// Copyright 2018 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // This file implements type parameter inference given // a list of concrete arguments and a parameter list. package types import ( "fmt" "go/token" "strings" ) // infer attempts to infer the complete set of type arguments for generic function instantiation/call // based on the given type parameters tparams, type arguments targs, function parameters params, and // function arguments args, if any. There must be at least one type parameter, no more type arguments // than type parameters, and params and args must match in number (incl. zero). // If successful, infer returns the complete list of type arguments, one for each type parameter. // Otherwise the result is nil and appropriate errors will be reported. // // Inference proceeds as follows: // // Starting with given type arguments // 1) apply FTI (function type inference) with typed arguments, // 2) apply CTI (constraint type inference), // 3) apply FTI with untyped function arguments, // 4) apply CTI. // // The process stops as soon as all type arguments are known or an error occurs. func (check *Checker) infer(posn positioner, tparams []*TypeParam, targs []Type, params *Tuple, args []*operand) (result []Type) { if debug { defer func() { assert(result == nil || len(result) == len(tparams)) for _, targ := range result { assert(targ != nil) } //check.dump("### inferred targs = %s", result) }() } if traceInference { check.dump("-- inferA %s%s ➞ %s", tparams, params, targs) defer func() { check.dump("=> inferA %s ➞ %s", tparams, result) }() } // There must be at least one type parameter, and no more type arguments than type parameters. n := len(tparams) assert(n > 0 && len(targs) <= n) // Function parameters and arguments must match in number. assert(params.Len() == len(args)) // If we already have all type arguments, we're done. if len(targs) == n { return targs } // len(targs) < n const enableTparamRenaming = true if enableTparamRenaming { // For the purpose of type inference we must differentiate type parameters // occurring in explicit type or value function arguments from the type // parameters we are solving for via unification, because they may be the // same in self-recursive calls. For example: // // func f[P *Q, Q any](p P, q Q) { // f(p) // } // // In this example, the fact that the P used in the instantation f[P] has // the same pointer identity as the P we are trying to solve for via // unification is coincidental: there is nothing special about recursive // calls that should cause them to conflate the identity of type arguments // with type parameters. To put it another way: any such self-recursive // call is equivalent to a mutually recursive call, which does not run into // any problems of type parameter identity. For example, the following code // is equivalent to the code above. // // func f[P interface{*Q}, Q any](p P, q Q) { // f2(p) // } // // func f2[P interface{*Q}, Q any](p P, q Q) { // f(p) // } // // We can turn the first example into the second example by renaming type // parameters in the original signature to give them a new identity. As an // optimization, we do this only for self-recursive calls. // We can detect if we are in a self-recursive call by comparing the // identity of the first type parameter in the current function with the // first type parameter in tparams. This works because type parameters are // unique to their type parameter list. selfRecursive := check.sig != nil && check.sig.tparams.Len() > 0 && tparams[0] == check.sig.tparams.At(0) if selfRecursive { // In self-recursive inference, rename the type parameters with new type // parameters that are the same but for their pointer identity. tparams2 := make([]*TypeParam, len(tparams)) for i, tparam := range tparams { tname := NewTypeName(tparam.Obj().Pos(), tparam.Obj().Pkg(), tparam.Obj().Name(), nil) tparams2[i] = NewTypeParam(tname, nil) tparams2[i].index = tparam.index // == i } renameMap := makeRenameMap(tparams, tparams2) for i, tparam := range tparams { tparams2[i].bound = check.subst(posn.Pos(), tparam.bound, renameMap, nil) } tparams = tparams2 params = check.subst(posn.Pos(), params, renameMap, nil).(*Tuple) } } // If we have more than 2 arguments, we may have arguments with named and unnamed types. // If that is the case, permutate params and args such that the arguments with named // types are first in the list. This doesn't affect type inference if all types are taken // as is. But when we have inexact unification enabled (as is the case for function type // inference), when a named type is unified with an unnamed type, unification proceeds // with the underlying type of the named type because otherwise unification would fail // right away. This leads to an asymmetry in type inference: in cases where arguments of // named and unnamed types are passed to parameters with identical type, different types // (named vs underlying) may be inferred depending on the order of the arguments. // By ensuring that named types are seen first, order dependence is avoided and unification // succeeds where it can. // // This code is disabled for now pending decision whether we want to address cases like // these and make the spec on type inference more complicated (see issue #43056). const enableArgSorting = false if m := len(args); m >= 2 && enableArgSorting { // Determine indices of arguments with named and unnamed types. var named, unnamed []int for i, arg := range args { if hasName(arg.typ) { named = append(named, i) } else { unnamed = append(unnamed, i) } } // If we have named and unnamed types, move the arguments with // named types first. Update the parameter list accordingly. // Make copies so as not to clobber the incoming slices. if len(named) != 0 && len(unnamed) != 0 { params2 := make([]*Var, m) args2 := make([]*operand, m) i := 0 for _, j := range named { params2[i] = params.At(j) args2[i] = args[j] i++ } for _, j := range unnamed { params2[i] = params.At(j) args2[i] = args[j] i++ } params = NewTuple(params2...) args = args2 } } // --- 1 --- // Continue with the type arguments we have. Avoid matching generic // parameters that already have type arguments against function arguments: // It may fail because matching uses type identity while parameter passing // uses assignment rules. Instantiate the parameter list with the type // arguments we have, and continue with that parameter list. // First, make sure we have a "full" list of type arguments, some of which // may be nil (unknown). Make a copy so as to not clobber the incoming slice. if len(targs) < n { targs2 := make([]Type, n) copy(targs2, targs) targs = targs2 } // len(targs) == n // Substitute type arguments for their respective type parameters in params, // if any. Note that nil targs entries are ignored by check.subst. // TODO(gri) Can we avoid this (we're setting known type arguments below, // but that doesn't impact the isParameterized check for now). if params.Len() > 0 { smap := makeSubstMap(tparams, targs) params = check.subst(token.NoPos, params, smap, nil).(*Tuple) } // Unify parameter and argument types for generic parameters with typed arguments // and collect the indices of generic parameters with untyped arguments. // Terminology: generic parameter = function parameter with a type-parameterized type u := newUnifier(false) u.x.init(tparams) // Set the type arguments which we know already. for i, targ := range targs { if targ != nil { u.x.set(i, targ) } } errorf := func(kind string, tpar, targ Type, arg *operand) { // provide a better error message if we can targs, index := u.x.types() if index == 0 { // The first type parameter couldn't be inferred. // If none of them could be inferred, don't try // to provide the inferred type in the error msg. allFailed := true for _, targ := range targs { if targ != nil { allFailed = false break } } if allFailed { check.errorf(arg, _CannotInferTypeArgs, "%s %s of %s does not match %s (cannot infer %s)", kind, targ, arg.expr, tpar, typeParamsString(tparams)) return } } smap := makeSubstMap(tparams, targs) // TODO(rFindley): pass a positioner here, rather than arg.Pos(). inferred := check.subst(arg.Pos(), tpar, smap, nil) // _CannotInferTypeArgs indicates a failure of inference, though the actual // error may be better attributed to a user-provided type argument (hence // _InvalidTypeArg). We can't differentiate these cases, so fall back on // the more general _CannotInferTypeArgs. if inferred != tpar { check.errorf(arg, _CannotInferTypeArgs, "%s %s of %s does not match inferred type %s for %s", kind, targ, arg.expr, inferred, tpar) } else { check.errorf(arg, _CannotInferTypeArgs, "%s %s of %s does not match %s", kind, targ, arg.expr, tpar) } } // indices of the generic parameters with untyped arguments - save for later var indices []int for i, arg := range args { par := params.At(i) // If we permit bidirectional unification, this conditional code needs to be // executed even if par.typ is not parameterized since the argument may be a // generic function (for which we want to infer its type arguments). if isParameterized(tparams, par.typ) { if arg.mode == invalid { // An error was reported earlier. Ignore this targ // and continue, we may still be able to infer all // targs resulting in fewer follow-on errors. continue } if targ := arg.typ; isTyped(targ) { // If we permit bidirectional unification, and targ is // a generic function, we need to initialize u.y with // the respective type parameters of targ. if !u.unify(par.typ, targ) { errorf("type", par.typ, targ, arg) return nil } } else if _, ok := par.typ.(*TypeParam); ok { // Since default types are all basic (i.e., non-composite) types, an // untyped argument will never match a composite parameter type; the // only parameter type it can possibly match against is a *TypeParam. // Thus, for untyped arguments we only need to look at parameter types // that are single type parameters. indices = append(indices, i) } } } // If we've got all type arguments, we're done. var index int targs, index = u.x.types() if index < 0 { return targs } // --- 2 --- // See how far we get with constraint type inference. // Note that even if we don't have any type arguments, constraint type inference // may produce results for constraints that explicitly specify a type. targs, index = check.inferB(posn, tparams, targs) if targs == nil || index < 0 { return targs } // --- 3 --- // Use any untyped arguments to infer additional type arguments. // Some generic parameters with untyped arguments may have been given // a type by now, we can ignore them. for _, i := range indices { tpar := params.At(i).typ.(*TypeParam) // is type parameter by construction of indices // Only consider untyped arguments for which the corresponding type // parameter doesn't have an inferred type yet. if targs[tpar.index] == nil { arg := args[i] targ := Default(arg.typ) // The default type for an untyped nil is untyped nil. We must not // infer an untyped nil type as type parameter type. Ignore untyped // nil by making sure all default argument types are typed. if isTyped(targ) && !u.unify(tpar, targ) { errorf("default type", tpar, targ, arg) return nil } } } // If we've got all type arguments, we're done. targs, index = u.x.types() if index < 0 { return targs } // --- 4 --- // Again, follow up with constraint type inference. targs, index = check.inferB(posn, tparams, targs) if targs == nil || index < 0 { return targs } // At least one type argument couldn't be inferred. assert(index >= 0 && targs[index] == nil) tpar := tparams[index] check.errorf(posn, _CannotInferTypeArgs, "cannot infer %s (%v)", tpar.obj.name, tpar.obj.pos) return nil } // typeParamsString produces a string containing all the type parameter names // in list suitable for human consumption. func typeParamsString(list []*TypeParam) string { // common cases n := len(list) switch n { case 0: return "" case 1: return list[0].obj.name case 2: return list[0].obj.name + " and " + list[1].obj.name } // general case (n > 2) var b strings.Builder for i, tname := range list[:n-1] { if i > 0 { b.WriteString(", ") } b.WriteString(tname.obj.name) } b.WriteString(", and ") b.WriteString(list[n-1].obj.name) return b.String() } // IsParameterized reports whether typ contains any of the type parameters of tparams. func isParameterized(tparams []*TypeParam, typ Type) bool { w := tpWalker{ seen: make(map[Type]bool), tparams: tparams, } return w.isParameterized(typ) } type tpWalker struct { seen map[Type]bool tparams []*TypeParam } func (w *tpWalker) isParameterized(typ Type) (res bool) { // detect cycles if x, ok := w.seen[typ]; ok { return x } w.seen[typ] = false defer func() { w.seen[typ] = res }() switch t := typ.(type) { case nil, *Basic: // TODO(gri) should nil be handled here? break case *Array: return w.isParameterized(t.elem) case *Slice: return w.isParameterized(t.elem) case *Struct: for _, fld := range t.fields { if w.isParameterized(fld.typ) { return true } } case *Pointer: return w.isParameterized(t.base) case *Tuple: n := t.Len() for i := 0; i < n; i++ { if w.isParameterized(t.At(i).typ) { return true } } case *Signature: // t.tparams may not be nil if we are looking at a signature // of a generic function type (or an interface method) that is // part of the type we're testing. We don't care about these type // parameters. // Similarly, the receiver of a method may declare (rather then // use) type parameters, we don't care about those either. // Thus, we only need to look at the input and result parameters. return w.isParameterized(t.params) || w.isParameterized(t.results) case *Interface: tset := t.typeSet() for _, m := range tset.methods { if w.isParameterized(m.typ) { return true } } return tset.is(func(t *term) bool { return t != nil && w.isParameterized(t.typ) }) case *Map: return w.isParameterized(t.key) || w.isParameterized(t.elem) case *Chan: return w.isParameterized(t.elem) case *Named: return w.isParameterizedTypeList(t.targs.list()) case *TypeParam: // t must be one of w.tparams return tparamIndex(w.tparams, t) >= 0 default: unreachable() } return false } func (w *tpWalker) isParameterizedTypeList(list []Type) bool { for _, t := range list { if w.isParameterized(t) { return true } } return false } // inferB returns the list of actual type arguments inferred from the type parameters' // bounds and an initial set of type arguments. If type inference is impossible because // unification fails, an error is reported if report is set to true, the resulting types // list is nil, and index is 0. // Otherwise, types is the list of inferred type arguments, and index is the index of the // first type argument in that list that couldn't be inferred (and thus is nil). If all // type arguments were inferred successfully, index is < 0. The number of type arguments // provided may be less than the number of type parameters, but there must be at least one. func (check *Checker) inferB(posn positioner, tparams []*TypeParam, targs []Type) (types []Type, index int) { assert(len(tparams) >= len(targs) && len(targs) > 0) if traceInference { check.dump("-- inferB %s ➞ %s", tparams, targs) defer func() { check.dump("=> inferB %s ➞ %s", tparams, types) }() } // Setup bidirectional unification between constraints // and the corresponding type arguments (which may be nil!). u := newUnifier(false) u.x.init(tparams) u.y = u.x // type parameters between LHS and RHS of unification are identical // Set the type arguments which we know already. for i, targ := range targs { if targ != nil { u.x.set(i, targ) } } // Repeatedly apply constraint type inference as long as // there are still unknown type arguments and progress is // being made. // // This is an O(n^2) algorithm where n is the number of // type parameters: if there is progress (and iteration // continues), at least one type argument is inferred // per iteration and we have a doubly nested loop. // In practice this is not a problem because the number // of type parameters tends to be very small (< 5 or so). // (It should be possible for unification to efficiently // signal newly inferred type arguments; then the loops // here could handle the respective type parameters only, // but that will come at a cost of extra complexity which // may not be worth it.) for n := u.x.unknowns(); n > 0; { nn := n for i, tpar := range tparams { // If there is a core term (i.e., a core type with tilde information) // unify the type parameter with the core type. if core, single := coreTerm(tpar); core != nil { // A type parameter can be unified with its core type in two cases. tx := u.x.at(i) switch { case tx != nil: // The corresponding type argument tx is known. // In this case, if the core type has a tilde, the type argument's underlying // type must match the core type, otherwise the type argument and the core type // must match. // If tx is an external type parameter, don't consider its underlying type // (which is an interface). Core type unification will attempt to unify against // core.typ. // Note also that even with inexact unification we cannot leave away the under // call here because it's possible that both tx and core.typ are named types, // with under(tx) being a (named) basic type matching core.typ. Such cases do // not match with inexact unification. if core.tilde && !isTypeParam(tx) { tx = under(tx) } if !u.unify(tx, core.typ) { // TODO(gri) improve error message by providing the type arguments // which we know already // Don't use term.String() as it always qualifies types, even if they // are in the current package. tilde := "" if core.tilde { tilde = "~" } check.errorf(posn, _InvalidTypeArg, "%s does not match %s%s", tpar, tilde, core.typ) return nil, 0 } case single && !core.tilde: // The corresponding type argument tx is unknown and there's a single // specific type and no tilde. // In this case the type argument must be that single type; set it. u.x.set(i, core.typ) default: // Unification is not possible and no progress was made. continue } // The number of known type arguments may have changed. nn = u.x.unknowns() if nn == 0 { break // all type arguments are known } } } assert(nn <= n) if nn == n { break // no progress } n = nn } // u.x.types() now contains the incoming type arguments plus any additional type // arguments which were inferred from core terms. The newly inferred non-nil // entries may still contain references to other type parameters. // For instance, for [A any, B interface{ []C }, C interface{ *A }], if A == int // was given, unification produced the type list [int, []C, *A]. We eliminate the // remaining type parameters by substituting the type parameters in this type list // until nothing changes anymore. types, _ = u.x.types() if debug { for i, targ := range targs { assert(targ == nil || types[i] == targ) } } // The data structure of each (provided or inferred) type represents a graph, where // each node corresponds to a type and each (directed) vertice points to a component // type. The substitution process described above repeatedly replaces type parameter // nodes in these graphs with the graphs of the types the type parameters stand for, // which creates a new (possibly bigger) graph for each type. // The substitution process will not stop if the replacement graph for a type parameter // also contains that type parameter. // For instance, for [A interface{ *A }], without any type argument provided for A, // unification produces the type list [*A]. Substituting A in *A with the value for // A will lead to infinite expansion by producing [**A], [****A], [********A], etc., // because the graph A -> *A has a cycle through A. // Generally, cycles may occur across multiple type parameters and inferred types // (for instance, consider [P interface{ *Q }, Q interface{ func(P) }]). // We eliminate cycles by walking the graphs for all type parameters. If a cycle // through a type parameter is detected, cycleFinder nils out the respectice type // which kills the cycle; this also means that the respective type could not be // inferred. // // TODO(gri) If useful, we could report the respective cycle as an error. We don't // do this now because type inference will fail anyway, and furthermore, // constraints with cycles of this kind cannot currently be satisfied by // any user-suplied type. But should that change, reporting an error // would be wrong. w := cycleFinder{tparams, types, make(map[Type]bool)} for _, t := range tparams { w.typ(t) // t != nil } // dirty tracks the indices of all types that may still contain type parameters. // We know that nil type entries and entries corresponding to provided (non-nil) // type arguments are clean, so exclude them from the start. var dirty []int for i, typ := range types { if typ != nil && (i >= len(targs) || targs[i] == nil) { dirty = append(dirty, i) } } for len(dirty) > 0 { // TODO(gri) Instead of creating a new substMap for each iteration, // provide an update operation for substMaps and only change when // needed. Optimization. smap := makeSubstMap(tparams, types) n := 0 for _, index := range dirty { t0 := types[index] if t1 := check.subst(token.NoPos, t0, smap, nil); t1 != t0 { types[index] = t1 dirty[n] = index n++ } } dirty = dirty[:n] } // Once nothing changes anymore, we may still have type parameters left; // e.g., a constraint with core type *P may match a type parameter Q but // we don't have any type arguments to fill in for *P or Q (issue #45548). // Don't let such inferences escape, instead nil them out. for i, typ := range types { if typ != nil && isParameterized(tparams, typ) { types[i] = nil } } // update index index = -1 for i, typ := range types { if typ == nil { index = i break } } return } // If the type parameter has a single specific type S, coreTerm returns (S, true). // Otherwise, if tpar has a core type T, it returns a term corresponding to that // core type and false. In that case, if any term of tpar has a tilde, the core // term has a tilde. In all other cases coreTerm returns (nil, false). func coreTerm(tpar *TypeParam) (*term, bool) { n := 0 var single *term // valid if n == 1 var tilde bool tpar.is(func(t *term) bool { if t == nil { assert(n == 0) return false // no terms } n++ single = t if t.tilde { tilde = true } return true }) if n == 1 { if debug { assert(debug && under(single.typ) == coreType(tpar)) } return single, true } if typ := coreType(tpar); typ != nil { // A core type is always an underlying type. // If any term of tpar has a tilde, we don't // have a precise core type and we must return // a tilde as well. return &term{tilde, typ}, false } return nil, false } type cycleFinder struct { tparams []*TypeParam types []Type seen map[Type]bool } func (w *cycleFinder) typ(typ Type) { if w.seen[typ] { // We have seen typ before. If it is one of the type parameters // in tparams, iterative substitution will lead to infinite expansion. // Nil out the corresponding type which effectively kills the cycle. if tpar, _ := typ.(*TypeParam); tpar != nil { if i := tparamIndex(w.tparams, tpar); i >= 0 { // cycle through tpar w.types[i] = nil } } // If we don't have one of our type parameters, the cycle is due // to an ordinary recursive type and we can just stop walking it. return } w.seen[typ] = true defer delete(w.seen, typ) switch t := typ.(type) { case *Basic: // nothing to do case *Array: w.typ(t.elem) case *Slice: w.typ(t.elem) case *Struct: w.varList(t.fields) case *Pointer: w.typ(t.base) // case *Tuple: // This case should not occur because tuples only appear // in signatures where they are handled explicitly. case *Signature: if t.params != nil { w.varList(t.params.vars) } if t.results != nil { w.varList(t.results.vars) } case *Union: for _, t := range t.terms { w.typ(t.typ) } case *Interface: for _, m := range t.methods { w.typ(m.typ) } for _, t := range t.embeddeds { w.typ(t) } case *Map: w.typ(t.key) w.typ(t.elem) case *Chan: w.typ(t.elem) case *Named: for _, tpar := range t.TypeArgs().list() { w.typ(tpar) } case *TypeParam: if i := tparamIndex(w.tparams, t); i >= 0 && w.types[i] != nil { w.typ(w.types[i]) } default: panic(fmt.Sprintf("unexpected %T", typ)) } } func (w *cycleFinder) varList(list []*Var) { for _, v := range list { w.typ(v.typ) } }