// Copyright 2013 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package constant implements Values representing untyped // Go constants and their corresponding operations. // // A special Unknown value may be used when a value // is unknown due to an error. Operations on unknown // values produce unknown values unless specified // otherwise. // package constant import ( "fmt" "go/token" "math" "math/big" "math/bits" "strconv" "strings" "sync" "unicode/utf8" ) //go:generate stringer -type Kind // Kind specifies the kind of value represented by a Value. type Kind int const ( // unknown values Unknown Kind = iota // non-numeric values Bool String // numeric values Int Float Complex ) // A Value represents the value of a Go constant. type Value interface { // Kind returns the value kind. Kind() Kind // String returns a short, quoted (human-readable) form of the value. // For numeric values, the result may be an approximation; // for String values the result may be a shortened string. // Use ExactString for a string representing a value exactly. String() string // ExactString returns an exact, quoted (human-readable) form of the value. // If the Value is of Kind String, use StringVal to obtain the unquoted string. ExactString() string // Prevent external implementations. implementsValue() } // ---------------------------------------------------------------------------- // Implementations // Maximum supported mantissa precision. // The spec requires at least 256 bits; typical implementations use 512 bits. const prec = 512 // TODO(gri) Consider storing "error" information in an unknownVal so clients // can provide better error messages. For instance, if a number is // too large (incl. infinity), that could be recorded in unknownVal. // See also #20583 and #42695 for use cases. // Representation of values: // // Values of Int and Float Kind have two different representations each: int64Val // and intVal, and ratVal and floatVal. When possible, the "smaller", respectively // more precise (for Floats) representation is chosen. However, once a Float value // is represented as a floatVal, any subsequent results remain floatVals (unless // explicitly converted); i.e., no attempt is made to convert a floatVal back into // a ratVal. The reasoning is that all representations but floatVal are mathematically // exact, but once that precision is lost (by moving to floatVal), moving back to // a different representation implies a precision that's not actually there. type ( unknownVal struct{} boolVal bool stringVal struct { // Lazy value: either a string (l,r==nil) or an addition (l,r!=nil). mu sync.Mutex s string l, r *stringVal } int64Val int64 // Int values representable as an int64 intVal struct{ val *big.Int } // Int values not representable as an int64 ratVal struct{ val *big.Rat } // Float values representable as a fraction floatVal struct{ val *big.Float } // Float values not representable as a fraction complexVal struct{ re, im Value } ) func (unknownVal) Kind() Kind { return Unknown } func (boolVal) Kind() Kind { return Bool } func (*stringVal) Kind() Kind { return String } func (int64Val) Kind() Kind { return Int } func (intVal) Kind() Kind { return Int } func (ratVal) Kind() Kind { return Float } func (floatVal) Kind() Kind { return Float } func (complexVal) Kind() Kind { return Complex } func (unknownVal) String() string { return "unknown" } func (x boolVal) String() string { return strconv.FormatBool(bool(x)) } // String returns a possibly shortened quoted form of the String value. func (x *stringVal) String() string { const maxLen = 72 // a reasonable length s := strconv.Quote(x.string()) if utf8.RuneCountInString(s) > maxLen { // The string without the enclosing quotes is greater than maxLen-2 runes // long. Remove the last 3 runes (including the closing '"') by keeping // only the first maxLen-3 runes; then add "...". i := 0 for n := 0; n < maxLen-3; n++ { _, size := utf8.DecodeRuneInString(s[i:]) i += size } s = s[:i] + "..." } return s } // string constructs and returns the actual string literal value. // If x represents an addition, then it rewrites x to be a single // string, to speed future calls. This lazy construction avoids // building different string values for all subpieces of a large // concatenation. See golang.org/issue/23348. func (x *stringVal) string() string { x.mu.Lock() if x.l != nil { x.s = strings.Join(reverse(x.appendReverse(nil)), "") x.l = nil x.r = nil } s := x.s x.mu.Unlock() return s } // reverse reverses x in place and returns it. func reverse(x []string) []string { n := len(x) for i := 0; i+i < n; i++ { x[i], x[n-1-i] = x[n-1-i], x[i] } return x } // appendReverse appends to list all of x's subpieces, but in reverse, // and returns the result. Appending the reversal allows processing // the right side in a recursive call and the left side in a loop. // Because a chain like a + b + c + d + e is actually represented // as ((((a + b) + c) + d) + e), the left-side loop avoids deep recursion. // x must be locked. func (x *stringVal) appendReverse(list []string) []string { y := x for y.r != nil { y.r.mu.Lock() list = y.r.appendReverse(list) y.r.mu.Unlock() l := y.l if y != x { y.mu.Unlock() } l.mu.Lock() y = l } s := y.s if y != x { y.mu.Unlock() } return append(list, s) } func (x int64Val) String() string { return strconv.FormatInt(int64(x), 10) } func (x intVal) String() string { return x.val.String() } func (x ratVal) String() string { return rtof(x).String() } // String returns a decimal approximation of the Float value. func (x floatVal) String() string { f := x.val // Don't try to convert infinities (will not terminate). if f.IsInf() { return f.String() } // Use exact fmt formatting if in float64 range (common case): // proceed if f doesn't underflow to 0 or overflow to inf. if x, _ := f.Float64(); f.Sign() == 0 == (x == 0) && !math.IsInf(x, 0) { return fmt.Sprintf("%.6g", x) } // Out of float64 range. Do approximate manual to decimal // conversion to avoid precise but possibly slow Float // formatting. // f = mant * 2**exp var mant big.Float exp := f.MantExp(&mant) // 0.5 <= |mant| < 1.0 // approximate float64 mantissa m and decimal exponent d // f ~ m * 10**d m, _ := mant.Float64() // 0.5 <= |m| < 1.0 d := float64(exp) * (math.Ln2 / math.Ln10) // log_10(2) // adjust m for truncated (integer) decimal exponent e e := int64(d) m *= math.Pow(10, d-float64(e)) // ensure 1 <= |m| < 10 switch am := math.Abs(m); { case am < 1-0.5e-6: // The %.6g format below rounds m to 5 digits after the // decimal point. Make sure that m*10 < 10 even after // rounding up: m*10 + 0.5e-5 < 10 => m < 1 - 0.5e6. m *= 10 e-- case am >= 10: m /= 10 e++ } return fmt.Sprintf("%.6ge%+d", m, e) } func (x complexVal) String() string { return fmt.Sprintf("(%s + %si)", x.re, x.im) } func (x unknownVal) ExactString() string { return x.String() } func (x boolVal) ExactString() string { return x.String() } func (x *stringVal) ExactString() string { return strconv.Quote(x.string()) } func (x int64Val) ExactString() string { return x.String() } func (x intVal) ExactString() string { return x.String() } func (x ratVal) ExactString() string { r := x.val if r.IsInt() { return r.Num().String() } return r.String() } func (x floatVal) ExactString() string { return x.val.Text('p', 0) } func (x complexVal) ExactString() string { return fmt.Sprintf("(%s + %si)", x.re.ExactString(), x.im.ExactString()) } func (unknownVal) implementsValue() {} func (boolVal) implementsValue() {} func (*stringVal) implementsValue() {} func (int64Val) implementsValue() {} func (ratVal) implementsValue() {} func (intVal) implementsValue() {} func (floatVal) implementsValue() {} func (complexVal) implementsValue() {} func newInt() *big.Int { return new(big.Int) } func newRat() *big.Rat { return new(big.Rat) } func newFloat() *big.Float { return new(big.Float).SetPrec(prec) } func i64toi(x int64Val) intVal { return intVal{newInt().SetInt64(int64(x))} } func i64tor(x int64Val) ratVal { return ratVal{newRat().SetInt64(int64(x))} } func i64tof(x int64Val) floatVal { return floatVal{newFloat().SetInt64(int64(x))} } func itor(x intVal) ratVal { return ratVal{newRat().SetInt(x.val)} } func itof(x intVal) floatVal { return floatVal{newFloat().SetInt(x.val)} } func rtof(x ratVal) floatVal { return floatVal{newFloat().SetRat(x.val)} } func vtoc(x Value) complexVal { return complexVal{x, int64Val(0)} } func makeInt(x *big.Int) Value { if x.IsInt64() { return int64Val(x.Int64()) } return intVal{x} } func makeRat(x *big.Rat) Value { a := x.Num() b := x.Denom() if smallInt(a) && smallInt(b) { // ok to remain fraction return ratVal{x} } // components too large => switch to float return floatVal{newFloat().SetRat(x)} } var floatVal0 = floatVal{newFloat()} func makeFloat(x *big.Float) Value { // convert -0 if x.Sign() == 0 { return floatVal0 } if x.IsInf() { return unknownVal{} } // No attempt is made to "go back" to ratVal, even if possible, // to avoid providing the illusion of a mathematically exact // representation. return floatVal{x} } func makeComplex(re, im Value) Value { if re.Kind() == Unknown || im.Kind() == Unknown { return unknownVal{} } return complexVal{re, im} } func makeFloatFromLiteral(lit string) Value { if f, ok := newFloat().SetString(lit); ok { if smallFloat(f) { // ok to use rationals if f.Sign() == 0 { // Issue 20228: If the float underflowed to zero, parse just "0". // Otherwise, lit might contain a value with a large negative exponent, // such as -6e-1886451601. As a float, that will underflow to 0, // but it'll take forever to parse as a Rat. lit = "0" } if r, ok := newRat().SetString(lit); ok { return ratVal{r} } } // otherwise use floats return makeFloat(f) } return nil } // Permit fractions with component sizes up to maxExp // before switching to using floating-point numbers. const maxExp = 4 << 10 // smallInt reports whether x would lead to "reasonably"-sized fraction // if converted to a *big.Rat. func smallInt(x *big.Int) bool { return x.BitLen() < maxExp } // smallFloat64 reports whether x would lead to "reasonably"-sized fraction // if converted to a *big.Rat. func smallFloat64(x float64) bool { if math.IsInf(x, 0) { return false } _, e := math.Frexp(x) return -maxExp < e && e < maxExp } // smallFloat reports whether x would lead to "reasonably"-sized fraction // if converted to a *big.Rat. func smallFloat(x *big.Float) bool { if x.IsInf() { return false } e := x.MantExp(nil) return -maxExp < e && e < maxExp } // ---------------------------------------------------------------------------- // Factories // MakeUnknown returns the Unknown value. func MakeUnknown() Value { return unknownVal{} } // MakeBool returns the Bool value for b. func MakeBool(b bool) Value { return boolVal(b) } // MakeString returns the String value for s. func MakeString(s string) Value { return &stringVal{s: s} } // MakeInt64 returns the Int value for x. func MakeInt64(x int64) Value { return int64Val(x) } // MakeUint64 returns the Int value for x. func MakeUint64(x uint64) Value { if x < 1<<63 { return int64Val(int64(x)) } return intVal{newInt().SetUint64(x)} } // MakeFloat64 returns the Float value for x. // If x is -0.0, the result is 0.0. // If x is not finite, the result is an Unknown. func MakeFloat64(x float64) Value { if math.IsInf(x, 0) || math.IsNaN(x) { return unknownVal{} } if smallFloat64(x) { return ratVal{newRat().SetFloat64(x + 0)} // convert -0 to 0 } return floatVal{newFloat().SetFloat64(x + 0)} } // MakeFromLiteral returns the corresponding integer, floating-point, // imaginary, character, or string value for a Go literal string. The // tok value must be one of token.INT, token.FLOAT, token.IMAG, // token.CHAR, or token.STRING. The final argument must be zero. // If the literal string syntax is invalid, the result is an Unknown. func MakeFromLiteral(lit string, tok token.Token, zero uint) Value { if zero != 0 { panic("MakeFromLiteral called with non-zero last argument") } switch tok { case token.INT: if x, err := strconv.ParseInt(lit, 0, 64); err == nil { return int64Val(x) } if x, ok := newInt().SetString(lit, 0); ok { return intVal{x} } case token.FLOAT: if x := makeFloatFromLiteral(lit); x != nil { return x } case token.IMAG: if n := len(lit); n > 0 && lit[n-1] == 'i' { if im := makeFloatFromLiteral(lit[:n-1]); im != nil { return makeComplex(int64Val(0), im) } } case token.CHAR: if n := len(lit); n >= 2 { if code, _, _, err := strconv.UnquoteChar(lit[1:n-1], '\''); err == nil { return MakeInt64(int64(code)) } } case token.STRING: if s, err := strconv.Unquote(lit); err == nil { return MakeString(s) } default: panic(fmt.Sprintf("%v is not a valid token", tok)) } return unknownVal{} } // ---------------------------------------------------------------------------- // Accessors // // For unknown arguments the result is the zero value for the respective // accessor type, except for Sign, where the result is 1. // BoolVal returns the Go boolean value of x, which must be a Bool or an Unknown. // If x is Unknown, the result is false. func BoolVal(x Value) bool { switch x := x.(type) { case boolVal: return bool(x) case unknownVal: return false default: panic(fmt.Sprintf("%v not a Bool", x)) } } // StringVal returns the Go string value of x, which must be a String or an Unknown. // If x is Unknown, the result is "". func StringVal(x Value) string { switch x := x.(type) { case *stringVal: return x.string() case unknownVal: return "" default: panic(fmt.Sprintf("%v not a String", x)) } } // Int64Val returns the Go int64 value of x and whether the result is exact; // x must be an Int or an Unknown. If the result is not exact, its value is undefined. // If x is Unknown, the result is (0, false). func Int64Val(x Value) (int64, bool) { switch x := x.(type) { case int64Val: return int64(x), true case intVal: return x.val.Int64(), false // not an int64Val and thus not exact case unknownVal: return 0, false default: panic(fmt.Sprintf("%v not an Int", x)) } } // Uint64Val returns the Go uint64 value of x and whether the result is exact; // x must be an Int or an Unknown. If the result is not exact, its value is undefined. // If x is Unknown, the result is (0, false). func Uint64Val(x Value) (uint64, bool) { switch x := x.(type) { case int64Val: return uint64(x), x >= 0 case intVal: return x.val.Uint64(), x.val.IsUint64() case unknownVal: return 0, false default: panic(fmt.Sprintf("%v not an Int", x)) } } // Float32Val is like Float64Val but for float32 instead of float64. func Float32Val(x Value) (float32, bool) { switch x := x.(type) { case int64Val: f := float32(x) return f, int64Val(f) == x case intVal: f, acc := newFloat().SetInt(x.val).Float32() return f, acc == big.Exact case ratVal: return x.val.Float32() case floatVal: f, acc := x.val.Float32() return f, acc == big.Exact case unknownVal: return 0, false default: panic(fmt.Sprintf("%v not a Float", x)) } } // Float64Val returns the nearest Go float64 value of x and whether the result is exact; // x must be numeric or an Unknown, but not Complex. For values too small (too close to 0) // to represent as float64, Float64Val silently underflows to 0. The result sign always // matches the sign of x, even for 0. // If x is Unknown, the result is (0, false). func Float64Val(x Value) (float64, bool) { switch x := x.(type) { case int64Val: f := float64(int64(x)) return f, int64Val(f) == x case intVal: f, acc := newFloat().SetInt(x.val).Float64() return f, acc == big.Exact case ratVal: return x.val.Float64() case floatVal: f, acc := x.val.Float64() return f, acc == big.Exact case unknownVal: return 0, false default: panic(fmt.Sprintf("%v not a Float", x)) } } // Val returns the underlying value for a given constant. Since it returns an // interface, it is up to the caller to type assert the result to the expected // type. The possible dynamic return types are: // // x Kind type of result // ----------------------------------------- // Bool bool // String string // Int int64 or *big.Int // Float *big.Float or *big.Rat // everything else nil // func Val(x Value) any { switch x := x.(type) { case boolVal: return bool(x) case *stringVal: return x.string() case int64Val: return int64(x) case intVal: return x.val case ratVal: return x.val case floatVal: return x.val default: return nil } } // Make returns the Value for x. // // type of x result Kind // ---------------------------- // bool Bool // string String // int64 Int // *big.Int Int // *big.Float Float // *big.Rat Float // anything else Unknown // func Make(x any) Value { switch x := x.(type) { case bool: return boolVal(x) case string: return &stringVal{s: x} case int64: return int64Val(x) case *big.Int: return makeInt(x) case *big.Rat: return makeRat(x) case *big.Float: return makeFloat(x) default: return unknownVal{} } } // BitLen returns the number of bits required to represent // the absolute value x in binary representation; x must be an Int or an Unknown. // If x is Unknown, the result is 0. func BitLen(x Value) int { switch x := x.(type) { case int64Val: u := uint64(x) if x < 0 { u = uint64(-x) } return 64 - bits.LeadingZeros64(u) case intVal: return x.val.BitLen() case unknownVal: return 0 default: panic(fmt.Sprintf("%v not an Int", x)) } } // Sign returns -1, 0, or 1 depending on whether x < 0, x == 0, or x > 0; // x must be numeric or Unknown. For complex values x, the sign is 0 if x == 0, // otherwise it is != 0. If x is Unknown, the result is 1. func Sign(x Value) int { switch x := x.(type) { case int64Val: switch { case x < 0: return -1 case x > 0: return 1 } return 0 case intVal: return x.val.Sign() case ratVal: return x.val.Sign() case floatVal: return x.val.Sign() case complexVal: return Sign(x.re) | Sign(x.im) case unknownVal: return 1 // avoid spurious division by zero errors default: panic(fmt.Sprintf("%v not numeric", x)) } } // ---------------------------------------------------------------------------- // Support for assembling/disassembling numeric values const ( // Compute the size of a Word in bytes. _m = ^big.Word(0) _log = _m>>8&1 + _m>>16&1 + _m>>32&1 wordSize = 1 << _log ) // Bytes returns the bytes for the absolute value of x in little- // endian binary representation; x must be an Int. func Bytes(x Value) []byte { var t intVal switch x := x.(type) { case int64Val: t = i64toi(x) case intVal: t = x default: panic(fmt.Sprintf("%v not an Int", x)) } words := t.val.Bits() bytes := make([]byte, len(words)*wordSize) i := 0 for _, w := range words { for j := 0; j < wordSize; j++ { bytes[i] = byte(w) w >>= 8 i++ } } // remove leading 0's for i > 0 && bytes[i-1] == 0 { i-- } return bytes[:i] } // MakeFromBytes returns the Int value given the bytes of its little-endian // binary representation. An empty byte slice argument represents 0. func MakeFromBytes(bytes []byte) Value { words := make([]big.Word, (len(bytes)+(wordSize-1))/wordSize) i := 0 var w big.Word var s uint for _, b := range bytes { w |= big.Word(b) << s if s += 8; s == wordSize*8 { words[i] = w i++ w = 0 s = 0 } } // store last word if i < len(words) { words[i] = w i++ } // remove leading 0's for i > 0 && words[i-1] == 0 { i-- } return makeInt(newInt().SetBits(words[:i])) } // Num returns the numerator of x; x must be Int, Float, or Unknown. // If x is Unknown, or if it is too large or small to represent as a // fraction, the result is Unknown. Otherwise the result is an Int // with the same sign as x. func Num(x Value) Value { switch x := x.(type) { case int64Val, intVal: return x case ratVal: return makeInt(x.val.Num()) case floatVal: if smallFloat(x.val) { r, _ := x.val.Rat(nil) return makeInt(r.Num()) } case unknownVal: break default: panic(fmt.Sprintf("%v not Int or Float", x)) } return unknownVal{} } // Denom returns the denominator of x; x must be Int, Float, or Unknown. // If x is Unknown, or if it is too large or small to represent as a // fraction, the result is Unknown. Otherwise the result is an Int >= 1. func Denom(x Value) Value { switch x := x.(type) { case int64Val, intVal: return int64Val(1) case ratVal: return makeInt(x.val.Denom()) case floatVal: if smallFloat(x.val) { r, _ := x.val.Rat(nil) return makeInt(r.Denom()) } case unknownVal: break default: panic(fmt.Sprintf("%v not Int or Float", x)) } return unknownVal{} } // MakeImag returns the Complex value x*i; // x must be Int, Float, or Unknown. // If x is Unknown, the result is Unknown. func MakeImag(x Value) Value { switch x.(type) { case unknownVal: return x case int64Val, intVal, ratVal, floatVal: return makeComplex(int64Val(0), x) default: panic(fmt.Sprintf("%v not Int or Float", x)) } } // Real returns the real part of x, which must be a numeric or unknown value. // If x is Unknown, the result is Unknown. func Real(x Value) Value { switch x := x.(type) { case unknownVal, int64Val, intVal, ratVal, floatVal: return x case complexVal: return x.re default: panic(fmt.Sprintf("%v not numeric", x)) } } // Imag returns the imaginary part of x, which must be a numeric or unknown value. // If x is Unknown, the result is Unknown. func Imag(x Value) Value { switch x := x.(type) { case unknownVal: return x case int64Val, intVal, ratVal, floatVal: return int64Val(0) case complexVal: return x.im default: panic(fmt.Sprintf("%v not numeric", x)) } } // ---------------------------------------------------------------------------- // Numeric conversions // ToInt converts x to an Int value if x is representable as an Int. // Otherwise it returns an Unknown. func ToInt(x Value) Value { switch x := x.(type) { case int64Val, intVal: return x case ratVal: if x.val.IsInt() { return makeInt(x.val.Num()) } case floatVal: // avoid creation of huge integers // (Existing tests require permitting exponents of at least 1024; // allow any value that would also be permissible as a fraction.) if smallFloat(x.val) { i := newInt() if _, acc := x.val.Int(i); acc == big.Exact { return makeInt(i) } // If we can get an integer by rounding up or down, // assume x is not an integer because of rounding // errors in prior computations. const delta = 4 // a small number of bits > 0 var t big.Float t.SetPrec(prec - delta) // try rounding down a little t.SetMode(big.ToZero) t.Set(x.val) if _, acc := t.Int(i); acc == big.Exact { return makeInt(i) } // try rounding up a little t.SetMode(big.AwayFromZero) t.Set(x.val) if _, acc := t.Int(i); acc == big.Exact { return makeInt(i) } } case complexVal: if re := ToFloat(x); re.Kind() == Float { return ToInt(re) } } return unknownVal{} } // ToFloat converts x to a Float value if x is representable as a Float. // Otherwise it returns an Unknown. func ToFloat(x Value) Value { switch x := x.(type) { case int64Val: return i64tor(x) // x is always a small int case intVal: if smallInt(x.val) { return itor(x) } return itof(x) case ratVal, floatVal: return x case complexVal: if Sign(x.im) == 0 { return ToFloat(x.re) } } return unknownVal{} } // ToComplex converts x to a Complex value if x is representable as a Complex. // Otherwise it returns an Unknown. func ToComplex(x Value) Value { switch x := x.(type) { case int64Val, intVal, ratVal, floatVal: return vtoc(x) case complexVal: return x } return unknownVal{} } // ---------------------------------------------------------------------------- // Operations // is32bit reports whether x can be represented using 32 bits. func is32bit(x int64) bool { const s = 32 return -1<<(s-1) <= x && x <= 1<<(s-1)-1 } // is63bit reports whether x can be represented using 63 bits. func is63bit(x int64) bool { const s = 63 return -1<<(s-1) <= x && x <= 1<<(s-1)-1 } // UnaryOp returns the result of the unary expression op y. // The operation must be defined for the operand. // If prec > 0 it specifies the ^ (xor) result size in bits. // If y is Unknown, the result is Unknown. // func UnaryOp(op token.Token, y Value, prec uint) Value { switch op { case token.ADD: switch y.(type) { case unknownVal, int64Val, intVal, ratVal, floatVal, complexVal: return y } case token.SUB: switch y := y.(type) { case unknownVal: return y case int64Val: if z := -y; z != y { return z // no overflow } return makeInt(newInt().Neg(big.NewInt(int64(y)))) case intVal: return makeInt(newInt().Neg(y.val)) case ratVal: return makeRat(newRat().Neg(y.val)) case floatVal: return makeFloat(newFloat().Neg(y.val)) case complexVal: re := UnaryOp(token.SUB, y.re, 0) im := UnaryOp(token.SUB, y.im, 0) return makeComplex(re, im) } case token.XOR: z := newInt() switch y := y.(type) { case unknownVal: return y case int64Val: z.Not(big.NewInt(int64(y))) case intVal: z.Not(y.val) default: goto Error } // For unsigned types, the result will be negative and // thus "too large": We must limit the result precision // to the type's precision. if prec > 0 { z.AndNot(z, newInt().Lsh(big.NewInt(-1), prec)) // z &^= (-1)< oy: y, x = match0(y, x) } return x, y } // match0 must only be called by match. // Invariant: ord(x) < ord(y) func match0(x, y Value) (_, _ Value) { // Prefer to return the original x and y arguments when possible, // to avoid unnecessary heap allocations. switch y.(type) { case intVal: switch x1 := x.(type) { case int64Val: return i64toi(x1), y } case ratVal: switch x1 := x.(type) { case int64Val: return i64tor(x1), y case intVal: return itor(x1), y } case floatVal: switch x1 := x.(type) { case int64Val: return i64tof(x1), y case intVal: return itof(x1), y case ratVal: return rtof(x1), y } case complexVal: return vtoc(x), y } // force unknown and invalid values into "x position" in callers of match // (don't panic here so that callers can provide a better error message) return x, x } // BinaryOp returns the result of the binary expression x op y. // The operation must be defined for the operands. If one of the // operands is Unknown, the result is Unknown. // BinaryOp doesn't handle comparisons or shifts; use Compare // or Shift instead. // // To force integer division of Int operands, use op == token.QUO_ASSIGN // instead of token.QUO; the result is guaranteed to be Int in this case. // Division by zero leads to a run-time panic. // func BinaryOp(x_ Value, op token.Token, y_ Value) Value { x, y := match(x_, y_) switch x := x.(type) { case unknownVal: return x case boolVal: y := y.(boolVal) switch op { case token.LAND: return x && y case token.LOR: return x || y } case int64Val: a := int64(x) b := int64(y.(int64Val)) var c int64 switch op { case token.ADD: if !is63bit(a) || !is63bit(b) { return makeInt(newInt().Add(big.NewInt(a), big.NewInt(b))) } c = a + b case token.SUB: if !is63bit(a) || !is63bit(b) { return makeInt(newInt().Sub(big.NewInt(a), big.NewInt(b))) } c = a - b case token.MUL: if !is32bit(a) || !is32bit(b) { return makeInt(newInt().Mul(big.NewInt(a), big.NewInt(b))) } c = a * b case token.QUO: return makeRat(big.NewRat(a, b)) case token.QUO_ASSIGN: // force integer division c = a / b case token.REM: c = a % b case token.AND: c = a & b case token.OR: c = a | b case token.XOR: c = a ^ b case token.AND_NOT: c = a &^ b default: goto Error } return int64Val(c) case intVal: a := x.val b := y.(intVal).val c := newInt() switch op { case token.ADD: c.Add(a, b) case token.SUB: c.Sub(a, b) case token.MUL: c.Mul(a, b) case token.QUO: return makeRat(newRat().SetFrac(a, b)) case token.QUO_ASSIGN: // force integer division c.Quo(a, b) case token.REM: c.Rem(a, b) case token.AND: c.And(a, b) case token.OR: c.Or(a, b) case token.XOR: c.Xor(a, b) case token.AND_NOT: c.AndNot(a, b) default: goto Error } return makeInt(c) case ratVal: a := x.val b := y.(ratVal).val c := newRat() switch op { case token.ADD: c.Add(a, b) case token.SUB: c.Sub(a, b) case token.MUL: c.Mul(a, b) case token.QUO: c.Quo(a, b) default: goto Error } return makeRat(c) case floatVal: a := x.val b := y.(floatVal).val c := newFloat() switch op { case token.ADD: c.Add(a, b) case token.SUB: c.Sub(a, b) case token.MUL: c.Mul(a, b) case token.QUO: c.Quo(a, b) default: goto Error } return makeFloat(c) case complexVal: y := y.(complexVal) a, b := x.re, x.im c, d := y.re, y.im var re, im Value switch op { case token.ADD: // (a+c) + i(b+d) re = add(a, c) im = add(b, d) case token.SUB: // (a-c) + i(b-d) re = sub(a, c) im = sub(b, d) case token.MUL: // (ac-bd) + i(bc+ad) ac := mul(a, c) bd := mul(b, d) bc := mul(b, c) ad := mul(a, d) re = sub(ac, bd) im = add(bc, ad) case token.QUO: // (ac+bd)/s + i(bc-ad)/s, with s = cc + dd ac := mul(a, c) bd := mul(b, d) bc := mul(b, c) ad := mul(a, d) cc := mul(c, c) dd := mul(d, d) s := add(cc, dd) re = add(ac, bd) re = quo(re, s) im = sub(bc, ad) im = quo(im, s) default: goto Error } return makeComplex(re, im) case *stringVal: if op == token.ADD { return &stringVal{l: x, r: y.(*stringVal)} } } Error: panic(fmt.Sprintf("invalid binary operation %v %s %v", x_, op, y_)) } func add(x, y Value) Value { return BinaryOp(x, token.ADD, y) } func sub(x, y Value) Value { return BinaryOp(x, token.SUB, y) } func mul(x, y Value) Value { return BinaryOp(x, token.MUL, y) } func quo(x, y Value) Value { return BinaryOp(x, token.QUO, y) } // Shift returns the result of the shift expression x op s // with op == token.SHL or token.SHR (<< or >>). x must be // an Int or an Unknown. If x is Unknown, the result is x. // func Shift(x Value, op token.Token, s uint) Value { switch x := x.(type) { case unknownVal: return x case int64Val: if s == 0 { return x } switch op { case token.SHL: z := i64toi(x).val return makeInt(z.Lsh(z, s)) case token.SHR: return x >> s } case intVal: if s == 0 { return x } z := newInt() switch op { case token.SHL: return makeInt(z.Lsh(x.val, s)) case token.SHR: return makeInt(z.Rsh(x.val, s)) } } panic(fmt.Sprintf("invalid shift %v %s %d", x, op, s)) } func cmpZero(x int, op token.Token) bool { switch op { case token.EQL: return x == 0 case token.NEQ: return x != 0 case token.LSS: return x < 0 case token.LEQ: return x <= 0 case token.GTR: return x > 0 case token.GEQ: return x >= 0 } panic(fmt.Sprintf("invalid comparison %v %s 0", x, op)) } // Compare returns the result of the comparison x op y. // The comparison must be defined for the operands. // If one of the operands is Unknown, the result is // false. // func Compare(x_ Value, op token.Token, y_ Value) bool { x, y := match(x_, y_) switch x := x.(type) { case unknownVal: return false case boolVal: y := y.(boolVal) switch op { case token.EQL: return x == y case token.NEQ: return x != y } case int64Val: y := y.(int64Val) switch op { case token.EQL: return x == y case token.NEQ: return x != y case token.LSS: return x < y case token.LEQ: return x <= y case token.GTR: return x > y case token.GEQ: return x >= y } case intVal: return cmpZero(x.val.Cmp(y.(intVal).val), op) case ratVal: return cmpZero(x.val.Cmp(y.(ratVal).val), op) case floatVal: return cmpZero(x.val.Cmp(y.(floatVal).val), op) case complexVal: y := y.(complexVal) re := Compare(x.re, token.EQL, y.re) im := Compare(x.im, token.EQL, y.im) switch op { case token.EQL: return re && im case token.NEQ: return !re || !im } case *stringVal: xs := x.string() ys := y.(*stringVal).string() switch op { case token.EQL: return xs == ys case token.NEQ: return xs != ys case token.LSS: return xs < ys case token.LEQ: return xs <= ys case token.GTR: return xs > ys case token.GEQ: return xs >= ys } } panic(fmt.Sprintf("invalid comparison %v %s %v", x_, op, y_)) }