// Copyright 2015 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // This file contains the Go wrapper for the constant-time, 64-bit assembly // implementation of P256. The optimizations performed here are described in // detail in: // S.Gueron and V.Krasnov, "Fast prime field elliptic-curve cryptography with // 256-bit primes" // https://link.springer.com/article/10.1007%2Fs13389-014-0090-x // https://eprint.iacr.org/2013/816.pdf //go:build amd64 || arm64 package elliptic import ( _ "embed" "math/big" ) //go:generate go run -tags=tablegen gen_p256_table.go //go:embed p256_asm_table.bin var p256Precomputed string type ( p256Curve struct { *CurveParams } p256Point struct { xyz [12]uint64 } ) var p256 p256Curve func initP256() { // See FIPS 186-3, section D.2.3 p256.CurveParams = &CurveParams{Name: "P-256"} p256.P, _ = new(big.Int).SetString("115792089210356248762697446949407573530086143415290314195533631308867097853951", 10) p256.N, _ = new(big.Int).SetString("115792089210356248762697446949407573529996955224135760342422259061068512044369", 10) p256.B, _ = new(big.Int).SetString("5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b", 16) p256.Gx, _ = new(big.Int).SetString("6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296", 16) p256.Gy, _ = new(big.Int).SetString("4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5", 16) p256.BitSize = 256 } func (curve p256Curve) Params() *CurveParams { return curve.CurveParams } // Functions implemented in p256_asm_*64.s // Montgomery multiplication modulo P256 //go:noescape func p256Mul(res, in1, in2 []uint64) // Montgomery square modulo P256, repeated n times (n >= 1) //go:noescape func p256Sqr(res, in []uint64, n int) // Montgomery multiplication by 1 //go:noescape func p256FromMont(res, in []uint64) // iff cond == 1 val <- -val //go:noescape func p256NegCond(val []uint64, cond int) // if cond == 0 res <- b; else res <- a //go:noescape func p256MovCond(res, a, b []uint64, cond int) // Endianness swap //go:noescape func p256BigToLittle(res []uint64, in []byte) //go:noescape func p256LittleToBig(res []byte, in []uint64) // Constant time table access //go:noescape func p256Select(point, table []uint64, idx int) //go:noescape func p256SelectBase(point *[12]uint64, table string, idx int) // Montgomery multiplication modulo Ord(G) //go:noescape func p256OrdMul(res, in1, in2 []uint64) // Montgomery square modulo Ord(G), repeated n times //go:noescape func p256OrdSqr(res, in []uint64, n int) // Point add with in2 being affine point // If sign == 1 -> in2 = -in2 // If sel == 0 -> res = in1 // if zero == 0 -> res = in2 //go:noescape func p256PointAddAffineAsm(res, in1, in2 []uint64, sign, sel, zero int) // Point add. Returns one if the two input points were equal and zero // otherwise. (Note that, due to the way that the equations work out, some // representations of ∞ are considered equal to everything by this function.) //go:noescape func p256PointAddAsm(res, in1, in2 []uint64) int // Point double //go:noescape func p256PointDoubleAsm(res, in []uint64) func (curve p256Curve) Inverse(k *big.Int) *big.Int { if k.Sign() < 0 { // This should never happen. k = new(big.Int).Neg(k) } if k.Cmp(p256.N) >= 0 { // This should never happen. k = new(big.Int).Mod(k, p256.N) } // table will store precomputed powers of x. var table [4 * 9]uint64 var ( _1 = table[4*0 : 4*1] _11 = table[4*1 : 4*2] _101 = table[4*2 : 4*3] _111 = table[4*3 : 4*4] _1111 = table[4*4 : 4*5] _10101 = table[4*5 : 4*6] _101111 = table[4*6 : 4*7] x = table[4*7 : 4*8] t = table[4*8 : 4*9] ) fromBig(x[:], k) // This code operates in the Montgomery domain where R = 2^256 mod n // and n is the order of the scalar field. (See initP256 for the // value.) Elements in the Montgomery domain take the form a×R and // multiplication of x and y in the calculates (x × y × R^-1) mod n. RR // is R×R mod n thus the Montgomery multiplication x and RR gives x×R, // i.e. converts x into the Montgomery domain. // Window values borrowed from https://briansmith.org/ecc-inversion-addition-chains-01#p256_scalar_inversion RR := []uint64{0x83244c95be79eea2, 0x4699799c49bd6fa6, 0x2845b2392b6bec59, 0x66e12d94f3d95620} p256OrdMul(_1, x, RR) // _1 p256OrdSqr(x, _1, 1) // _10 p256OrdMul(_11, x, _1) // _11 p256OrdMul(_101, x, _11) // _101 p256OrdMul(_111, x, _101) // _111 p256OrdSqr(x, _101, 1) // _1010 p256OrdMul(_1111, _101, x) // _1111 p256OrdSqr(t, x, 1) // _10100 p256OrdMul(_10101, t, _1) // _10101 p256OrdSqr(x, _10101, 1) // _101010 p256OrdMul(_101111, _101, x) // _101111 p256OrdMul(x, _10101, x) // _111111 = x6 p256OrdSqr(t, x, 2) // _11111100 p256OrdMul(t, t, _11) // _11111111 = x8 p256OrdSqr(x, t, 8) // _ff00 p256OrdMul(x, x, t) // _ffff = x16 p256OrdSqr(t, x, 16) // _ffff0000 p256OrdMul(t, t, x) // _ffffffff = x32 p256OrdSqr(x, t, 64) p256OrdMul(x, x, t) p256OrdSqr(x, x, 32) p256OrdMul(x, x, t) sqrs := []uint8{ 6, 5, 4, 5, 5, 4, 3, 3, 5, 9, 6, 2, 5, 6, 5, 4, 5, 5, 3, 10, 2, 5, 5, 3, 7, 6} muls := [][]uint64{ _101111, _111, _11, _1111, _10101, _101, _101, _101, _111, _101111, _1111, _1, _1, _1111, _111, _111, _111, _101, _11, _101111, _11, _11, _11, _1, _10101, _1111} for i, s := range sqrs { p256OrdSqr(x, x, int(s)) p256OrdMul(x, x, muls[i]) } // Multiplying by one in the Montgomery domain converts a Montgomery // value out of the domain. one := []uint64{1, 0, 0, 0} p256OrdMul(x, x, one) xOut := make([]byte, 32) p256LittleToBig(xOut, x) return new(big.Int).SetBytes(xOut) } // fromBig converts a *big.Int into a format used by this code. func fromBig(out []uint64, big *big.Int) { for i := range out { out[i] = 0 } for i, v := range big.Bits() { out[i] = uint64(v) } } // p256GetScalar endian-swaps the big-endian scalar value from in and writes it // to out. If the scalar is equal or greater than the order of the group, it's // reduced modulo that order. func p256GetScalar(out []uint64, in []byte) { n := new(big.Int).SetBytes(in) if n.Cmp(p256.N) >= 0 { n.Mod(n, p256.N) } fromBig(out, n) } // p256Mul operates in a Montgomery domain with R = 2^256 mod p, where p is the // underlying field of the curve. (See initP256 for the value.) Thus rr here is // R×R mod p. See comment in Inverse about how this is used. var rr = []uint64{0x0000000000000003, 0xfffffffbffffffff, 0xfffffffffffffffe, 0x00000004fffffffd} func maybeReduceModP(in *big.Int) *big.Int { if in.Cmp(p256.P) < 0 { return in } return new(big.Int).Mod(in, p256.P) } func (curve p256Curve) CombinedMult(bigX, bigY *big.Int, baseScalar, scalar []byte) (x, y *big.Int) { scalarReversed := make([]uint64, 4) var r1, r2 p256Point p256GetScalar(scalarReversed, baseScalar) r1IsInfinity := scalarIsZero(scalarReversed) r1.p256BaseMult(scalarReversed) p256GetScalar(scalarReversed, scalar) r2IsInfinity := scalarIsZero(scalarReversed) fromBig(r2.xyz[0:4], maybeReduceModP(bigX)) fromBig(r2.xyz[4:8], maybeReduceModP(bigY)) p256Mul(r2.xyz[0:4], r2.xyz[0:4], rr[:]) p256Mul(r2.xyz[4:8], r2.xyz[4:8], rr[:]) // This sets r2's Z value to 1, in the Montgomery domain. r2.xyz[8] = 0x0000000000000001 r2.xyz[9] = 0xffffffff00000000 r2.xyz[10] = 0xffffffffffffffff r2.xyz[11] = 0x00000000fffffffe r2.p256ScalarMult(scalarReversed) var sum, double p256Point pointsEqual := p256PointAddAsm(sum.xyz[:], r1.xyz[:], r2.xyz[:]) p256PointDoubleAsm(double.xyz[:], r1.xyz[:]) sum.CopyConditional(&double, pointsEqual) sum.CopyConditional(&r1, r2IsInfinity) sum.CopyConditional(&r2, r1IsInfinity) return sum.p256PointToAffine() } func (curve p256Curve) ScalarBaseMult(scalar []byte) (x, y *big.Int) { scalarReversed := make([]uint64, 4) p256GetScalar(scalarReversed, scalar) var r p256Point r.p256BaseMult(scalarReversed) return r.p256PointToAffine() } func (curve p256Curve) ScalarMult(bigX, bigY *big.Int, scalar []byte) (x, y *big.Int) { scalarReversed := make([]uint64, 4) p256GetScalar(scalarReversed, scalar) var r p256Point fromBig(r.xyz[0:4], maybeReduceModP(bigX)) fromBig(r.xyz[4:8], maybeReduceModP(bigY)) p256Mul(r.xyz[0:4], r.xyz[0:4], rr[:]) p256Mul(r.xyz[4:8], r.xyz[4:8], rr[:]) // This sets r2's Z value to 1, in the Montgomery domain. r.xyz[8] = 0x0000000000000001 r.xyz[9] = 0xffffffff00000000 r.xyz[10] = 0xffffffffffffffff r.xyz[11] = 0x00000000fffffffe r.p256ScalarMult(scalarReversed) return r.p256PointToAffine() } // uint64IsZero returns 1 if x is zero and zero otherwise. func uint64IsZero(x uint64) int { x = ^x x &= x >> 32 x &= x >> 16 x &= x >> 8 x &= x >> 4 x &= x >> 2 x &= x >> 1 return int(x & 1) } // scalarIsZero returns 1 if scalar represents the zero value, and zero // otherwise. func scalarIsZero(scalar []uint64) int { return uint64IsZero(scalar[0] | scalar[1] | scalar[2] | scalar[3]) } func (p *p256Point) p256PointToAffine() (x, y *big.Int) { zInv := make([]uint64, 4) zInvSq := make([]uint64, 4) p256Inverse(zInv, p.xyz[8:12]) p256Sqr(zInvSq, zInv, 1) p256Mul(zInv, zInv, zInvSq) p256Mul(zInvSq, p.xyz[0:4], zInvSq) p256Mul(zInv, p.xyz[4:8], zInv) p256FromMont(zInvSq, zInvSq) p256FromMont(zInv, zInv) xOut := make([]byte, 32) yOut := make([]byte, 32) p256LittleToBig(xOut, zInvSq) p256LittleToBig(yOut, zInv) return new(big.Int).SetBytes(xOut), new(big.Int).SetBytes(yOut) } // CopyConditional copies overwrites p with src if v == 1, and leaves p // unchanged if v == 0. func (p *p256Point) CopyConditional(src *p256Point, v int) { pMask := uint64(v) - 1 srcMask := ^pMask for i, n := range p.xyz { p.xyz[i] = (n & pMask) | (src.xyz[i] & srcMask) } } // p256Inverse sets out to in^-1 mod p. func p256Inverse(out, in []uint64) { var stack [6 * 4]uint64 p2 := stack[4*0 : 4*0+4] p4 := stack[4*1 : 4*1+4] p8 := stack[4*2 : 4*2+4] p16 := stack[4*3 : 4*3+4] p32 := stack[4*4 : 4*4+4] p256Sqr(out, in, 1) p256Mul(p2, out, in) // 3*p p256Sqr(out, p2, 2) p256Mul(p4, out, p2) // f*p p256Sqr(out, p4, 4) p256Mul(p8, out, p4) // ff*p p256Sqr(out, p8, 8) p256Mul(p16, out, p8) // ffff*p p256Sqr(out, p16, 16) p256Mul(p32, out, p16) // ffffffff*p p256Sqr(out, p32, 32) p256Mul(out, out, in) p256Sqr(out, out, 128) p256Mul(out, out, p32) p256Sqr(out, out, 32) p256Mul(out, out, p32) p256Sqr(out, out, 16) p256Mul(out, out, p16) p256Sqr(out, out, 8) p256Mul(out, out, p8) p256Sqr(out, out, 4) p256Mul(out, out, p4) p256Sqr(out, out, 2) p256Mul(out, out, p2) p256Sqr(out, out, 2) p256Mul(out, out, in) } func (p *p256Point) p256StorePoint(r *[16 * 4 * 3]uint64, index int) { copy(r[index*12:], p.xyz[:]) } func boothW5(in uint) (int, int) { var s uint = ^((in >> 5) - 1) var d uint = (1 << 6) - in - 1 d = (d & s) | (in & (^s)) d = (d >> 1) + (d & 1) return int(d), int(s & 1) } func boothW6(in uint) (int, int) { var s uint = ^((in >> 6) - 1) var d uint = (1 << 7) - in - 1 d = (d & s) | (in & (^s)) d = (d >> 1) + (d & 1) return int(d), int(s & 1) } func (p *p256Point) p256BaseMult(scalar []uint64) { wvalue := (scalar[0] << 1) & 0x7f sel, sign := boothW6(uint(wvalue)) p256SelectBase(&p.xyz, p256Precomputed, sel) p256NegCond(p.xyz[4:8], sign) // (This is one, in the Montgomery domain.) p.xyz[8] = 0x0000000000000001 p.xyz[9] = 0xffffffff00000000 p.xyz[10] = 0xffffffffffffffff p.xyz[11] = 0x00000000fffffffe var t0 p256Point // (This is one, in the Montgomery domain.) t0.xyz[8] = 0x0000000000000001 t0.xyz[9] = 0xffffffff00000000 t0.xyz[10] = 0xffffffffffffffff t0.xyz[11] = 0x00000000fffffffe index := uint(5) zero := sel for i := 1; i < 43; i++ { if index < 192 { wvalue = ((scalar[index/64] >> (index % 64)) + (scalar[index/64+1] << (64 - (index % 64)))) & 0x7f } else { wvalue = (scalar[index/64] >> (index % 64)) & 0x7f } index += 6 sel, sign = boothW6(uint(wvalue)) p256SelectBase(&t0.xyz, p256Precomputed[i*32*8*8:], sel) p256PointAddAffineAsm(p.xyz[0:12], p.xyz[0:12], t0.xyz[0:8], sign, sel, zero) zero |= sel } } func (p *p256Point) p256ScalarMult(scalar []uint64) { // precomp is a table of precomputed points that stores powers of p // from p^1 to p^16. var precomp [16 * 4 * 3]uint64 var t0, t1, t2, t3 p256Point // Prepare the table p.p256StorePoint(&precomp, 0) // 1 p256PointDoubleAsm(t0.xyz[:], p.xyz[:]) p256PointDoubleAsm(t1.xyz[:], t0.xyz[:]) p256PointDoubleAsm(t2.xyz[:], t1.xyz[:]) p256PointDoubleAsm(t3.xyz[:], t2.xyz[:]) t0.p256StorePoint(&precomp, 1) // 2 t1.p256StorePoint(&precomp, 3) // 4 t2.p256StorePoint(&precomp, 7) // 8 t3.p256StorePoint(&precomp, 15) // 16 p256PointAddAsm(t0.xyz[:], t0.xyz[:], p.xyz[:]) p256PointAddAsm(t1.xyz[:], t1.xyz[:], p.xyz[:]) p256PointAddAsm(t2.xyz[:], t2.xyz[:], p.xyz[:]) t0.p256StorePoint(&precomp, 2) // 3 t1.p256StorePoint(&precomp, 4) // 5 t2.p256StorePoint(&precomp, 8) // 9 p256PointDoubleAsm(t0.xyz[:], t0.xyz[:]) p256PointDoubleAsm(t1.xyz[:], t1.xyz[:]) t0.p256StorePoint(&precomp, 5) // 6 t1.p256StorePoint(&precomp, 9) // 10 p256PointAddAsm(t2.xyz[:], t0.xyz[:], p.xyz[:]) p256PointAddAsm(t1.xyz[:], t1.xyz[:], p.xyz[:]) t2.p256StorePoint(&precomp, 6) // 7 t1.p256StorePoint(&precomp, 10) // 11 p256PointDoubleAsm(t0.xyz[:], t0.xyz[:]) p256PointDoubleAsm(t2.xyz[:], t2.xyz[:]) t0.p256StorePoint(&precomp, 11) // 12 t2.p256StorePoint(&precomp, 13) // 14 p256PointAddAsm(t0.xyz[:], t0.xyz[:], p.xyz[:]) p256PointAddAsm(t2.xyz[:], t2.xyz[:], p.xyz[:]) t0.p256StorePoint(&precomp, 12) // 13 t2.p256StorePoint(&precomp, 14) // 15 // Start scanning the window from top bit index := uint(254) var sel, sign int wvalue := (scalar[index/64] >> (index % 64)) & 0x3f sel, _ = boothW5(uint(wvalue)) p256Select(p.xyz[0:12], precomp[0:], sel) zero := sel for index > 4 { index -= 5 p256PointDoubleAsm(p.xyz[:], p.xyz[:]) p256PointDoubleAsm(p.xyz[:], p.xyz[:]) p256PointDoubleAsm(p.xyz[:], p.xyz[:]) p256PointDoubleAsm(p.xyz[:], p.xyz[:]) p256PointDoubleAsm(p.xyz[:], p.xyz[:]) if index < 192 { wvalue = ((scalar[index/64] >> (index % 64)) + (scalar[index/64+1] << (64 - (index % 64)))) & 0x3f } else { wvalue = (scalar[index/64] >> (index % 64)) & 0x3f } sel, sign = boothW5(uint(wvalue)) p256Select(t0.xyz[0:], precomp[0:], sel) p256NegCond(t0.xyz[4:8], sign) p256PointAddAsm(t1.xyz[:], p.xyz[:], t0.xyz[:]) p256MovCond(t1.xyz[0:12], t1.xyz[0:12], p.xyz[0:12], sel) p256MovCond(p.xyz[0:12], t1.xyz[0:12], t0.xyz[0:12], zero) zero |= sel } p256PointDoubleAsm(p.xyz[:], p.xyz[:]) p256PointDoubleAsm(p.xyz[:], p.xyz[:]) p256PointDoubleAsm(p.xyz[:], p.xyz[:]) p256PointDoubleAsm(p.xyz[:], p.xyz[:]) p256PointDoubleAsm(p.xyz[:], p.xyz[:]) wvalue = (scalar[0] << 1) & 0x3f sel, sign = boothW5(uint(wvalue)) p256Select(t0.xyz[0:], precomp[0:], sel) p256NegCond(t0.xyz[4:8], sign) p256PointAddAsm(t1.xyz[:], p.xyz[:], t0.xyz[:]) p256MovCond(t1.xyz[0:12], t1.xyz[0:12], p.xyz[0:12], sel) p256MovCond(p.xyz[0:12], t1.xyz[0:12], t0.xyz[0:12], zero) }