// Copyright 2020 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package netip_test import ( "fmt" . "net/netip" "strconv" "strings" ) // zeros is a slice of eight stringified zeros. It's used in // parseIPSlow to construct slices of specific amounts of zero fields, // from 1 to 8. var zeros = []string{"0", "0", "0", "0", "0", "0", "0", "0"} // parseIPSlow is like ParseIP, but aims for readability above // speed. It's the reference implementation for correctness checking // and against which we measure optimized parsers. // // parseIPSlow understands the following forms of IP addresses: // - Regular IPv4: 1.2.3.4 // - IPv4 with many leading zeros: 0000001.0000002.0000003.0000004 // - Regular IPv6: 1111:2222:3333:4444:5555:6666:7777:8888 // - IPv6 with many leading zeros: 00000001:0000002:0000003:0000004:0000005:0000006:0000007:0000008 // - IPv6 with zero blocks elided: 1111:2222::7777:8888 // - IPv6 with trailing 32 bits expressed as IPv4: 1111:2222:3333:4444:5555:6666:77.77.88.88 // // It does not process the following IP address forms, which have been // varyingly accepted by some programs due to an under-specification // of the shapes of IPv4 addresses: // // - IPv4 as a single 32-bit uint: 4660 (same as "1.2.3.4") // - IPv4 with octal numbers: 0300.0250.0.01 (same as "192.168.0.1") // - IPv4 with hex numbers: 0xc0.0xa8.0x0.0x1 (same as "192.168.0.1") // - IPv4 in "class-B style": 1.2.52 (same as "1.2.3.4") // - IPv4 in "class-A style": 1.564 (same as "1.2.3.4") func parseIPSlow(s string) (Addr, error) { // Identify and strip out the zone, if any. There should be 0 or 1 // '%' in the string. var zone string fs := strings.Split(s, "%") switch len(fs) { case 1: // No zone, that's fine. case 2: s, zone = fs[0], fs[1] if zone == "" { return Addr{}, fmt.Errorf("netaddr.ParseIP(%q): no zone after zone specifier", s) } default: return Addr{}, fmt.Errorf("netaddr.ParseIP(%q): too many zone specifiers", s) // TODO: less specific? } // IPv4 by itself is easy to do in a helper. if strings.Count(s, ":") == 0 { if zone != "" { return Addr{}, fmt.Errorf("netaddr.ParseIP(%q): IPv4 addresses cannot have a zone", s) } return parseIPv4Slow(s) } normal, err := normalizeIPv6Slow(s) if err != nil { return Addr{}, err } // At this point, we've normalized the address back into 8 hex // fields of 16 bits each. Parse that. fs = strings.Split(normal, ":") if len(fs) != 8 { return Addr{}, fmt.Errorf("netaddr.ParseIP(%q): wrong size address", s) } var ret [16]byte for i, f := range fs { a, b, err := parseWord(f) if err != nil { return Addr{}, err } ret[i*2] = a ret[i*2+1] = b } return AddrFrom16(ret).WithZone(zone), nil } // normalizeIPv6Slow expands s, which is assumed to be an IPv6 // address, to its canonical text form. // // The canonical form of an IPv6 address is 8 colon-separated fields, // where each field should be a hex value from 0 to ffff. This // function does not verify the contents of each field. // // This function performs two transformations: // - The last 32 bits of an IPv6 address may be represented in // IPv4-style dotted quad form, as in 1:2:3:4:5:6:7.8.9.10. That // address is transformed to its hex equivalent, // e.g. 1:2:3:4:5:6:708:90a. // - An address may contain one "::", which expands into as many // 16-bit blocks of zeros as needed to make the address its correct // full size. For example, fe80::1:2 expands to fe80:0:0:0:0:0:1:2. // // Both short forms may be present in a single address, // e.g. fe80::1.2.3.4. func normalizeIPv6Slow(orig string) (string, error) { s := orig // Find and convert an IPv4 address in the final field, if any. i := strings.LastIndex(s, ":") if i == -1 { return "", fmt.Errorf("netaddr.ParseIP(%q): invalid IP address", orig) } if strings.Contains(s[i+1:], ".") { ip, err := parseIPv4Slow(s[i+1:]) if err != nil { return "", err } a4 := ip.As4() s = fmt.Sprintf("%s:%02x%02x:%02x%02x", s[:i], a4[0], a4[1], a4[2], a4[3]) } // Find and expand a ::, if any. fs := strings.Split(s, "::") switch len(fs) { case 1: // No ::, nothing to do. case 2: lhs, rhs := fs[0], fs[1] // Found a ::, figure out how many zero blocks need to be // inserted. nblocks := strings.Count(lhs, ":") + strings.Count(rhs, ":") if lhs != "" { nblocks++ } if rhs != "" { nblocks++ } if nblocks > 7 { return "", fmt.Errorf("netaddr.ParseIP(%q): address too long", orig) } fs = nil // Either side of the :: can be empty. We don't want empty // fields to feature in the final normalized address. if lhs != "" { fs = append(fs, lhs) } fs = append(fs, zeros[:8-nblocks]...) if rhs != "" { fs = append(fs, rhs) } s = strings.Join(fs, ":") default: // Too many :: return "", fmt.Errorf("netaddr.ParseIP(%q): invalid IP address", orig) } return s, nil } // parseIPv4Slow parses and returns an IPv4 address in dotted quad // form, e.g. "192.168.0.1". It is slow but easy to read, and the // reference implementation against which we compare faster // implementations for correctness. func parseIPv4Slow(s string) (Addr, error) { fs := strings.Split(s, ".") if len(fs) != 4 { return Addr{}, fmt.Errorf("netaddr.ParseIP(%q): invalid IP address", s) } var ret [4]byte for i := range ret { val, err := strconv.ParseUint(fs[i], 10, 8) if err != nil { return Addr{}, err } ret[i] = uint8(val) } return AddrFrom4([4]byte{ret[0], ret[1], ret[2], ret[3]}), nil } // parseWord converts a 16-bit hex string into its corresponding // two-byte value. func parseWord(s string) (byte, byte, error) { ret, err := strconv.ParseUint(s, 16, 16) if err != nil { return 0, 0, err } return uint8(ret >> 8), uint8(ret), nil }