// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. /* * Line tables */ package gosym import ( "bytes" "encoding/binary" "sort" "sync" ) // version of the pclntab type version int const ( verUnknown version = iota ver11 ver12 ver116 ver118 ) // A LineTable is a data structure mapping program counters to line numbers. // // In Go 1.1 and earlier, each function (represented by a Func) had its own LineTable, // and the line number corresponded to a numbering of all source lines in the // program, across all files. That absolute line number would then have to be // converted separately to a file name and line number within the file. // // In Go 1.2, the format of the data changed so that there is a single LineTable // for the entire program, shared by all Funcs, and there are no absolute line // numbers, just line numbers within specific files. // // For the most part, LineTable's methods should be treated as an internal // detail of the package; callers should use the methods on Table instead. type LineTable struct { Data []byte PC uint64 Line int // This mutex is used to keep parsing of pclntab synchronous. mu sync.Mutex // Contains the version of the pclntab section. version version // Go 1.2/1.16/1.18 state binary binary.ByteOrder quantum uint32 ptrsize uint32 textStart uint64 // address of runtime.text symbol (1.18+) funcnametab []byte cutab []byte funcdata []byte functab []byte nfunctab uint32 filetab []byte pctab []byte // points to the pctables. nfiletab uint32 funcNames map[uint32]string // cache the function names strings map[uint32]string // interned substrings of Data, keyed by offset // fileMap varies depending on the version of the object file. // For ver12, it maps the name to the index in the file table. // For ver116, it maps the name to the offset in filetab. fileMap map[string]uint32 } // NOTE(rsc): This is wrong for GOARCH=arm, which uses a quantum of 4, // but we have no idea whether we're using arm or not. This only // matters in the old (pre-Go 1.2) symbol table format, so it's not worth // fixing. const oldQuantum = 1 func (t *LineTable) parse(targetPC uint64, targetLine int) (b []byte, pc uint64, line int) { // The PC/line table can be thought of as a sequence of // * // batches. Each update batch results in a (pc, line) pair, // where line applies to every PC from pc up to but not // including the pc of the next pair. // // Here we process each update individually, which simplifies // the code, but makes the corner cases more confusing. b, pc, line = t.Data, t.PC, t.Line for pc <= targetPC && line != targetLine && len(b) > 0 { code := b[0] b = b[1:] switch { case code == 0: if len(b) < 4 { b = b[0:0] break } val := binary.BigEndian.Uint32(b) b = b[4:] line += int(val) case code <= 64: line += int(code) case code <= 128: line -= int(code - 64) default: pc += oldQuantum * uint64(code-128) continue } pc += oldQuantum } return b, pc, line } func (t *LineTable) slice(pc uint64) *LineTable { data, pc, line := t.parse(pc, -1) return &LineTable{Data: data, PC: pc, Line: line} } // PCToLine returns the line number for the given program counter. // // Deprecated: Use Table's PCToLine method instead. func (t *LineTable) PCToLine(pc uint64) int { if t.isGo12() { return t.go12PCToLine(pc) } _, _, line := t.parse(pc, -1) return line } // LineToPC returns the program counter for the given line number, // considering only program counters before maxpc. // // Deprecated: Use Table's LineToPC method instead. func (t *LineTable) LineToPC(line int, maxpc uint64) uint64 { if t.isGo12() { return 0 } _, pc, line1 := t.parse(maxpc, line) if line1 != line { return 0 } // Subtract quantum from PC to account for post-line increment return pc - oldQuantum } // NewLineTable returns a new PC/line table // corresponding to the encoded data. // Text must be the start address of the // corresponding text segment. func NewLineTable(data []byte, text uint64) *LineTable { return &LineTable{Data: data, PC: text, Line: 0, funcNames: make(map[uint32]string), strings: make(map[uint32]string)} } // Go 1.2 symbol table format. // See golang.org/s/go12symtab. // // A general note about the methods here: rather than try to avoid // index out of bounds errors, we trust Go to detect them, and then // we recover from the panics and treat them as indicative of a malformed // or incomplete table. // // The methods called by symtab.go, which begin with "go12" prefixes, // are expected to have that recovery logic. // isGo12 reports whether this is a Go 1.2 (or later) symbol table. func (t *LineTable) isGo12() bool { t.parsePclnTab() return t.version >= ver12 } const ( go12magic = 0xfffffffb go116magic = 0xfffffffa go118magic = 0xfffffff0 ) // uintptr returns the pointer-sized value encoded at b. // The pointer size is dictated by the table being read. func (t *LineTable) uintptr(b []byte) uint64 { if t.ptrsize == 4 { return uint64(t.binary.Uint32(b)) } return t.binary.Uint64(b) } // parsePclnTab parses the pclntab, setting the version. func (t *LineTable) parsePclnTab() { t.mu.Lock() defer t.mu.Unlock() if t.version != verUnknown { return } // Note that during this function, setting the version is the last thing we do. // If we set the version too early, and parsing failed (likely as a panic on // slice lookups), we'd have a mistaken version. // // Error paths through this code will default the version to 1.1. t.version = ver11 if !disableRecover { defer func() { // If we panic parsing, assume it's a Go 1.1 pclntab. recover() }() } // Check header: 4-byte magic, two zeros, pc quantum, pointer size. if len(t.Data) < 16 || t.Data[4] != 0 || t.Data[5] != 0 || (t.Data[6] != 1 && t.Data[6] != 2 && t.Data[6] != 4) || // pc quantum (t.Data[7] != 4 && t.Data[7] != 8) { // pointer size return } var possibleVersion version leMagic := binary.LittleEndian.Uint32(t.Data) beMagic := binary.BigEndian.Uint32(t.Data) switch { case leMagic == go12magic: t.binary, possibleVersion = binary.LittleEndian, ver12 case beMagic == go12magic: t.binary, possibleVersion = binary.BigEndian, ver12 case leMagic == go116magic: t.binary, possibleVersion = binary.LittleEndian, ver116 case beMagic == go116magic: t.binary, possibleVersion = binary.BigEndian, ver116 case leMagic == go118magic: t.binary, possibleVersion = binary.LittleEndian, ver118 case beMagic == go118magic: t.binary, possibleVersion = binary.BigEndian, ver118 default: return } t.version = possibleVersion // quantum and ptrSize are the same between 1.2, 1.16, and 1.18 t.quantum = uint32(t.Data[6]) t.ptrsize = uint32(t.Data[7]) offset := func(word uint32) uint64 { return t.uintptr(t.Data[8+word*t.ptrsize:]) } data := func(word uint32) []byte { return t.Data[offset(word):] } switch possibleVersion { case ver118: t.nfunctab = uint32(offset(0)) t.nfiletab = uint32(offset(1)) t.textStart = t.PC // use the start PC instead of reading from the table, which may be unrelocated t.funcnametab = data(3) t.cutab = data(4) t.filetab = data(5) t.pctab = data(6) t.funcdata = data(7) t.functab = data(7) functabsize := (int(t.nfunctab)*2 + 1) * t.functabFieldSize() t.functab = t.functab[:functabsize] case ver116: t.nfunctab = uint32(offset(0)) t.nfiletab = uint32(offset(1)) t.funcnametab = data(2) t.cutab = data(3) t.filetab = data(4) t.pctab = data(5) t.funcdata = data(6) t.functab = data(6) functabsize := (int(t.nfunctab)*2 + 1) * t.functabFieldSize() t.functab = t.functab[:functabsize] case ver12: t.nfunctab = uint32(t.uintptr(t.Data[8:])) t.funcdata = t.Data t.funcnametab = t.Data t.functab = t.Data[8+t.ptrsize:] t.pctab = t.Data functabsize := (int(t.nfunctab)*2 + 1) * t.functabFieldSize() fileoff := t.binary.Uint32(t.functab[functabsize:]) t.functab = t.functab[:functabsize] t.filetab = t.Data[fileoff:] t.nfiletab = t.binary.Uint32(t.filetab) t.filetab = t.filetab[:t.nfiletab*4] default: panic("unreachable") } } // go12Funcs returns a slice of Funcs derived from the Go 1.2+ pcln table. func (t *LineTable) go12Funcs() []Func { // Assume it is malformed and return nil on error. if !disableRecover { defer func() { recover() }() } ft := t.funcTab() funcs := make([]Func, ft.Count()) syms := make([]Sym, len(funcs)) for i := range funcs { f := &funcs[i] f.Entry = ft.pc(i) f.End = ft.pc(i + 1) info := t.funcData(uint32(i)) f.LineTable = t f.FrameSize = int(info.deferreturn()) syms[i] = Sym{ Value: f.Entry, Type: 'T', Name: t.funcName(info.nameoff()), GoType: 0, Func: f, } f.Sym = &syms[i] } return funcs } // findFunc returns the funcData corresponding to the given program counter. func (t *LineTable) findFunc(pc uint64) funcData { ft := t.funcTab() if pc < ft.pc(0) || pc >= ft.pc(ft.Count()) { return funcData{} } idx := sort.Search(int(t.nfunctab), func(i int) bool { return ft.pc(i) > pc }) idx-- return t.funcData(uint32(idx)) } // readvarint reads, removes, and returns a varint from *pp. func (t *LineTable) readvarint(pp *[]byte) uint32 { var v, shift uint32 p := *pp for shift = 0; ; shift += 7 { b := p[0] p = p[1:] v |= (uint32(b) & 0x7F) << shift if b&0x80 == 0 { break } } *pp = p return v } // funcName returns the name of the function found at off. func (t *LineTable) funcName(off uint32) string { if s, ok := t.funcNames[off]; ok { return s } i := bytes.IndexByte(t.funcnametab[off:], 0) s := string(t.funcnametab[off : off+uint32(i)]) t.funcNames[off] = s return s } // stringFrom returns a Go string found at off from a position. func (t *LineTable) stringFrom(arr []byte, off uint32) string { if s, ok := t.strings[off]; ok { return s } i := bytes.IndexByte(arr[off:], 0) s := string(arr[off : off+uint32(i)]) t.strings[off] = s return s } // string returns a Go string found at off. func (t *LineTable) string(off uint32) string { return t.stringFrom(t.funcdata, off) } // functabFieldSize returns the size in bytes of a single functab field. func (t *LineTable) functabFieldSize() int { if t.version >= ver118 { return 4 } return int(t.ptrsize) } // funcTab returns t's funcTab. func (t *LineTable) funcTab() funcTab { return funcTab{LineTable: t, sz: t.functabFieldSize()} } // funcTab is memory corresponding to a slice of functab structs, followed by an invalid PC. // A functab struct is a PC and a func offset. type funcTab struct { *LineTable sz int // cached result of t.functabFieldSize } // Count returns the number of func entries in f. func (f funcTab) Count() int { return int(f.nfunctab) } // pc returns the PC of the i'th func in f. func (f funcTab) pc(i int) uint64 { u := f.uint(f.functab[2*i*f.sz:]) if f.version >= ver118 { u += f.textStart } return u } // funcOff returns the funcdata offset of the i'th func in f. func (f funcTab) funcOff(i int) uint64 { return f.uint(f.functab[(2*i+1)*f.sz:]) } // uint returns the uint stored at b. func (f funcTab) uint(b []byte) uint64 { if f.sz == 4 { return uint64(f.binary.Uint32(b)) } return f.binary.Uint64(b) } // funcData is memory corresponding to an _func struct. type funcData struct { t *LineTable // LineTable this data is a part of data []byte // raw memory for the function } // funcData returns the ith funcData in t.functab. func (t *LineTable) funcData(i uint32) funcData { data := t.funcdata[t.funcTab().funcOff(int(i)):] return funcData{t: t, data: data} } // IsZero reports whether f is the zero value. func (f funcData) IsZero() bool { return f.t == nil && f.data == nil } // entryPC returns the func's entry PC. func (f *funcData) entryPC() uint64 { // In Go 1.18, the first field of _func changed // from a uintptr entry PC to a uint32 entry offset. if f.t.version >= ver118 { // TODO: support multiple text sections. // See runtime/symtab.go:(*moduledata).textAddr. return uint64(f.t.binary.Uint32(f.data)) + f.t.textStart } return f.t.uintptr(f.data) } func (f funcData) nameoff() uint32 { return f.field(1) } func (f funcData) deferreturn() uint32 { return f.field(3) } func (f funcData) pcfile() uint32 { return f.field(5) } func (f funcData) pcln() uint32 { return f.field(6) } func (f funcData) cuOffset() uint32 { return f.field(8) } // field returns the nth field of the _func struct. // It panics if n == 0 or n > 9; for n == 0, call f.entryPC. // Most callers should use a named field accessor (just above). func (f funcData) field(n uint32) uint32 { if n == 0 || n > 9 { panic("bad funcdata field") } // In Go 1.18, the first field of _func changed // from a uintptr entry PC to a uint32 entry offset. sz0 := f.t.ptrsize if f.t.version >= ver118 { sz0 = 4 } off := sz0 + (n-1)*4 // subsequent fields are 4 bytes each data := f.data[off:] return f.t.binary.Uint32(data) } // step advances to the next pc, value pair in the encoded table. func (t *LineTable) step(p *[]byte, pc *uint64, val *int32, first bool) bool { uvdelta := t.readvarint(p) if uvdelta == 0 && !first { return false } if uvdelta&1 != 0 { uvdelta = ^(uvdelta >> 1) } else { uvdelta >>= 1 } vdelta := int32(uvdelta) pcdelta := t.readvarint(p) * t.quantum *pc += uint64(pcdelta) *val += vdelta return true } // pcvalue reports the value associated with the target pc. // off is the offset to the beginning of the pc-value table, // and entry is the start PC for the corresponding function. func (t *LineTable) pcvalue(off uint32, entry, targetpc uint64) int32 { p := t.pctab[off:] val := int32(-1) pc := entry for t.step(&p, &pc, &val, pc == entry) { if targetpc < pc { return val } } return -1 } // findFileLine scans one function in the binary looking for a // program counter in the given file on the given line. // It does so by running the pc-value tables mapping program counter // to file number. Since most functions come from a single file, these // are usually short and quick to scan. If a file match is found, then the // code goes to the expense of looking for a simultaneous line number match. func (t *LineTable) findFileLine(entry uint64, filetab, linetab uint32, filenum, line int32, cutab []byte) uint64 { if filetab == 0 || linetab == 0 { return 0 } fp := t.pctab[filetab:] fl := t.pctab[linetab:] fileVal := int32(-1) filePC := entry lineVal := int32(-1) linePC := entry fileStartPC := filePC for t.step(&fp, &filePC, &fileVal, filePC == entry) { fileIndex := fileVal if t.version == ver116 || t.version == ver118 { fileIndex = int32(t.binary.Uint32(cutab[fileVal*4:])) } if fileIndex == filenum && fileStartPC < filePC { // fileIndex is in effect starting at fileStartPC up to // but not including filePC, and it's the file we want. // Run the PC table looking for a matching line number // or until we reach filePC. lineStartPC := linePC for linePC < filePC && t.step(&fl, &linePC, &lineVal, linePC == entry) { // lineVal is in effect until linePC, and lineStartPC < filePC. if lineVal == line { if fileStartPC <= lineStartPC { return lineStartPC } if fileStartPC < linePC { return fileStartPC } } lineStartPC = linePC } } fileStartPC = filePC } return 0 } // go12PCToLine maps program counter to line number for the Go 1.2+ pcln table. func (t *LineTable) go12PCToLine(pc uint64) (line int) { defer func() { if !disableRecover && recover() != nil { line = -1 } }() f := t.findFunc(pc) if f.IsZero() { return -1 } entry := f.entryPC() linetab := f.pcln() return int(t.pcvalue(linetab, entry, pc)) } // go12PCToFile maps program counter to file name for the Go 1.2+ pcln table. func (t *LineTable) go12PCToFile(pc uint64) (file string) { defer func() { if !disableRecover && recover() != nil { file = "" } }() f := t.findFunc(pc) if f.IsZero() { return "" } entry := f.entryPC() filetab := f.pcfile() fno := t.pcvalue(filetab, entry, pc) if t.version == ver12 { if fno <= 0 { return "" } return t.string(t.binary.Uint32(t.filetab[4*fno:])) } // Go ≥ 1.16 if fno < 0 { // 0 is valid for ≥ 1.16 return "" } cuoff := f.cuOffset() if fnoff := t.binary.Uint32(t.cutab[(cuoff+uint32(fno))*4:]); fnoff != ^uint32(0) { return t.stringFrom(t.filetab, fnoff) } return "" } // go12LineToPC maps a (file, line) pair to a program counter for the Go 1.2+ pcln table. func (t *LineTable) go12LineToPC(file string, line int) (pc uint64) { defer func() { if !disableRecover && recover() != nil { pc = 0 } }() t.initFileMap() filenum, ok := t.fileMap[file] if !ok { return 0 } // Scan all functions. // If this turns out to be a bottleneck, we could build a map[int32][]int32 // mapping file number to a list of functions with code from that file. var cutab []byte for i := uint32(0); i < t.nfunctab; i++ { f := t.funcData(i) entry := f.entryPC() filetab := f.pcfile() linetab := f.pcln() if t.version == ver116 || t.version == ver118 { cutab = t.cutab[f.cuOffset()*4:] } pc := t.findFileLine(entry, filetab, linetab, int32(filenum), int32(line), cutab) if pc != 0 { return pc } } return 0 } // initFileMap initializes the map from file name to file number. func (t *LineTable) initFileMap() { t.mu.Lock() defer t.mu.Unlock() if t.fileMap != nil { return } m := make(map[string]uint32) if t.version == ver12 { for i := uint32(1); i < t.nfiletab; i++ { s := t.string(t.binary.Uint32(t.filetab[4*i:])) m[s] = i } } else { var pos uint32 for i := uint32(0); i < t.nfiletab; i++ { s := t.stringFrom(t.filetab, pos) m[s] = pos pos += uint32(len(s) + 1) } } t.fileMap = m } // go12MapFiles adds to m a key for every file in the Go 1.2 LineTable. // Every key maps to obj. That's not a very interesting map, but it provides // a way for callers to obtain the list of files in the program. func (t *LineTable) go12MapFiles(m map[string]*Obj, obj *Obj) { if !disableRecover { defer func() { recover() }() } t.initFileMap() for file := range t.fileMap { m[file] = obj } } // disableRecover causes this package not to swallow panics. // This is useful when making changes. const disableRecover = false