// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package walk import ( "unicode/utf8" "cmd/compile/internal/base" "cmd/compile/internal/ir" "cmd/compile/internal/reflectdata" "cmd/compile/internal/ssagen" "cmd/compile/internal/typecheck" "cmd/compile/internal/types" "cmd/internal/sys" ) func cheapComputableIndex(width int64) bool { switch ssagen.Arch.LinkArch.Family { // MIPS does not have R+R addressing // Arm64 may lack ability to generate this code in our assembler, // but the architecture supports it. case sys.PPC64, sys.S390X: return width == 1 case sys.AMD64, sys.I386, sys.ARM64, sys.ARM: switch width { case 1, 2, 4, 8: return true } } return false } // walkRange transforms various forms of ORANGE into // simpler forms. The result must be assigned back to n. // Node n may also be modified in place, and may also be // the returned node. func walkRange(nrange *ir.RangeStmt) ir.Node { if isMapClear(nrange) { m := nrange.X lno := ir.SetPos(m) n := mapClear(m) base.Pos = lno return n } nfor := ir.NewForStmt(nrange.Pos(), nil, nil, nil, nil) nfor.SetInit(nrange.Init()) nfor.Label = nrange.Label // variable name conventions: // ohv1, hv1, hv2: hidden (old) val 1, 2 // ha, hit: hidden aggregate, iterator // hn, hp: hidden len, pointer // hb: hidden bool // a, v1, v2: not hidden aggregate, val 1, 2 a := nrange.X t := typecheck.RangeExprType(a.Type()) lno := ir.SetPos(a) v1, v2 := nrange.Key, nrange.Value if ir.IsBlank(v2) { v2 = nil } if ir.IsBlank(v1) && v2 == nil { v1 = nil } if v1 == nil && v2 != nil { base.Fatalf("walkRange: v2 != nil while v1 == nil") } var ifGuard *ir.IfStmt var body []ir.Node var init []ir.Node switch t.Kind() { default: base.Fatalf("walkRange") case types.TARRAY, types.TSLICE: if nn := arrayClear(nrange, v1, v2, a); nn != nil { base.Pos = lno return nn } // order.stmt arranged for a copy of the array/slice variable if needed. ha := a hv1 := typecheck.Temp(types.Types[types.TINT]) hn := typecheck.Temp(types.Types[types.TINT]) init = append(init, ir.NewAssignStmt(base.Pos, hv1, nil)) init = append(init, ir.NewAssignStmt(base.Pos, hn, ir.NewUnaryExpr(base.Pos, ir.OLEN, ha))) nfor.Cond = ir.NewBinaryExpr(base.Pos, ir.OLT, hv1, hn) nfor.Post = ir.NewAssignStmt(base.Pos, hv1, ir.NewBinaryExpr(base.Pos, ir.OADD, hv1, ir.NewInt(1))) // for range ha { body } if v1 == nil { break } // for v1 := range ha { body } if v2 == nil { body = []ir.Node{ir.NewAssignStmt(base.Pos, v1, hv1)} break } // for v1, v2 := range ha { body } if cheapComputableIndex(t.Elem().Size()) { // v1, v2 = hv1, ha[hv1] tmp := ir.NewIndexExpr(base.Pos, ha, hv1) tmp.SetBounded(true) // Use OAS2 to correctly handle assignments // of the form "v1, a[v1] := range". a := ir.NewAssignListStmt(base.Pos, ir.OAS2, []ir.Node{v1, v2}, []ir.Node{hv1, tmp}) body = []ir.Node{a} break } // TODO(austin): OFORUNTIL is a strange beast, but is // necessary for expressing the control flow we need // while also making "break" and "continue" work. It // would be nice to just lower ORANGE during SSA, but // racewalk needs to see many of the operations // involved in ORANGE's implementation. If racewalk // moves into SSA, consider moving ORANGE into SSA and // eliminating OFORUNTIL. // TODO(austin): OFORUNTIL inhibits bounds-check // elimination on the index variable (see #20711). // Enhance the prove pass to understand this. ifGuard = ir.NewIfStmt(base.Pos, nil, nil, nil) ifGuard.Cond = ir.NewBinaryExpr(base.Pos, ir.OLT, hv1, hn) nfor.SetOp(ir.OFORUNTIL) hp := typecheck.Temp(types.NewPtr(t.Elem())) tmp := ir.NewIndexExpr(base.Pos, ha, ir.NewInt(0)) tmp.SetBounded(true) init = append(init, ir.NewAssignStmt(base.Pos, hp, typecheck.NodAddr(tmp))) // Use OAS2 to correctly handle assignments // of the form "v1, a[v1] := range". a := ir.NewAssignListStmt(base.Pos, ir.OAS2, []ir.Node{v1, v2}, []ir.Node{hv1, ir.NewStarExpr(base.Pos, hp)}) body = append(body, a) // Advance pointer as part of the late increment. // // This runs *after* the condition check, so we know // advancing the pointer is safe and won't go past the // end of the allocation. as := ir.NewAssignStmt(base.Pos, hp, addptr(hp, t.Elem().Size())) nfor.Late = []ir.Node{typecheck.Stmt(as)} case types.TMAP: // order.stmt allocated the iterator for us. // we only use a once, so no copy needed. ha := a hit := nrange.Prealloc th := hit.Type() // depends on layout of iterator struct. // See cmd/compile/internal/reflectdata/reflect.go:MapIterType keysym := th.Field(0).Sym elemsym := th.Field(1).Sym // ditto fn := typecheck.LookupRuntime("mapiterinit") fn = typecheck.SubstArgTypes(fn, t.Key(), t.Elem(), th) init = append(init, mkcallstmt1(fn, reflectdata.TypePtr(t), ha, typecheck.NodAddr(hit))) nfor.Cond = ir.NewBinaryExpr(base.Pos, ir.ONE, ir.NewSelectorExpr(base.Pos, ir.ODOT, hit, keysym), typecheck.NodNil()) fn = typecheck.LookupRuntime("mapiternext") fn = typecheck.SubstArgTypes(fn, th) nfor.Post = mkcallstmt1(fn, typecheck.NodAddr(hit)) key := ir.NewStarExpr(base.Pos, ir.NewSelectorExpr(base.Pos, ir.ODOT, hit, keysym)) if v1 == nil { body = nil } else if v2 == nil { body = []ir.Node{ir.NewAssignStmt(base.Pos, v1, key)} } else { elem := ir.NewStarExpr(base.Pos, ir.NewSelectorExpr(base.Pos, ir.ODOT, hit, elemsym)) a := ir.NewAssignListStmt(base.Pos, ir.OAS2, []ir.Node{v1, v2}, []ir.Node{key, elem}) body = []ir.Node{a} } case types.TCHAN: // order.stmt arranged for a copy of the channel variable. ha := a hv1 := typecheck.Temp(t.Elem()) hv1.SetTypecheck(1) if t.Elem().HasPointers() { init = append(init, ir.NewAssignStmt(base.Pos, hv1, nil)) } hb := typecheck.Temp(types.Types[types.TBOOL]) nfor.Cond = ir.NewBinaryExpr(base.Pos, ir.ONE, hb, ir.NewBool(false)) lhs := []ir.Node{hv1, hb} rhs := []ir.Node{ir.NewUnaryExpr(base.Pos, ir.ORECV, ha)} a := ir.NewAssignListStmt(base.Pos, ir.OAS2RECV, lhs, rhs) a.SetTypecheck(1) nfor.Cond = ir.InitExpr([]ir.Node{a}, nfor.Cond) if v1 == nil { body = nil } else { body = []ir.Node{ir.NewAssignStmt(base.Pos, v1, hv1)} } // Zero hv1. This prevents hv1 from being the sole, inaccessible // reference to an otherwise GC-able value during the next channel receive. // See issue 15281. body = append(body, ir.NewAssignStmt(base.Pos, hv1, nil)) case types.TSTRING: // Transform string range statements like "for v1, v2 = range a" into // // ha := a // for hv1 := 0; hv1 < len(ha); { // hv1t := hv1 // hv2 := rune(ha[hv1]) // if hv2 < utf8.RuneSelf { // hv1++ // } else { // hv2, hv1 = decoderune(ha, hv1) // } // v1, v2 = hv1t, hv2 // // original body // } // order.stmt arranged for a copy of the string variable. ha := a hv1 := typecheck.Temp(types.Types[types.TINT]) hv1t := typecheck.Temp(types.Types[types.TINT]) hv2 := typecheck.Temp(types.RuneType) // hv1 := 0 init = append(init, ir.NewAssignStmt(base.Pos, hv1, nil)) // hv1 < len(ha) nfor.Cond = ir.NewBinaryExpr(base.Pos, ir.OLT, hv1, ir.NewUnaryExpr(base.Pos, ir.OLEN, ha)) if v1 != nil { // hv1t = hv1 body = append(body, ir.NewAssignStmt(base.Pos, hv1t, hv1)) } // hv2 := rune(ha[hv1]) nind := ir.NewIndexExpr(base.Pos, ha, hv1) nind.SetBounded(true) body = append(body, ir.NewAssignStmt(base.Pos, hv2, typecheck.Conv(nind, types.RuneType))) // if hv2 < utf8.RuneSelf nif := ir.NewIfStmt(base.Pos, nil, nil, nil) nif.Cond = ir.NewBinaryExpr(base.Pos, ir.OLT, hv2, ir.NewInt(utf8.RuneSelf)) // hv1++ nif.Body = []ir.Node{ir.NewAssignStmt(base.Pos, hv1, ir.NewBinaryExpr(base.Pos, ir.OADD, hv1, ir.NewInt(1)))} // } else { // hv2, hv1 = decoderune(ha, hv1) fn := typecheck.LookupRuntime("decoderune") call := mkcall1(fn, fn.Type().Results(), &nif.Else, ha, hv1) a := ir.NewAssignListStmt(base.Pos, ir.OAS2, []ir.Node{hv2, hv1}, []ir.Node{call}) nif.Else.Append(a) body = append(body, nif) if v1 != nil { if v2 != nil { // v1, v2 = hv1t, hv2 a := ir.NewAssignListStmt(base.Pos, ir.OAS2, []ir.Node{v1, v2}, []ir.Node{hv1t, hv2}) body = append(body, a) } else { // v1 = hv1t body = append(body, ir.NewAssignStmt(base.Pos, v1, hv1t)) } } } typecheck.Stmts(init) if ifGuard != nil { ifGuard.PtrInit().Append(init...) ifGuard = typecheck.Stmt(ifGuard).(*ir.IfStmt) } else { nfor.PtrInit().Append(init...) } typecheck.Stmts(nfor.Cond.Init()) nfor.Cond = typecheck.Expr(nfor.Cond) nfor.Cond = typecheck.DefaultLit(nfor.Cond, nil) nfor.Post = typecheck.Stmt(nfor.Post) typecheck.Stmts(body) nfor.Body.Append(body...) nfor.Body.Append(nrange.Body...) var n ir.Node = nfor if ifGuard != nil { ifGuard.Body = []ir.Node{n} n = ifGuard } n = walkStmt(n) base.Pos = lno return n } // isMapClear checks if n is of the form: // // for k := range m { // delete(m, k) // } // // where == for keys of map m is reflexive. func isMapClear(n *ir.RangeStmt) bool { if base.Flag.N != 0 || base.Flag.Cfg.Instrumenting { return false } t := n.X.Type() if n.Op() != ir.ORANGE || t.Kind() != types.TMAP || n.Key == nil || n.Value != nil { return false } k := n.Key // Require k to be a new variable name. if !ir.DeclaredBy(k, n) { return false } if len(n.Body) != 1 { return false } stmt := n.Body[0] // only stmt in body if stmt == nil || stmt.Op() != ir.ODELETE { return false } m := n.X if delete := stmt.(*ir.CallExpr); !ir.SameSafeExpr(delete.Args[0], m) || !ir.SameSafeExpr(delete.Args[1], k) { return false } // Keys where equality is not reflexive can not be deleted from maps. if !types.IsReflexive(t.Key()) { return false } return true } // mapClear constructs a call to runtime.mapclear for the map m. func mapClear(m ir.Node) ir.Node { t := m.Type() // instantiate mapclear(typ *type, hmap map[any]any) fn := typecheck.LookupRuntime("mapclear") fn = typecheck.SubstArgTypes(fn, t.Key(), t.Elem()) n := mkcallstmt1(fn, reflectdata.TypePtr(t), m) return walkStmt(typecheck.Stmt(n)) } // Lower n into runtime·memclr if possible, for // fast zeroing of slices and arrays (issue 5373). // Look for instances of // // for i := range a { // a[i] = zero // } // // in which the evaluation of a is side-effect-free. // // Parameters are as in walkRange: "for v1, v2 = range a". func arrayClear(loop *ir.RangeStmt, v1, v2, a ir.Node) ir.Node { if base.Flag.N != 0 || base.Flag.Cfg.Instrumenting { return nil } if v1 == nil || v2 != nil { return nil } if len(loop.Body) != 1 || loop.Body[0] == nil { return nil } stmt1 := loop.Body[0] // only stmt in body if stmt1.Op() != ir.OAS { return nil } stmt := stmt1.(*ir.AssignStmt) if stmt.X.Op() != ir.OINDEX { return nil } lhs := stmt.X.(*ir.IndexExpr) if !ir.SameSafeExpr(lhs.X, a) || !ir.SameSafeExpr(lhs.Index, v1) { return nil } elemsize := typecheck.RangeExprType(loop.X.Type()).Elem().Size() if elemsize <= 0 || !ir.IsZero(stmt.Y) { return nil } // Convert to // if len(a) != 0 { // hp = &a[0] // hn = len(a)*sizeof(elem(a)) // memclr{NoHeap,Has}Pointers(hp, hn) // i = len(a) - 1 // } n := ir.NewIfStmt(base.Pos, nil, nil, nil) n.Cond = ir.NewBinaryExpr(base.Pos, ir.ONE, ir.NewUnaryExpr(base.Pos, ir.OLEN, a), ir.NewInt(0)) // hp = &a[0] hp := typecheck.Temp(types.Types[types.TUNSAFEPTR]) ix := ir.NewIndexExpr(base.Pos, a, ir.NewInt(0)) ix.SetBounded(true) addr := typecheck.ConvNop(typecheck.NodAddr(ix), types.Types[types.TUNSAFEPTR]) n.Body.Append(ir.NewAssignStmt(base.Pos, hp, addr)) // hn = len(a) * sizeof(elem(a)) hn := typecheck.Temp(types.Types[types.TUINTPTR]) mul := typecheck.Conv(ir.NewBinaryExpr(base.Pos, ir.OMUL, ir.NewUnaryExpr(base.Pos, ir.OLEN, a), ir.NewInt(elemsize)), types.Types[types.TUINTPTR]) n.Body.Append(ir.NewAssignStmt(base.Pos, hn, mul)) var fn ir.Node if a.Type().Elem().HasPointers() { // memclrHasPointers(hp, hn) ir.CurFunc.SetWBPos(stmt.Pos()) fn = mkcallstmt("memclrHasPointers", hp, hn) } else { // memclrNoHeapPointers(hp, hn) fn = mkcallstmt("memclrNoHeapPointers", hp, hn) } n.Body.Append(fn) // i = len(a) - 1 v1 = ir.NewAssignStmt(base.Pos, v1, ir.NewBinaryExpr(base.Pos, ir.OSUB, ir.NewUnaryExpr(base.Pos, ir.OLEN, a), ir.NewInt(1))) n.Body.Append(v1) n.Cond = typecheck.Expr(n.Cond) n.Cond = typecheck.DefaultLit(n.Cond, nil) typecheck.Stmts(n.Body) return walkStmt(n) } // addptr returns (*T)(uintptr(p) + n). func addptr(p ir.Node, n int64) ir.Node { t := p.Type() p = ir.NewConvExpr(base.Pos, ir.OCONVNOP, nil, p) p.SetType(types.Types[types.TUINTPTR]) p = ir.NewBinaryExpr(base.Pos, ir.OADD, p, ir.NewInt(n)) p = ir.NewConvExpr(base.Pos, ir.OCONVNOP, nil, p) p.SetType(t) return p }