// Copyright 2013 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package obj import ( "cmd/internal/goobj" "cmd/internal/objabi" "encoding/binary" "fmt" "log" ) // funcpctab writes to dst a pc-value table mapping the code in func to the values // returned by valfunc parameterized by arg. The invocation of valfunc to update the // current value is, for each p, // // sym = valfunc(func, p, 0, arg); // record sym.P as value at p->pc; // sym = valfunc(func, p, 1, arg); // // where func is the function, val is the current value, p is the instruction being // considered, and arg can be used to further parameterize valfunc. func funcpctab(ctxt *Link, func_ *LSym, desc string, valfunc func(*Link, *LSym, int32, *Prog, int32, interface{}) int32, arg interface{}) *LSym { dbg := desc == ctxt.Debugpcln dst := []byte{} sym := &LSym{ Type: objabi.SRODATA, Attribute: AttrContentAddressable | AttrPcdata, } if dbg { ctxt.Logf("funcpctab %s [valfunc=%s]\n", func_.Name, desc) } val := int32(-1) oldval := val fn := func_.Func() if fn.Text == nil { // Return the empty symbol we've built so far. return sym } pc := fn.Text.Pc if dbg { ctxt.Logf("%6x %6d %v\n", uint64(pc), val, fn.Text) } buf := make([]byte, binary.MaxVarintLen32) started := false for p := fn.Text; p != nil; p = p.Link { // Update val. If it's not changing, keep going. val = valfunc(ctxt, func_, val, p, 0, arg) if val == oldval && started { val = valfunc(ctxt, func_, val, p, 1, arg) if dbg { ctxt.Logf("%6x %6s %v\n", uint64(p.Pc), "", p) } continue } // If the pc of the next instruction is the same as the // pc of this instruction, this instruction is not a real // instruction. Keep going, so that we only emit a delta // for a true instruction boundary in the program. if p.Link != nil && p.Link.Pc == p.Pc { val = valfunc(ctxt, func_, val, p, 1, arg) if dbg { ctxt.Logf("%6x %6s %v\n", uint64(p.Pc), "", p) } continue } // The table is a sequence of (value, pc) pairs, where each // pair states that the given value is in effect from the current position // up to the given pc, which becomes the new current position. // To generate the table as we scan over the program instructions, // we emit a "(value" when pc == func->value, and then // each time we observe a change in value we emit ", pc) (value". // When the scan is over, we emit the closing ", pc)". // // The table is delta-encoded. The value deltas are signed and // transmitted in zig-zag form, where a complement bit is placed in bit 0, // and the pc deltas are unsigned. Both kinds of deltas are sent // as variable-length little-endian base-128 integers, // where the 0x80 bit indicates that the integer continues. if dbg { ctxt.Logf("%6x %6d %v\n", uint64(p.Pc), val, p) } if started { pcdelta := (p.Pc - pc) / int64(ctxt.Arch.MinLC) n := binary.PutUvarint(buf, uint64(pcdelta)) dst = append(dst, buf[:n]...) pc = p.Pc } delta := val - oldval n := binary.PutVarint(buf, int64(delta)) dst = append(dst, buf[:n]...) oldval = val started = true val = valfunc(ctxt, func_, val, p, 1, arg) } if started { if dbg { ctxt.Logf("%6x done\n", uint64(fn.Text.Pc+func_.Size)) } v := (func_.Size - pc) / int64(ctxt.Arch.MinLC) if v < 0 { ctxt.Diag("negative pc offset: %v", v) } n := binary.PutUvarint(buf, uint64(v)) dst = append(dst, buf[:n]...) // add terminating varint-encoded 0, which is just 0 dst = append(dst, 0) } if dbg { ctxt.Logf("wrote %d bytes to %p\n", len(dst), dst) for _, p := range dst { ctxt.Logf(" %02x", p) } ctxt.Logf("\n") } sym.Size = int64(len(dst)) sym.P = dst return sym } // pctofileline computes either the file number (arg == 0) // or the line number (arg == 1) to use at p. // Because p.Pos applies to p, phase == 0 (before p) // takes care of the update. func pctofileline(ctxt *Link, sym *LSym, oldval int32, p *Prog, phase int32, arg interface{}) int32 { if p.As == ATEXT || p.As == ANOP || p.Pos.Line() == 0 || phase == 1 { return oldval } f, l := getFileIndexAndLine(ctxt, p.Pos) if arg == nil { return l } pcln := arg.(*Pcln) pcln.UsedFiles[goobj.CUFileIndex(f)] = struct{}{} return int32(f) } // pcinlineState holds the state used to create a function's inlining // tree and the PC-value table that maps PCs to nodes in that tree. type pcinlineState struct { globalToLocal map[int]int localTree InlTree } // addBranch adds a branch from the global inlining tree in ctxt to // the function's local inlining tree, returning the index in the local tree. func (s *pcinlineState) addBranch(ctxt *Link, globalIndex int) int { if globalIndex < 0 { return -1 } localIndex, ok := s.globalToLocal[globalIndex] if ok { return localIndex } // Since tracebacks don't include column information, we could // use one node for multiple calls of the same function on the // same line (e.g., f(x) + f(y)). For now, we use one node for // each inlined call. call := ctxt.InlTree.nodes[globalIndex] call.Parent = s.addBranch(ctxt, call.Parent) localIndex = len(s.localTree.nodes) s.localTree.nodes = append(s.localTree.nodes, call) s.globalToLocal[globalIndex] = localIndex return localIndex } func (s *pcinlineState) setParentPC(ctxt *Link, globalIndex int, pc int32) { localIndex, ok := s.globalToLocal[globalIndex] if !ok { // We know where to unwind to when we need to unwind a body identified // by globalIndex. But there may be no instructions generated by that // body (it's empty, or its instructions were CSEd with other things, etc.). // In that case, we don't need an unwind entry. // TODO: is this really right? Seems to happen a whole lot... return } s.localTree.setParentPC(localIndex, pc) } // pctoinline computes the index into the local inlining tree to use at p. // If p is not the result of inlining, pctoinline returns -1. Because p.Pos // applies to p, phase == 0 (before p) takes care of the update. func (s *pcinlineState) pctoinline(ctxt *Link, sym *LSym, oldval int32, p *Prog, phase int32, arg interface{}) int32 { if phase == 1 { return oldval } posBase := ctxt.PosTable.Pos(p.Pos).Base() if posBase == nil { return -1 } globalIndex := posBase.InliningIndex() if globalIndex < 0 { return -1 } if s.globalToLocal == nil { s.globalToLocal = make(map[int]int) } return int32(s.addBranch(ctxt, globalIndex)) } // pctospadj computes the sp adjustment in effect. // It is oldval plus any adjustment made by p itself. // The adjustment by p takes effect only after p, so we // apply the change during phase == 1. func pctospadj(ctxt *Link, sym *LSym, oldval int32, p *Prog, phase int32, arg interface{}) int32 { if oldval == -1 { // starting oldval = 0 } if phase == 0 { return oldval } if oldval+p.Spadj < -10000 || oldval+p.Spadj > 1100000000 { ctxt.Diag("overflow in spadj: %d + %d = %d", oldval, p.Spadj, oldval+p.Spadj) ctxt.DiagFlush() log.Fatalf("bad code") } return oldval + p.Spadj } // pctopcdata computes the pcdata value in effect at p. // A PCDATA instruction sets the value in effect at future // non-PCDATA instructions. // Since PCDATA instructions have no width in the final code, // it does not matter which phase we use for the update. func pctopcdata(ctxt *Link, sym *LSym, oldval int32, p *Prog, phase int32, arg interface{}) int32 { if phase == 0 || p.As != APCDATA || p.From.Offset != int64(arg.(uint32)) { return oldval } if int64(int32(p.To.Offset)) != p.To.Offset { ctxt.Diag("overflow in PCDATA instruction: %v", p) ctxt.DiagFlush() log.Fatalf("bad code") } return int32(p.To.Offset) } func linkpcln(ctxt *Link, cursym *LSym) { pcln := &cursym.Func().Pcln pcln.UsedFiles = make(map[goobj.CUFileIndex]struct{}) npcdata := 0 nfuncdata := 0 for p := cursym.Func().Text; p != nil; p = p.Link { // Find the highest ID of any used PCDATA table. This ignores PCDATA table // that consist entirely of "-1", since that's the assumed default value. // From.Offset is table ID // To.Offset is data if p.As == APCDATA && p.From.Offset >= int64(npcdata) && p.To.Offset != -1 { // ignore -1 as we start at -1, if we only see -1, nothing changed npcdata = int(p.From.Offset + 1) } // Find the highest ID of any FUNCDATA table. // From.Offset is table ID if p.As == AFUNCDATA && p.From.Offset >= int64(nfuncdata) { nfuncdata = int(p.From.Offset + 1) } } pcln.Pcdata = make([]*LSym, npcdata) pcln.Funcdata = make([]*LSym, nfuncdata) pcln.Pcsp = funcpctab(ctxt, cursym, "pctospadj", pctospadj, nil) pcln.Pcfile = funcpctab(ctxt, cursym, "pctofile", pctofileline, pcln) pcln.Pcline = funcpctab(ctxt, cursym, "pctoline", pctofileline, nil) // Check that all the Progs used as inline markers are still reachable. // See issue #40473. fn := cursym.Func() inlMarkProgs := make(map[*Prog]struct{}, len(fn.InlMarks)) for _, inlMark := range fn.InlMarks { inlMarkProgs[inlMark.p] = struct{}{} } for p := fn.Text; p != nil; p = p.Link { if _, ok := inlMarkProgs[p]; ok { delete(inlMarkProgs, p) } } if len(inlMarkProgs) > 0 { ctxt.Diag("one or more instructions used as inline markers are no longer reachable") } pcinlineState := new(pcinlineState) pcln.Pcinline = funcpctab(ctxt, cursym, "pctoinline", pcinlineState.pctoinline, nil) for _, inlMark := range fn.InlMarks { pcinlineState.setParentPC(ctxt, int(inlMark.id), int32(inlMark.p.Pc)) } pcln.InlTree = pcinlineState.localTree if ctxt.Debugpcln == "pctoinline" && len(pcln.InlTree.nodes) > 0 { ctxt.Logf("-- inlining tree for %s:\n", cursym) dumpInlTree(ctxt, pcln.InlTree) ctxt.Logf("--\n") } // tabulate which pc and func data we have. havepc := make([]uint32, (npcdata+31)/32) havefunc := make([]uint32, (nfuncdata+31)/32) for p := fn.Text; p != nil; p = p.Link { if p.As == AFUNCDATA { if (havefunc[p.From.Offset/32]>>uint64(p.From.Offset%32))&1 != 0 { ctxt.Diag("multiple definitions for FUNCDATA $%d", p.From.Offset) } havefunc[p.From.Offset/32] |= 1 << uint64(p.From.Offset%32) } if p.As == APCDATA && p.To.Offset != -1 { havepc[p.From.Offset/32] |= 1 << uint64(p.From.Offset%32) } } // pcdata. for i := 0; i < npcdata; i++ { if (havepc[i/32]>>uint(i%32))&1 == 0 { // use an empty symbol. pcln.Pcdata[i] = &LSym{ Type: objabi.SRODATA, Attribute: AttrContentAddressable | AttrPcdata, } } else { pcln.Pcdata[i] = funcpctab(ctxt, cursym, "pctopcdata", pctopcdata, interface{}(uint32(i))) } } // funcdata if nfuncdata > 0 { for p := fn.Text; p != nil; p = p.Link { if p.As != AFUNCDATA { continue } i := int(p.From.Offset) if p.To.Type != TYPE_MEM || p.To.Offset != 0 { panic(fmt.Sprintf("bad funcdata: %v", p)) } pcln.Funcdata[i] = p.To.Sym } } } // PCIter iterates over encoded pcdata tables. type PCIter struct { p []byte PC uint32 NextPC uint32 PCScale uint32 Value int32 start bool Done bool } // newPCIter creates a PCIter with a scale factor for the PC step size. func NewPCIter(pcScale uint32) *PCIter { it := new(PCIter) it.PCScale = pcScale return it } // Next advances it to the Next pc. func (it *PCIter) Next() { it.PC = it.NextPC if it.Done { return } if len(it.p) == 0 { it.Done = true return } // Value delta val, n := binary.Varint(it.p) if n <= 0 { log.Fatalf("bad Value varint in pciterNext: read %v", n) } it.p = it.p[n:] if val == 0 && !it.start { it.Done = true return } it.start = false it.Value += int32(val) // pc delta pc, n := binary.Uvarint(it.p) if n <= 0 { log.Fatalf("bad pc varint in pciterNext: read %v", n) } it.p = it.p[n:] it.NextPC = it.PC + uint32(pc)*it.PCScale } // init prepares it to iterate over p, // and advances it to the first pc. func (it *PCIter) Init(p []byte) { it.p = p it.PC = 0 it.NextPC = 0 it.Value = -1 it.start = true it.Done = false it.Next() }