // not a special composite literal assignment return false } x := n.X.(*ir.Name) if !types.Identical(n.X.Type(), n.Y.Type()) { // not a special composite literal assignment return false } switch n.Y.Op() { default: // not a special composite literal assignment return false case ir.OSTRUCTLIT, ir.OARRAYLIT, ir.OSLICELIT, ir.OMAPLIT: if ir.Any(n.Y, func(y ir.Node) bool { return ir.Uses(y, x) }) { // not a special composite literal assignment return false } anylit(n.Y, n.X, init) } return true } func genAsStatic(as *ir.AssignStmt) { if as.X.Type() == nil { base.Fatalf("genAsStatic as.Left not typechecked") } name, offset, ok := staticinit.StaticLoc(as.X) if !ok || (name.Class != ir.PEXTERN && as.X != ir.BlankNode) { base.Fatalf("genAsStatic: lhs %v", as.X) } switch r := as.Y; r.Op() { case ir.OLITERAL: staticdata.InitConst(name, offset, r, int(r.Type().Size())) return case ir.OMETHEXPR: r := r.(*ir.SelectorExpr) staticdata.InitAddr(name, offset, staticdata.FuncLinksym(r.FuncName())) return case ir.ONAME: r := r.(*ir.Name) if r.Offset_ != 0 { base.Fatalf("genAsStatic %+v", as) } if r.Class == ir.PFUNC { staticdata.InitAddr(name, offset, staticdata.FuncLinksym(r)) return } } base.Fatalf("genAsStatic: rhs %v", as.Y) }