// Copyright 2011 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. //go:build darwin || (openbsd && !mips64) package syscall import ( "internal/abi" "unsafe" ) type SysProcAttr struct { Chroot string // Chroot. Credential *Credential // Credential. Ptrace bool // Enable tracing. Setsid bool // Create session. // Setpgid sets the process group ID of the child to Pgid, // or, if Pgid == 0, to the new child's process ID. Setpgid bool // Setctty sets the controlling terminal of the child to // file descriptor Ctty. Ctty must be a descriptor number // in the child process: an index into ProcAttr.Files. // This is only meaningful if Setsid is true. Setctty bool Noctty bool // Detach fd 0 from controlling terminal Ctty int // Controlling TTY fd // Foreground places the child process group in the foreground. // This implies Setpgid. The Ctty field must be set to // the descriptor of the controlling TTY. // Unlike Setctty, in this case Ctty must be a descriptor // number in the parent process. Foreground bool Pgid int // Child's process group ID if Setpgid. } // Implemented in runtime package. func runtime_BeforeFork() func runtime_AfterFork() func runtime_AfterForkInChild() // Fork, dup fd onto 0..len(fd), and exec(argv0, argvv, envv) in child. // If a dup or exec fails, write the errno error to pipe. // (Pipe is close-on-exec so if exec succeeds, it will be closed.) // In the child, this function must not acquire any locks, because // they might have been locked at the time of the fork. This means // no rescheduling, no malloc calls, and no new stack segments. // For the same reason compiler does not race instrument it. // The calls to rawSyscall are okay because they are assembly // functions that do not grow the stack. //go:norace func forkAndExecInChild(argv0 *byte, argv, envv []*byte, chroot, dir *byte, attr *ProcAttr, sys *SysProcAttr, pipe int) (pid int, err Errno) { // Declare all variables at top in case any // declarations require heap allocation (e.g., err1). var ( r1 uintptr err1 Errno nextfd int i int ) // guard against side effects of shuffling fds below. // Make sure that nextfd is beyond any currently open files so // that we can't run the risk of overwriting any of them. fd := make([]int, len(attr.Files)) nextfd = len(attr.Files) for i, ufd := range attr.Files { if nextfd < int(ufd) { nextfd = int(ufd) } fd[i] = int(ufd) } nextfd++ // About to call fork. // No more allocation or calls of non-assembly functions. runtime_BeforeFork() r1, _, err1 = rawSyscall(abi.FuncPCABI0(libc_fork_trampoline), 0, 0, 0) if err1 != 0 { runtime_AfterFork() return 0, err1 } if r1 != 0 { // parent; return PID runtime_AfterFork() return int(r1), 0 } // Fork succeeded, now in child. // Enable tracing if requested. if sys.Ptrace { if err := ptrace(PTRACE_TRACEME, 0, 0, 0); err != nil { err1 = err.(Errno) goto childerror } } // Session ID if sys.Setsid { _, _, err1 = rawSyscall(abi.FuncPCABI0(libc_setsid_trampoline), 0, 0, 0) if err1 != 0 { goto childerror } } // Set process group if sys.Setpgid || sys.Foreground { // Place child in process group. _, _, err1 = rawSyscall(abi.FuncPCABI0(libc_setpgid_trampoline), 0, uintptr(sys.Pgid), 0) if err1 != 0 { goto childerror } } if sys.Foreground { // This should really be pid_t, however _C_int (aka int32) is // generally equivalent. pgrp := _C_int(sys.Pgid) if pgrp == 0 { r1, _, err1 = rawSyscall(abi.FuncPCABI0(libc_getpid_trampoline), 0, 0, 0) if err1 != 0 { goto childerror } pgrp = _C_int(r1) } // Place process group in foreground. _, _, err1 = rawSyscall(abi.FuncPCABI0(libc_ioctl_trampoline), uintptr(sys.Ctty), uintptr(TIOCSPGRP), uintptr(unsafe.Pointer(&pgrp))) if err1 != 0 { goto childerror } } // Restore the signal mask. We do this after TIOCSPGRP to avoid // having the kernel send a SIGTTOU signal to the process group. runtime_AfterForkInChild() // Chroot if chroot != nil { _, _, err1 = rawSyscall(abi.FuncPCABI0(libc_chroot_trampoline), uintptr(unsafe.Pointer(chroot)), 0, 0) if err1 != 0 { goto childerror } } // User and groups if cred := sys.Credential; cred != nil { ngroups := uintptr(len(cred.Groups)) groups := uintptr(0) if ngroups > 0 { groups = uintptr(unsafe.Pointer(&cred.Groups[0])) } if !cred.NoSetGroups { _, _, err1 = rawSyscall(abi.FuncPCABI0(libc_setgroups_trampoline), ngroups, groups, 0) if err1 != 0 { goto childerror } } _, _, err1 = rawSyscall(abi.FuncPCABI0(libc_setgid_trampoline), uintptr(cred.Gid), 0, 0) if err1 != 0 { goto childerror } _, _, err1 = rawSyscall(abi.FuncPCABI0(libc_setuid_trampoline), uintptr(cred.Uid), 0, 0) if err1 != 0 { goto childerror } } // Chdir if dir != nil { _, _, err1 = rawSyscall(abi.FuncPCABI0(libc_chdir_trampoline), uintptr(unsafe.Pointer(dir)), 0, 0) if err1 != 0 { goto childerror } } // Pass 1: look for fd[i] < i and move those up above len(fd) // so that pass 2 won't stomp on an fd it needs later. if pipe < nextfd { _, _, err1 = rawSyscall(abi.FuncPCABI0(libc_dup2_trampoline), uintptr(pipe), uintptr(nextfd), 0) if err1 != 0 { goto childerror } rawSyscall(abi.FuncPCABI0(libc_fcntl_trampoline), uintptr(nextfd), F_SETFD, FD_CLOEXEC) pipe = nextfd nextfd++ } for i = 0; i < len(fd); i++ { if fd[i] >= 0 && fd[i] < int(i) { if nextfd == pipe { // don't stomp on pipe nextfd++ } _, _, err1 = rawSyscall(abi.FuncPCABI0(libc_dup2_trampoline), uintptr(fd[i]), uintptr(nextfd), 0) if err1 != 0 { goto childerror } rawSyscall(abi.FuncPCABI0(libc_fcntl_trampoline), uintptr(nextfd), F_SETFD, FD_CLOEXEC) fd[i] = nextfd nextfd++ } } // Pass 2: dup fd[i] down onto i. for i = 0; i < len(fd); i++ { if fd[i] == -1 { rawSyscall(abi.FuncPCABI0(libc_close_trampoline), uintptr(i), 0, 0) continue } if fd[i] == int(i) { // dup2(i, i) won't clear close-on-exec flag on Linux, // probably not elsewhere either. _, _, err1 = rawSyscall(abi.FuncPCABI0(libc_fcntl_trampoline), uintptr(fd[i]), F_SETFD, 0) if err1 != 0 { goto childerror } continue } // The new fd is created NOT close-on-exec, // which is exactly what we want. _, _, err1 = rawSyscall(abi.FuncPCABI0(libc_dup2_trampoline), uintptr(fd[i]), uintptr(i), 0) if err1 != 0 { goto childerror } } // By convention, we don't close-on-exec the fds we are // started with, so if len(fd) < 3, close 0, 1, 2 as needed. // Programs that know they inherit fds >= 3 will need // to set them close-on-exec. for i = len(fd); i < 3; i++ { rawSyscall(abi.FuncPCABI0(libc_close_trampoline), uintptr(i), 0, 0) } // Detach fd 0 from tty if sys.Noctty { _, _, err1 = rawSyscall(abi.FuncPCABI0(libc_ioctl_trampoline), 0, uintptr(TIOCNOTTY), 0) if err1 != 0 { goto childerror } } // Set the controlling TTY to Ctty if sys.Setctty { _, _, err1 = rawSyscall(abi.FuncPCABI0(libc_ioctl_trampoline), uintptr(sys.Ctty), uintptr(TIOCSCTTY), 0) if err1 != 0 { goto childerror } } // Time to exec. _, _, err1 = rawSyscall(abi.FuncPCABI0(libc_execve_trampoline), uintptr(unsafe.Pointer(argv0)), uintptr(unsafe.Pointer(&argv[0])), uintptr(unsafe.Pointer(&envv[0]))) childerror: // send error code on pipe rawSyscall(abi.FuncPCABI0(libc_write_trampoline), uintptr(pipe), uintptr(unsafe.Pointer(&err1)), unsafe.Sizeof(err1)) for { rawSyscall(abi.FuncPCABI0(libc_exit_trampoline), 253, 0, 0) } }