// Copyright 2019 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package riscv64 import ( "cmd/internal/obj/riscv" "cmd/internal/objabi" "cmd/internal/sys" "cmd/link/internal/ld" "cmd/link/internal/loader" "cmd/link/internal/sym" "debug/elf" "fmt" "log" "sort" ) // fakeLabelName matches the RISCV_FAKE_LABEL_NAME from binutils. const fakeLabelName = ".L0 " func gentext(ctxt *ld.Link, ldr *loader.Loader) { } func genSymsLate(ctxt *ld.Link, ldr *loader.Loader) { if ctxt.LinkMode != ld.LinkExternal { return } // Generate a local text symbol for each relocation target, as the // R_RISCV_PCREL_LO12_* relocations generated by elfreloc1 need it. if ctxt.Textp == nil { log.Fatal("genSymsLate called before Textp has been assigned") } var hi20Syms []loader.Sym for _, s := range ctxt.Textp { relocs := ldr.Relocs(s) for ri := 0; ri < relocs.Count(); ri++ { r := relocs.At(ri) if r.Type() != objabi.R_RISCV_PCREL_ITYPE && r.Type() != objabi.R_RISCV_PCREL_STYPE && r.Type() != objabi.R_RISCV_TLS_IE_ITYPE && r.Type() != objabi.R_RISCV_TLS_IE_STYPE { continue } if r.Off() == 0 && ldr.SymType(s) == sym.STEXT { // Use the symbol for the function instead of creating // an overlapping symbol. continue } // TODO(jsing): Consider generating ELF symbols without needing // loader symbols, in order to reduce memory consumption. This // would require changes to genelfsym so that it called // putelfsym and putelfsyment as appropriate. sb := ldr.MakeSymbolBuilder(fakeLabelName) sb.SetType(sym.STEXT) sb.SetValue(ldr.SymValue(s) + int64(r.Off())) sb.SetLocal(true) sb.SetReachable(true) sb.SetVisibilityHidden(true) sb.SetSect(ldr.SymSect(s)) if outer := ldr.OuterSym(s); outer != 0 { ldr.AddInteriorSym(outer, sb.Sym()) } hi20Syms = append(hi20Syms, sb.Sym()) } } ctxt.Textp = append(ctxt.Textp, hi20Syms...) ldr.SortSyms(ctxt.Textp) } func findHI20Symbol(ctxt *ld.Link, ldr *loader.Loader, val int64) loader.Sym { idx := sort.Search(len(ctxt.Textp), func(i int) bool { return ldr.SymValue(ctxt.Textp[i]) >= val }) if idx >= len(ctxt.Textp) { return 0 } if s := ctxt.Textp[idx]; ldr.SymValue(s) == val && ldr.SymType(s) == sym.STEXT { return s } return 0 } func elfreloc1(ctxt *ld.Link, out *ld.OutBuf, ldr *loader.Loader, s loader.Sym, r loader.ExtReloc, ri int, sectoff int64) bool { elfsym := ld.ElfSymForReloc(ctxt, r.Xsym) switch r.Type { case objabi.R_ADDR, objabi.R_DWARFSECREF: out.Write64(uint64(sectoff)) switch r.Size { case 4: out.Write64(uint64(elf.R_RISCV_32) | uint64(elfsym)<<32) case 8: out.Write64(uint64(elf.R_RISCV_64) | uint64(elfsym)<<32) default: ld.Errorf(nil, "unknown size %d for %v relocation", r.Size, r.Type) return false } out.Write64(uint64(r.Xadd)) case objabi.R_RISCV_CALL, objabi.R_RISCV_CALL_TRAMP: out.Write64(uint64(sectoff)) out.Write64(uint64(elf.R_RISCV_JAL) | uint64(elfsym)<<32) out.Write64(uint64(r.Xadd)) case objabi.R_RISCV_PCREL_ITYPE, objabi.R_RISCV_PCREL_STYPE, objabi.R_RISCV_TLS_IE_ITYPE, objabi.R_RISCV_TLS_IE_STYPE: // Find the text symbol for the AUIPC instruction targeted // by this relocation. relocs := ldr.Relocs(s) offset := int64(relocs.At(ri).Off()) hi20Sym := findHI20Symbol(ctxt, ldr, ldr.SymValue(s)+offset) if hi20Sym == 0 { ld.Errorf(nil, "failed to find text symbol for HI20 relocation at %d (%x)", sectoff, ldr.SymValue(s)+offset) return false } hi20ElfSym := ld.ElfSymForReloc(ctxt, hi20Sym) // Emit two relocations - a R_RISCV_PCREL_HI20 relocation and a // corresponding R_RISCV_PCREL_LO12_I or R_RISCV_PCREL_LO12_S relocation. // Note that the LO12 relocation must point to a target that has a valid // HI20 PC-relative relocation text symbol, which in turn points to the // given symbol. For further details see the ELF specification for RISC-V: // // https://github.com/riscv/riscv-elf-psabi-doc/blob/master/riscv-elf.md#pc-relative-symbol-addresses // var hiRel, loRel elf.R_RISCV switch r.Type { case objabi.R_RISCV_PCREL_ITYPE: hiRel, loRel = elf.R_RISCV_PCREL_HI20, elf.R_RISCV_PCREL_LO12_I case objabi.R_RISCV_PCREL_STYPE: hiRel, loRel = elf.R_RISCV_PCREL_HI20, elf.R_RISCV_PCREL_LO12_S case objabi.R_RISCV_TLS_IE_ITYPE: hiRel, loRel = elf.R_RISCV_TLS_GOT_HI20, elf.R_RISCV_PCREL_LO12_I case objabi.R_RISCV_TLS_IE_STYPE: hiRel, loRel = elf.R_RISCV_TLS_GOT_HI20, elf.R_RISCV_PCREL_LO12_S } out.Write64(uint64(sectoff)) out.Write64(uint64(hiRel) | uint64(elfsym)<<32) out.Write64(uint64(r.Xadd)) out.Write64(uint64(sectoff + 4)) out.Write64(uint64(loRel) | uint64(hi20ElfSym)<<32) out.Write64(uint64(0)) default: return false } return true } func elfsetupplt(ctxt *ld.Link, plt, gotplt *loader.SymbolBuilder, dynamic loader.Sym) { log.Fatalf("elfsetupplt") } func machoreloc1(*sys.Arch, *ld.OutBuf, *loader.Loader, loader.Sym, loader.ExtReloc, int64) bool { log.Fatalf("machoreloc1 not implemented") return false } func archreloc(target *ld.Target, ldr *loader.Loader, syms *ld.ArchSyms, r loader.Reloc, s loader.Sym, val int64) (o int64, nExtReloc int, ok bool) { rs := r.Sym() pc := ldr.SymValue(s) + int64(r.Off()) // If the call points to a trampoline, see if we can reach the symbol // directly. This situation can occur when the relocation symbol is // not assigned an address until after the trampolines are generated. if r.Type() == objabi.R_RISCV_CALL_TRAMP { relocs := ldr.Relocs(rs) if relocs.Count() != 1 { ldr.Errorf(s, "trampoline %v has %d relocations", ldr.SymName(rs), relocs.Count()) } tr := relocs.At(0) if tr.Type() != objabi.R_RISCV_PCREL_ITYPE { ldr.Errorf(s, "trampoline %v has unexpected relocation %v", ldr.SymName(rs), tr.Type()) } trs := tr.Sym() if ldr.SymValue(trs) != 0 && ldr.SymType(trs) != sym.SDYNIMPORT && ldr.SymType(trs) != sym.SUNDEFEXT { trsOff := ldr.SymValue(trs) + tr.Add() - pc if trsOff >= -(1<<20) && trsOff < (1<<20) { r.SetType(objabi.R_RISCV_CALL) r.SetSym(trs) r.SetAdd(tr.Add()) rs = trs } } } if target.IsExternal() { switch r.Type() { case objabi.R_RISCV_CALL, objabi.R_RISCV_CALL_TRAMP: return val, 1, true case objabi.R_RISCV_PCREL_ITYPE, objabi.R_RISCV_PCREL_STYPE, objabi.R_RISCV_TLS_IE_ITYPE, objabi.R_RISCV_TLS_IE_STYPE: return val, 2, true } return val, 0, false } off := ldr.SymValue(rs) + r.Add() - pc switch r.Type() { case objabi.R_RISCV_CALL, objabi.R_RISCV_CALL_TRAMP: // Generate instruction immediates. imm, err := riscv.EncodeJImmediate(off) if err != nil { ldr.Errorf(s, "cannot encode R_RISCV_CALL relocation offset for %s: %v", ldr.SymName(rs), err) } immMask := int64(riscv.JTypeImmMask) val = (val &^ immMask) | int64(imm) return val, 0, true case objabi.R_RISCV_TLS_IE_ITYPE, objabi.R_RISCV_TLS_IE_STYPE: // TLS relocations are not currently handled for internal linking. // For now, TLS is only used when cgo is in use and cgo currently // requires external linking. However, we need to accept these // relocations so that code containing TLS variables will link, // even when they're not being used. For now, replace these // instructions with EBREAK to detect accidental use. const ebreakIns = 0x00100073 return ebreakIns<<32 | ebreakIns, 0, true case objabi.R_RISCV_PCREL_ITYPE, objabi.R_RISCV_PCREL_STYPE: // Generate AUIPC and second instruction immediates. low, high, err := riscv.Split32BitImmediate(off) if err != nil { ldr.Errorf(s, "R_RISCV_PCREL_ relocation does not fit in 32 bits: %d", off) } auipcImm, err := riscv.EncodeUImmediate(high) if err != nil { ldr.Errorf(s, "cannot encode R_RISCV_PCREL_ AUIPC relocation offset for %s: %v", ldr.SymName(rs), err) } var secondImm, secondImmMask int64 switch r.Type() { case objabi.R_RISCV_PCREL_ITYPE: secondImmMask = riscv.ITypeImmMask secondImm, err = riscv.EncodeIImmediate(low) if err != nil { ldr.Errorf(s, "cannot encode R_RISCV_PCREL_ITYPE I-type instruction relocation offset for %s: %v", ldr.SymName(rs), err) } case objabi.R_RISCV_PCREL_STYPE: secondImmMask = riscv.STypeImmMask secondImm, err = riscv.EncodeSImmediate(low) if err != nil { ldr.Errorf(s, "cannot encode R_RISCV_PCREL_STYPE S-type instruction relocation offset for %s: %v", ldr.SymName(rs), err) } default: panic(fmt.Sprintf("Unknown relocation type: %v", r.Type())) } auipc := int64(uint32(val)) second := int64(uint32(val >> 32)) auipc = (auipc &^ riscv.UTypeImmMask) | int64(uint32(auipcImm)) second = (second &^ secondImmMask) | int64(uint32(secondImm)) return second<<32 | auipc, 0, true } return val, 0, false } func archrelocvariant(*ld.Target, *loader.Loader, loader.Reloc, sym.RelocVariant, loader.Sym, int64, []byte) int64 { log.Fatalf("archrelocvariant") return -1 } func extreloc(target *ld.Target, ldr *loader.Loader, r loader.Reloc, s loader.Sym) (loader.ExtReloc, bool) { switch r.Type() { case objabi.R_RISCV_CALL, objabi.R_RISCV_CALL_TRAMP: return ld.ExtrelocSimple(ldr, r), true case objabi.R_RISCV_PCREL_ITYPE, objabi.R_RISCV_PCREL_STYPE, objabi.R_RISCV_TLS_IE_ITYPE, objabi.R_RISCV_TLS_IE_STYPE: return ld.ExtrelocViaOuterSym(ldr, r, s), true } return loader.ExtReloc{}, false } func trampoline(ctxt *ld.Link, ldr *loader.Loader, ri int, rs, s loader.Sym) { relocs := ldr.Relocs(s) r := relocs.At(ri) switch r.Type() { case objabi.R_RISCV_CALL: pc := ldr.SymValue(s) + int64(r.Off()) off := ldr.SymValue(rs) + r.Add() - pc // Relocation symbol has an address and is directly reachable, // therefore there is no need for a trampoline. if ldr.SymValue(rs) != 0 && off >= -(1<<20) && off < (1<<20) && (*ld.FlagDebugTramp <= 1 || ldr.SymPkg(s) == ldr.SymPkg(rs)) { break } // Relocation symbol is too far for a direct call or has not // yet been given an address. See if an existing trampoline is // reachable and if so, reuse it. Otherwise we need to create // a new trampoline. var tramp loader.Sym for i := 0; ; i++ { oName := ldr.SymName(rs) name := fmt.Sprintf("%s-tramp%d", oName, i) if r.Add() != 0 { name = fmt.Sprintf("%s%+x-tramp%d", oName, r.Add(), i) } tramp = ldr.LookupOrCreateSym(name, int(ldr.SymVersion(rs))) ldr.SetAttrReachable(tramp, true) if ldr.SymType(tramp) == sym.SDYNIMPORT { // Do not reuse trampoline defined in other module. continue } if oName == "runtime.deferreturn" { ldr.SetIsDeferReturnTramp(tramp, true) } if ldr.SymValue(tramp) == 0 { // Either trampoline does not exist or we found one // that does not have an address assigned and will be // laid down immediately after the current function. break } trampOff := ldr.SymValue(tramp) - (ldr.SymValue(s) + int64(r.Off())) if trampOff >= -(1<<20) && trampOff < (1<<20) { // An existing trampoline that is reachable. break } } if ldr.SymType(tramp) == 0 { trampb := ldr.MakeSymbolUpdater(tramp) ctxt.AddTramp(trampb) genCallTramp(ctxt.Arch, ctxt.LinkMode, ldr, trampb, rs, int64(r.Add())) } sb := ldr.MakeSymbolUpdater(s) if ldr.SymValue(rs) == 0 { // In this case the target symbol has not yet been assigned an // address, so we have to assume a trampoline is required. Mark // this as a call via a trampoline so that we can potentially // switch to a direct call during relocation. sb.SetRelocType(ri, objabi.R_RISCV_CALL_TRAMP) } relocs := sb.Relocs() r := relocs.At(ri) r.SetSym(tramp) r.SetAdd(0) default: ctxt.Errorf(s, "trampoline called with non-jump reloc: %d (%s)", r.Type(), sym.RelocName(ctxt.Arch, r.Type())) } } func genCallTramp(arch *sys.Arch, linkmode ld.LinkMode, ldr *loader.Loader, tramp *loader.SymbolBuilder, target loader.Sym, offset int64) { tramp.AddUint32(arch, 0x00000f97) // AUIPC $0, X31 tramp.AddUint32(arch, 0x000f8067) // JALR X0, (X31) r, _ := tramp.AddRel(objabi.R_RISCV_PCREL_ITYPE) r.SetSiz(8) r.SetSym(target) r.SetAdd(offset) }