// Copyright 2013 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package elliptic import ( "crypto/elliptic/internal/nistec" "crypto/rand" "math/big" ) // p224Curve is a Curve implementation based on nistec.P224Point. // // It's a wrapper that exposes the big.Int-based Curve interface and encodes the // legacy idiosyncrasies it requires, such as invalid and infinity point // handling. // // To interact with the nistec package, points are encoded into and decoded from // properly formatted byte slices. All big.Int use is limited to this package. // Encoding and decoding is 1/1000th of the runtime of a scalar multiplication, // so the overhead is acceptable. type p224Curve struct { params *CurveParams } var p224 p224Curve var _ Curve = p224 func initP224() { p224.params = &CurveParams{ Name: "P-224", BitSize: 224, // FIPS 186-4, section D.1.2.2 P: bigFromDecimal("26959946667150639794667015087019630673557916260026308143510066298881"), N: bigFromDecimal("26959946667150639794667015087019625940457807714424391721682722368061"), B: bigFromHex("b4050a850c04b3abf54132565044b0b7d7bfd8ba270b39432355ffb4"), Gx: bigFromHex("b70e0cbd6bb4bf7f321390b94a03c1d356c21122343280d6115c1d21"), Gy: bigFromHex("bd376388b5f723fb4c22dfe6cd4375a05a07476444d5819985007e34"), } } func (curve p224Curve) Params() *CurveParams { return curve.params } func (curve p224Curve) IsOnCurve(x, y *big.Int) bool { // IsOnCurve is documented to reject (0, 0), the conventional point at // infinity, which however is accepted by p224PointFromAffine. if x.Sign() == 0 && y.Sign() == 0 { return false } _, ok := p224PointFromAffine(x, y) return ok } func p224PointFromAffine(x, y *big.Int) (p *nistec.P224Point, ok bool) { // (0, 0) is by convention the point at infinity, which can't be represented // in affine coordinates. Marshal incorrectly encodes it as an uncompressed // point, which SetBytes would correctly reject. See Issue 37294. if x.Sign() == 0 && y.Sign() == 0 { return nistec.NewP224Point(), true } if x.Sign() < 0 || y.Sign() < 0 { return nil, false } if x.BitLen() > 224 || y.BitLen() > 224 { return nil, false } p, err := nistec.NewP224Point().SetBytes(Marshal(P224(), x, y)) if err != nil { return nil, false } return p, true } func p224PointToAffine(p *nistec.P224Point) (x, y *big.Int) { out := p.Bytes() if len(out) == 1 && out[0] == 0 { // This is the correct encoding of the point at infinity, which // Unmarshal does not support. See Issue 37294. return new(big.Int), new(big.Int) } x, y = Unmarshal(P224(), out) if x == nil { panic("crypto/elliptic: internal error: Unmarshal rejected a valid point encoding") } return x, y } // p224RandomPoint returns a random point on the curve. It's used when Add, // Double, or ScalarMult are fed a point not on the curve, which is undefined // behavior. Originally, we used to do the math on it anyway (which allows // invalid curve attacks) and relied on the caller and Unmarshal to avoid this // happening in the first place. Now, we just can't construct a nistec.P224Point // for an invalid pair of coordinates, because that API is safer. If we panic, // we risk introducing a DoS. If we return nil, we risk a panic. If we return // the input, ecdsa.Verify might fail open. The safest course seems to be to // return a valid, random point, which hopefully won't help the attacker. func p224RandomPoint() (x, y *big.Int) { _, x, y, err := GenerateKey(P224(), rand.Reader) if err != nil { panic("crypto/elliptic: failed to generate random point") } return x, y } func (p224Curve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) { p1, ok := p224PointFromAffine(x1, y1) if !ok { return p224RandomPoint() } p2, ok := p224PointFromAffine(x2, y2) if !ok { return p224RandomPoint() } return p224PointToAffine(p1.Add(p1, p2)) } func (p224Curve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) { p, ok := p224PointFromAffine(x1, y1) if !ok { return p224RandomPoint() } return p224PointToAffine(p.Double(p)) } func (p224Curve) ScalarMult(Bx, By *big.Int, scalar []byte) (*big.Int, *big.Int) { p, ok := p224PointFromAffine(Bx, By) if !ok { return p224RandomPoint() } return p224PointToAffine(p.ScalarMult(p, scalar)) } func (p224Curve) ScalarBaseMult(scalar []byte) (*big.Int, *big.Int) { p := nistec.NewP224Generator() return p224PointToAffine(p.ScalarMult(p, scalar)) }