// Copyright 2013 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // This file implements initialization and assignment checks. package types import ( "fmt" "go/ast" "strings" ) // assignment reports whether x can be assigned to a variable of type T, // if necessary by attempting to convert untyped values to the appropriate // type. context describes the context in which the assignment takes place. // Use T == nil to indicate assignment to an untyped blank identifier. // x.mode is set to invalid if the assignment failed. func (check *Checker) assignment(x *operand, T Type, context string) { check.singleValue(x) switch x.mode { case invalid: return // error reported before case constant_, variable, mapindex, value, commaok, commaerr: // ok default: // we may get here because of other problems (issue #39634, crash 12) check.errorf(x, 0, "cannot assign %s to %s in %s", x, T, context) return } if isUntyped(x.typ) { target := T // spec: "If an untyped constant is assigned to a variable of interface // type or the blank identifier, the constant is first converted to type // bool, rune, int, float64, complex128 or string respectively, depending // on whether the value is a boolean, rune, integer, floating-point, // complex, or string constant." if T == nil || IsInterface(T) && !isTypeParam(T) { if T == nil && x.typ == Typ[UntypedNil] { check.errorf(x, _UntypedNil, "use of untyped nil in %s", context) x.mode = invalid return } target = Default(x.typ) } newType, val, code := check.implicitTypeAndValue(x, target) if code != 0 { msg := check.sprintf("cannot use %s as %s value in %s", x, target, context) switch code { case _TruncatedFloat: msg += " (truncated)" case _NumericOverflow: msg += " (overflows)" default: code = _IncompatibleAssign } check.error(x, code, msg) x.mode = invalid return } if val != nil { x.val = val check.updateExprVal(x.expr, val) } if newType != x.typ { x.typ = newType check.updateExprType(x.expr, newType, false) } } // A generic (non-instantiated) function value cannot be assigned to a variable. if sig, _ := under(x.typ).(*Signature); sig != nil && sig.TypeParams().Len() > 0 { check.errorf(x, _WrongTypeArgCount, "cannot use generic function %s without instantiation in %s", x, context) } // spec: "If a left-hand side is the blank identifier, any typed or // non-constant value except for the predeclared identifier nil may // be assigned to it." if T == nil { return } reason := "" if ok, code := x.assignableTo(check, T, &reason); !ok { if compilerErrorMessages { if reason != "" { check.errorf(x, code, "cannot use %s as type %s in %s:\n\t%s", x, T, context, reason) } else { check.errorf(x, code, "cannot use %s as type %s in %s", x, T, context) } } else { if reason != "" { check.errorf(x, code, "cannot use %s as %s value in %s: %s", x, T, context, reason) } else { check.errorf(x, code, "cannot use %s as %s value in %s", x, T, context) } } x.mode = invalid } } func (check *Checker) initConst(lhs *Const, x *operand) { if x.mode == invalid || x.typ == Typ[Invalid] || lhs.typ == Typ[Invalid] { if lhs.typ == nil { lhs.typ = Typ[Invalid] } return } // rhs must be a constant if x.mode != constant_ { check.errorf(x, _InvalidConstInit, "%s is not constant", x) if lhs.typ == nil { lhs.typ = Typ[Invalid] } return } assert(isConstType(x.typ)) // If the lhs doesn't have a type yet, use the type of x. if lhs.typ == nil { lhs.typ = x.typ } check.assignment(x, lhs.typ, "constant declaration") if x.mode == invalid { return } lhs.val = x.val } func (check *Checker) initVar(lhs *Var, x *operand, context string) Type { if x.mode == invalid || x.typ == Typ[Invalid] || lhs.typ == Typ[Invalid] { if lhs.typ == nil { lhs.typ = Typ[Invalid] } return nil } // If the lhs doesn't have a type yet, use the type of x. if lhs.typ == nil { typ := x.typ if isUntyped(typ) { // convert untyped types to default types if typ == Typ[UntypedNil] { check.errorf(x, _UntypedNil, "use of untyped nil in %s", context) lhs.typ = Typ[Invalid] return nil } typ = Default(typ) } lhs.typ = typ } check.assignment(x, lhs.typ, context) if x.mode == invalid { return nil } return x.typ } func (check *Checker) assignVar(lhs ast.Expr, x *operand) Type { if x.mode == invalid || x.typ == Typ[Invalid] { check.useLHS(lhs) return nil } // Determine if the lhs is a (possibly parenthesized) identifier. ident, _ := unparen(lhs).(*ast.Ident) // Don't evaluate lhs if it is the blank identifier. if ident != nil && ident.Name == "_" { check.recordDef(ident, nil) check.assignment(x, nil, "assignment to _ identifier") if x.mode == invalid { return nil } return x.typ } // If the lhs is an identifier denoting a variable v, this assignment // is not a 'use' of v. Remember current value of v.used and restore // after evaluating the lhs via check.expr. var v *Var var v_used bool if ident != nil { if obj := check.lookup(ident.Name); obj != nil { // It's ok to mark non-local variables, but ignore variables // from other packages to avoid potential race conditions with // dot-imported variables. if w, _ := obj.(*Var); w != nil && w.pkg == check.pkg { v = w v_used = v.used } } } var z operand check.expr(&z, lhs) if v != nil { v.used = v_used // restore v.used } if z.mode == invalid || z.typ == Typ[Invalid] { return nil } // spec: "Each left-hand side operand must be addressable, a map index // expression, or the blank identifier. Operands may be parenthesized." switch z.mode { case invalid: return nil case variable, mapindex: // ok default: if sel, ok := z.expr.(*ast.SelectorExpr); ok { var op operand check.expr(&op, sel.X) if op.mode == mapindex { check.errorf(&z, _UnaddressableFieldAssign, "cannot assign to struct field %s in map", ExprString(z.expr)) return nil } } check.errorf(&z, _UnassignableOperand, "cannot assign to %s", &z) return nil } check.assignment(x, z.typ, "assignment") if x.mode == invalid { return nil } return x.typ } // operandTypes returns the list of types for the given operands. func operandTypes(list []*operand) (res []Type) { for _, x := range list { res = append(res, x.typ) } return res } // varTypes returns the list of types for the given variables. func varTypes(list []*Var) (res []Type) { for _, x := range list { res = append(res, x.typ) } return res } // typesSummary returns a string of the form "(t1, t2, ...)" where the // ti's are user-friendly string representations for the given types. // If variadic is set and the last type is a slice, its string is of // the form "...E" where E is the slice's element type. func (check *Checker) typesSummary(list []Type, variadic bool) string { var res []string for i, t := range list { var s string switch { case t == nil: fallthrough // should not happen but be cautious case t == Typ[Invalid]: s = "" case isUntyped(t): if isNumeric(t) { // Do not imply a specific type requirement: // "have number, want float64" is better than // "have untyped int, want float64" or // "have int, want float64". s = "number" } else { // If we don't have a number, omit the "untyped" qualifier // for compactness. s = strings.Replace(t.(*Basic).name, "untyped ", "", -1) } case variadic && i == len(list)-1: s = check.sprintf("...%s", t.(*Slice).elem) } if s == "" { s = check.sprintf("%s", t) } res = append(res, s) } return "(" + strings.Join(res, ", ") + ")" } func measure(x int, unit string) string { if x != 1 { unit += "s" } return fmt.Sprintf("%d %s", x, unit) } func (check *Checker) assignError(rhs []ast.Expr, nvars, nvals int) { vars := measure(nvars, "variable") vals := measure(nvals, "value") rhs0 := rhs[0] if len(rhs) == 1 { if call, _ := unparen(rhs0).(*ast.CallExpr); call != nil { check.errorf(rhs0, _WrongAssignCount, "assignment mismatch: %s but %s returns %s", vars, call.Fun, vals) return } } check.errorf(rhs0, _WrongAssignCount, "assignment mismatch: %s but %s", vars, vals) } // If returnStmt != nil, initVars is called to type-check the assignment // of return expressions, and returnStmt is the return statement. func (check *Checker) initVars(lhs []*Var, origRHS []ast.Expr, returnStmt ast.Stmt) { rhs, commaOk := check.exprList(origRHS, len(lhs) == 2 && returnStmt == nil) if len(lhs) != len(rhs) { // invalidate lhs for _, obj := range lhs { obj.used = true // avoid declared but not used errors if obj.typ == nil { obj.typ = Typ[Invalid] } } // don't report an error if we already reported one for _, x := range rhs { if x.mode == invalid { return } } if returnStmt != nil { var at positioner = returnStmt qualifier := "not enough" if len(rhs) > len(lhs) { at = rhs[len(lhs)].expr // report at first extra value qualifier = "too many" } else if len(rhs) > 0 { at = rhs[len(rhs)-1].expr // report at last value } check.errorf(at, _WrongResultCount, "%s return values\n\thave %s\n\twant %s", qualifier, check.typesSummary(operandTypes(rhs), false), check.typesSummary(varTypes(lhs), false), ) return } if compilerErrorMessages { check.assignError(origRHS, len(lhs), len(rhs)) } else { check.errorf(rhs[0], _WrongAssignCount, "cannot initialize %d variables with %d values", len(lhs), len(rhs)) } return } context := "assignment" if returnStmt != nil { context = "return statement" } if commaOk { var a [2]Type for i := range a { a[i] = check.initVar(lhs[i], rhs[i], context) } check.recordCommaOkTypes(origRHS[0], a) return } for i, lhs := range lhs { check.initVar(lhs, rhs[i], context) } } func (check *Checker) assignVars(lhs, origRHS []ast.Expr) { rhs, commaOk := check.exprList(origRHS, len(lhs) == 2) if len(lhs) != len(rhs) { check.useLHS(lhs...) // don't report an error if we already reported one for _, x := range rhs { if x.mode == invalid { return } } if compilerErrorMessages { check.assignError(origRHS, len(lhs), len(rhs)) } else { check.errorf(rhs[0], _WrongAssignCount, "cannot assign %d values to %d variables", len(rhs), len(lhs)) } return } if commaOk { var a [2]Type for i := range a { a[i] = check.assignVar(lhs[i], rhs[i]) } check.recordCommaOkTypes(origRHS[0], a) return } for i, lhs := range lhs { check.assignVar(lhs, rhs[i]) } } func (check *Checker) shortVarDecl(pos positioner, lhs, rhs []ast.Expr) { top := len(check.delayed) scope := check.scope // collect lhs variables seen := make(map[string]bool, len(lhs)) lhsVars := make([]*Var, len(lhs)) newVars := make([]*Var, 0, len(lhs)) hasErr := false for i, lhs := range lhs { ident, _ := lhs.(*ast.Ident) if ident == nil { check.useLHS(lhs) // TODO(rFindley) this is redundant with a parser error. Consider omitting? check.errorf(lhs, _BadDecl, "non-name %s on left side of :=", lhs) hasErr = true continue } name := ident.Name if name != "_" { if seen[name] { check.errorf(lhs, _RepeatedDecl, "%s repeated on left side of :=", lhs) hasErr = true continue } seen[name] = true } // Use the correct obj if the ident is redeclared. The // variable's scope starts after the declaration; so we // must use Scope.Lookup here and call Scope.Insert // (via check.declare) later. if alt := scope.Lookup(name); alt != nil { check.recordUse(ident, alt) // redeclared object must be a variable if obj, _ := alt.(*Var); obj != nil { lhsVars[i] = obj } else { check.errorf(lhs, _UnassignableOperand, "cannot assign to %s", lhs) hasErr = true } continue } // declare new variable obj := NewVar(ident.Pos(), check.pkg, name, nil) lhsVars[i] = obj if name != "_" { newVars = append(newVars, obj) } check.recordDef(ident, obj) } // create dummy variables where the lhs is invalid for i, obj := range lhsVars { if obj == nil { lhsVars[i] = NewVar(lhs[i].Pos(), check.pkg, "_", nil) } } check.initVars(lhsVars, rhs, nil) // process function literals in rhs expressions before scope changes check.processDelayed(top) if len(newVars) == 0 && !hasErr { check.softErrorf(pos, _NoNewVar, "no new variables on left side of :=") return } // declare new variables // spec: "The scope of a constant or variable identifier declared inside // a function begins at the end of the ConstSpec or VarSpec (ShortVarDecl // for short variable declarations) and ends at the end of the innermost // containing block." scopePos := rhs[len(rhs)-1].End() for _, obj := range newVars { check.declare(scope, nil, obj, scopePos) // id = nil: recordDef already called } }